How to Find Variable Active Galactic Nuclei with Machine Learning

Faisst, Andreas L. and Prakash, Abhishek and Capak, Peter L. and Lee, Bomee (2019) How to Find Variable Active Galactic Nuclei with Machine Learning. The Astrophysical Journal, 881 (1). L9. ISSN 2041-8213

[thumbnail of Faisst_2019_ApJL_881_L9.pdf] Text
Faisst_2019_ApJL_881_L9.pdf - Published Version

Download (1MB)

Abstract

Machine-learning (ML) algorithms will play a crucial role in studying the large data sets delivered by new facilities over the next decade and beyond. Here, we investigate the capabilities and limits of such methods in finding galaxies with brightness-variable active galactic nuclei (AGNs). Specifically, we focus on an unsupervised method based on self-organizing maps (SOM) that we apply to a set of nonparametric variability estimators. This technique allows us to maintain domain knowledge and systematics control while using all the advantages of ML. Using simulated light curves that match the noise properties of observations, we verify the potential of this algorithm in identifying variable light curves. We then apply our method to a sample of ∼8300 WISE color-selected AGN candidates in Stripe 82, in which we have identified variable light curves by visual inspection. We find that with ML we can identify these variable classified AGN with a purity of 86% and a completeness of 66%, a performance that is comparable to that of more commonly used supervised deep-learning neural networks. The advantage of the SOM framework is that it enables not only a robust identification of variable light curves in a given data set, but it is also a tool to investigate correlations between physical parameters in multidimensional space—such as the link between AGN variability and the properties of their host galaxies. Finally, we note that our method can be applied to any time-sampled light curve (e.g., supernovae, exoplanets, pulsars, and other transient events).

Item Type: Article
Subjects: STM Open Academic > Physics and Astronomy
Depositing User: Unnamed user with email admin@eprint.stmopenacademic.com
Date Deposited: 31 May 2023 07:35
Last Modified: 18 Jan 2024 11:49
URI: http://publish.sub7journal.com/id/eprint/533

Actions (login required)

View Item
View Item