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Abstract

Machine-learning (ML) algorithms will play a crucial role in studying the large data sets delivered by new facilities
over the next decade and beyond. Here, we investigate the capabilities and limits of such methods in finding
galaxies with brightness-variable active galactic nuclei (AGNs). Specifically, we focus on an unsupervised method
based on self-organizing maps (SOM) that we apply to a set of nonparametric variability estimators. This technique
allows us to maintain domain knowledge and systematics control while using all the advantages of ML. Using
simulated light curves that match the noise properties of observations, we verify the potential of this algorithm in
identifying variable light curves. We then apply our method to a sample of ~8300 WISE color-selected AGN
candidates in Stripe 82, in which we have identified variable light curves by visual inspection. We find that with
ML we can identify these variable classified AGN with a purity of 86% and a completeness of 66%, a performance
that is comparable to that of more commonly used supervised deep-learning neural networks. The advantage of the
SOM framework is that it enables not only a robust identification of variable light curves in a given data set, but it
is also a tool to investigate correlations between physical parameters in multidimensional space—such as the link
between AGN variability and the properties of their host galaxies. Finally, we note that our method can be applied
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to any time-sampled light curve (e.g., supernovae, exoplanets, pulsars, and other transient events).
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1. Introduction

Over the next decade, new facilities will deliver a
tremendous amount of data to study astrophysical phenomena.
In order to trawl through these large data volumes, fast,
automated, and efficient methods are needed. Machine-learning
(ML) algorithms are a powerful tool to identify, classify,
characterize, and visualize astronomical objects and the
correlations of their physical properties in multidimensional
parameter space. They are already being used to derive
photometric redshifts and other physical properties of galaxies
(Masters et al. 2015; Krakowski et al. 2016; Speagle &
Eisenstein 2017a, 2017b; Siudek et al. 2018; Bonjean et al.
2019; Davidzon et al. 2019; Hemmati et al. 2019b; Masters
et al. 2019; Turner et al. 2019), as well as to classify light
curves of supernovae and to identify other galactic transient
events (Lochner et al. 2016; Charnock & Moss 2017; Sesar
et al. 2017; Carrasco-Davis et al. 2018; Hinners et al. 2018;
Sooknunan et al. 2018; Aguirre et al. 2019; Muthukrishna et al.
2019a, 2019b).

Here, we investigate the capabilities of ML algorithms in
finding galaxies with variable active galactic nuclei (AGNs).
Powered by the accretion of matter onto supermassive black
holes (SMBH) residing in the center of galaxies, AGNs shape
the evolution and structure of their host galaxies through
various feedback mechanisms (Bower et al. 2006; Cattaneo
et al. 2006; Croton et al. 2006; Sijacki et al. 2007; Hopkins
et al. 2012; Dubois et al. 2013). Measuring the number-density
and rate of occurance of AGNs therefore enables us to study
the formation and growth of SMBHs and their host galaxies
across cosmic time (Peterson 1997). Due to different “feeding
mechanisms,” AGNs exhibit variations in brightness over a
range of wavelengths on timescales ranging from minutes to
years (Fitch et al. 1967). Variations on short timescales are
likely caused by disk instabilities (Kawaguchi et al. 1998),

while variations on longer timescales are dominated by the
fueling of gas into the nuclear regions and regulation through
feedback processes (e.g., Hopkins et al. 2012). The study of
AGN variability levels therefore adds another dimension and
allows us to learn about the internal processes such as inflows
and outflows and the size of accretion disks around SMBHs
(Shields 1978).

In this Letter, we demonstrate the capabilities of self-
organizing maps (SOM; Kohonen 1982, 1990), an unsuper-
vised ML algorithm, in identifying AGNs displaying long-term
brightness variability. This algorithm has been widely used in
the past, for example to study radio galaxies (Torniainen et al.
2008; Ralph et al. 2019), variable stars (Brett et al. 2004;
Armstrong et al. 2016), and exoplanet transit curves (Arm-
strong et al. 2017) as well as to derive photometric redshifts
(Carrasco Kind & Brunner 2014; Masters et al. 2015; Hemmati
et al. 2019a, 2019b) and to classify gravitational waves
(Rampone et al. 2013). We apply the SOM algorithm to a set
of nonparametric variability estimators, which allows us to
maintain domain knowledge of the data properties encapsulated
in these estimators (e.g., noise, sampling rate, and selection
function), and offers the flexibility of learning-based nonlinear
classifications that can optimally combine these estimators for
classification. Such techniques will be especially valuable for
extrapolating knowledge from the deep and well-sampled parts
of future surveys, such as LSST, Euclid, and WFIRST, to the
wide and shallow parts with poor sampling. We emphasize that
our work serves as a proof of concept, and the methods
described here can be further refined and extended (e.g., to flux
variability at multiple wavelengths).

The WISE AGN sample, light curves, and different
variability estimators are presented in Section 2. In Section 3,
we apply the SOM algorithm to our sample and compare its
performance to a deep-learning regression fitting method. We
conclude in Section 4. Magnitudes are expressed in the AB
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system (Oke & Gunn 1983) unless stated otherwise. We use a
standard ACDM cosmology with Hy = 70kms ' Mpc™',
Qv = 0.3, and Q) = 0.7.

2. WISE AGN Sample
2.1. Sample Selection and Light Curves

The AGNs used in this study are color selected from a
sample of 14,000 AGNs in the 270 deg® Sloan Digital Sky
Survey (SDSS) Stripe 82 field (Jiang et al. 2014). The details
are outlined in Prakash et al. (2019), a summary is provided in
the following.

The color selection follows the criteria of Stern et al. (2012),
using the W1 and W2 filters of the Wide-field Infrared Survey
Explorer (WISE; Wright et al. 2010) centered on 3.4 ym and
4.6 pym. Specifically, we apply a cut at
WI — W2 > 0.8 magy,,, and restrict ourselves to
W2 > 15 magy.,. About 50% of the candidates have
confirmed redshifts and lie between 0.1 < z < 2.2 with a
median of z ~ 0.5.

Once the AGN candidates are identified, their time-sampled
photometry is measured on WISE W1 single exposure (Level
1b) images in apertures of 6”. Bad pixels indicated by the bad
pixel mask are excluded. Several standard stars are used to
correct the photometry for aperture losses. The light curves are
generated using only high-quality frames well separated from
the South Atlantic Anomaly and bright moon light by selecting
qual_frame = 10, SAA_SEP > 0, and MOON_SEP > 24 as
suggested by the WISE team.’

The final light curves include all data from WISE and
NEOWISE (Mainzer et al. 2011) over the past 10 yr. Note that a
~3.5 yr gap around MJD 55,725 arises during the hibernation
period of the telescope. WISE observed a single patch of sky
multiple times during each visit, leading to multiple observa-
tions within typically ~1-2 days. Since our focus here is on
long-term variability, we combine these observations using
median statistics, which is robust against photometric outliers.
The uncertainty on the combined flux of a single visit is
estimated via the weighted average

1
Tior = pmya—— M

Zi:lg_g

where o; are the corresponding uncertainties on the k measured
fluxes. This resampling makes the long-term variability of the
light curves more apparent while increasing the signal-to-noise.
For the purpose of testing ML methods, we only use AGNs
whose light curves have five or more >50 measurements.
Although this significantly reduces the sample of AGNs, it
makes the variability detection and measurement more robust.
Furthermore, we focus only on the W1 filter as it is deeper and
better time-sampled than W2. Our final sample consists of 8309
AGNSs. To obtain a training sample, we subsequently classify
the light curve of these AGNs visually in “nonvariable” (7558)
and “variable” (751). In addition, we split the last category into
monotonically increasing (66) and decreasing (98) light curves,
while the remaining 587 vary irregularly (Figure 1).

3 http:/ /wise2.ipac.caltech.edu/docs /release /allsky /expsup /sec2_4b.html
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2.2. Definition of Parametric and Nonparametric Estimators of
Variability

Before applying ML methods, we define a set of estimators
to characterize the variability. We distinguish between para-
metric and nonparametric estimators.

Parametric estimators are derived using the Gaussian process
(GP) framework in Python (GPy™"). We use a RBF Gaussian
kernel and run 100 iterations of optimization on each light
curve using a L-BFGS-B optimizer, which is typically
sufficient for the parameters of the best-fit models to converge.
The resulting fit is characterized by a variance and a length-
scale parameter. The former is equivalent to a variability
estimator, while the latter describes the timescale of a period.
As nonparametric estimators we use the X2 test, standard
deviation (o,,), median absolute deviation (MAD), interquartile
range (IQR), robust median statistics (RoMS), normalized
excess variance (O'ZNXS), peak-to-peak variability (v), and the
inverse von Neumann ratio (1/n). These estimators are
described in detail in Sokolovsky et al. (2017) and we refer
to their paper for exact definitions.

All estimators are computed for each of the 8309 light curves
in our sample. The computation of the parametric estimators
takes about 30 minutes of CPU time on a 3.1 GHz processor
and the results depend on the random initial conditions for each
fit in some single cases (~5%). Nonparametric estimators are
more advantageous for real-time classification as their
computation requires only seconds. Furthermore, their mea-
surement is repeatable.

3. Finding Variable AGNs

In the following, we identify variable AGNs using the
unsupervised SOM algorithm implemented in the Python
library mvpa2’ (Hanke et al. 2009). Subsequently, we compare
its performance to a more commonly used supervised deep-
learning multilayer neural network algorithm that is part of the
Python TensorFlow package.’

3.1. Metrics for Performance Evaluation

To compare the performance of different ML algorithms as
well as the impact of different estimators, we use a common
metric known as the confusion matrix, which we here define in
its normalized form as

_1({TN FP
= ?(FN TP), @)

where TN, FP, FN, and TP denote true-negative, false-positive,
false-negative, and true-positive, respectively, and 7 is the total
sample size (TN+TP+FN+FP). From this, we derive standard
metrics such as purity (P) and completeness (R),

TP TP

P=———andR = ———, 3)
TP + FP TP + FN
as well as the accuracy
. TP+ T
ACC = diag(C) = 7—; N, 4

https://sheffieldml.github.io/GPy/

http://www.pymvpa.org

http: / /www.tensorflow.org/

Note that purity and completeness are equivalent to precision and recall.
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Figure 1. Representative examples of WISE W1 (3.4 um) light curves in the four visual categories. The photometric uncertainties (<0.03 mag) are indicated for a
sense of scale and the dashed line shows the median. Note the different scales of the y-axis in the plots.

the Matthews correlation coefficient (MCC, Matthews 1975)®
(TP - TN) — (FP - EN)

MCC - >
\/ (TP + FP)(TP + FN)(TN + FP)(TN + FN)
5
and the F, score’ is defined as
Fi=2. (M) )
P+ R

The MCC has several advantages over F; and is generally
preferred for assessing the performance of a classification
algorithm. For example, MCC does not depend on which
outcomes are classified as positive or negative and takes
correctly into account TN and FN events.

3.2. Classification with SOM

The SOM algorithm reduces an N-dimensional data set
(composed of N estimators or parameters) to a two-dimensional
grid of m x n cells. The algorithm preserves topological
information as distances in this two-dimensional space map
directly to distances in N dimensions. This makes the SOM a
powerful tool for visualizing correlations in high-dimensional
data sets. In detail, the SOM algorithm is initialized by the
number of iterations (7), as well as a length-scale parameter (\),
learning rate'® (L), and radius factor (o;). The latter two are
decreased with iterations i, in the mvpaZ2 implementation of the
SOM by the factor e~ /2 In the following, we choose as initial
values gy = max(m, n) and Ly = 0.05, as well as A = I/oy.
For a more detailed review of the algorithm, see, e.g., Masters
et al. (2015).

8 MCC is defined between —1 and +1 with —1 (+1) indicating perfect

disagreement (agreement) and 0 meaning the algorithm performs as well as
random guessing.

°F | is defined between O and 1.

10 The learning rate determines how fast the model is updated per iteration.
Commonly, the learning rate is decreased over time for convergence.

3.2.1. Simulations

We first test the SOM on simulated light curves. For this, we
create flat (nonvariable) as well as sinusoidal light curves with
varying frequency and phase. These curves are perturbed to
achieve similar noise properties as the real photometry and we
also apply a time sampling similar to that of real observations.
The 7700 simulated curves include 10% variable light curves,
reflecting the visually derived fraction in our flux-limited WISE
AGN sample.

We calculate all the estimators outlined in Section 2.2 and
normalize and rescale them to their median and a range
between 0 and 1, respectively. To train the SOM, we choose a
random subsample containing 80% of the total sample (the
training sample). We adopt a SOM-size of 30 x 30 cells and
run 200 iteration with an initial learning rate of Lo = 0.05. We
test different values for the latter two (50 iterations and learning
rates between 0.005 and 0.5) and find changes in the
performance of less than 1%. The number of cells is chosen
to optimize the performance of the algorithm. Specifically,
fewer cells result in a coarser classification, hence a less clear
separation of variable and nonvariable light curves. On the
other hand, more cells decrease the number of light curves per
cell and result in a nonuniform coverage of the map within a
decrease in performance. Overall, we find these choices to be
optimal in our case.

Figure 2 shows the fraction of variable light curves in each
SOM-cell. The cyan contours encompass cells with a variable
fraction of more than 50%. The SOM algorithm automatically
groups variable light curves around the cells at (8, 7) while
nonvariable light curves are distributed at larger distances. We
can then quantify the performance of the algorithm by mapping
the test sample (the other 20% of the total sample) onto the
map. The mapping happens instantaneously for this sample
size, which is a strength of the SOM algorithm. Through this
mapping, each test light curve gets assigned to an SOM-cell
and is then classified as variable if more than 50% of the light
curves from the training sample in that cell are variable. This
choice of fraction maximizes the metrics and is therefore used
throughout this work. In the following, we assume this binary
classification is variable /nonvariable, but note that it is possible
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Figure 2. Test of our algorithm on simulated light curves. Shown is the fraction
of truly variable light curves per SOM-cell (the cyan contour encompasses cells
with a fraction higher than 50%). We are able to identify variable light curves
with a purity of 91% and a completeness of 79%.

to derive a continuous scoring output for each test AGN, which
would allow us to establish a confidence for each classification.
Using the metrics introduced above, we quantify the success of
identifying variable light curves in the test sample as

Csimulation = (8(8); 8(1)(1))’ @)

with ACC = 0.97, MCC = 0.83, and an F; score of 0.85. The
purity and completeness of the classification are 91% and 79%,
respectively, suggesting a “contamination” of nonvariable light
curves of 9% in a variable sample selected by our algorithm.
Note that the SOMs are randomly initialized, hence these
numbers can change for different representations. By running
the algorithm multiple times, we find that these changes are on
the order of £0.01 (or 1% in per-cent notation).

3.2.2. Application to Observed Light Curves

Having shown that the SOM is a powerful tool to identify
variability, we now apply the algorithm to real light curves. For
this, we normalize and rescale the estimators measured for our
WISE AGN sample as described above. A training fraction of
80% (6647 AGN) is again used to train the SOM. To generate a
smooth SOM map, we remove 100 AGNs from the training
sample for which at least one estimator lies in the top 1% of the
distribution. We find that this clipping improves the perfor-
mance of the algorithm slightly. Note that this cut is not applied
to the test sample. Based on our simulations, we adopt an
SOM-size of 30 x 30 cells and run 200 iterations at a learning
rate of 0.05.

Figure 3 shows the fraction of variable AGNs per SOM-cell
for the data (the cyan contour encompasses cells with a variable
fraction >50%). For educational purposes, we indicate the
location of the AGN shown in Figure 1 and list on the right
light curves contained in the cells at (20, 18), (22, 12), (15, 7),
and (13, 12). Cells 1 and 2 are dominated by variable light
curves while cells 3 and 4 contain predominantly nonvariable
AGN:s. In this specific representation of the SOM, variable light
curves cluster around the cell at (21, 18). For our basic SOM

Faisst et al.

classification, we find

(085 0.01
Csom = (0.04 0.09)’ ®)

with ACC = 0.94, MCC = 0.72, an F, score of 0.75 and a
purity (completeness) of 86% (66%). While the SOM can
easily identify variable light curves, we find that splitting into
subcategories of variability (i.e., irregular, decreasing, and
increasing) cannot be achieved robustly. This is not surprising
given their small relative number compared to the total sample
(164 out of 8309).

By mapping the training sample back onto the SOM cells
and computing the median of each estimator per cell, we can
visualize and study the correlations of estimators with
variability. These elements of the Kohonen layer are shown in
Figure 4 (panels (1a)-(1h)). The light red contours show cells
with a variable fraction >50% (see cyan contours in Figure 3).
We also show the distribution of the parametric estimators
(variance and length scale) on the map (panels (2a) and (2b)).
Most of the estimators correlate well with the fraction of
variable AGNs per cell. Notably, the x?, RoMS, and 1 /n
estimators correlate best with variability as they peak around
the cells with the highest fraction of variable AGNs. Note that
the inverse von Neumann ratio (1/7) is the only estimator
discussed here that takes into account the correlation between
two successive data points in a time series. Specifically, 1/7 is
large for smoothly varying curves, such as smoothly decreasing
or increasing light curves. On the other hand, the ratio is small
for fluctuations on short timescales (as in highly variable AGNs
or nonvariable AGNs with large photometric uncertainties).
The other estimators show a wider extent on the maps,
suggesting less correlation with variability. This is likely due to
degeneracies in the low signal-to-noise regime. Specifically, the
estimators MAD, IQR, and o&xs are offset to the northeast and
show high values also for nonvariable AGNs. We note that the
same behavior is seen on the Kohonen maps of the simulated
light curves. Such degeneracies may arise because the MAD
and IQR estimators do not take into account the photometric
uncertainties. As a consequence, a truly nonvariable light
curve, poorly sampled in time, can mimic changing brightness
(hence a high MAD and IQR) solely due to large photometric
errors. Indeed, the average signal-to-noise of the observations
is lower in these regions. A similar explanation holds for O'ZNXS.
One could think of removing these estimators for the training of
the SOM to improve the identification of variable light curves.
We investigate this by training the algorithm only on the x?,
RoMS, and 1/7 estimators. However, it turns out that overall
the performance is slightly worse, suggesting that the removed
estimators contain some important information for the
classification. Specifically, we find

(086 0.02
Csomly2,RoMs, 1/ = 0.04 008)

with ACC = 0.94, MCC = 0.71, an F; score of 0.73, a purity
(completeness) of 84% (65%).

The variance parametric estimator shows a good correlation
with variability in contrast to the length-scale estimator, which
displays significant scatter and no clear relation. The latter is
anticorrelated with the variance estimator as expected—it
correctly identifies variable AGNs with a short length scale (
i.e., period); however, the opposite is not true. Including the
variance estimator to train the SOM results in a similar

©)
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Figure 3. Fraction of observed variable AGN light curves per SOM-cell (the cyan contour encompasses cells >50%). The SOM algorithm classifies an AGN as
variable with a purity of 86% and completeness of 66%. The color symbols indicate the location of the AGN shown in Figure 1. The panels on the right show the light
curves (offset by a constant factor) residing in each of the four SOM-cells indicated by the boxes. Cells 1 and 2 are dominated by variable AGNs, while cells 3 and 4
contain mostly nonvariable light curves. All light curves are plotted on the same scale (normalized to median).

performance (ACC = 0.94, MCC = 0.70, an F; score of 0.73,
a purity of 84%, and completeness of 64%), hence the benefit
of including this parametric estimator is questionable, also
given that its computation requires two orders of magnitude
more CPU time compared to the computation of the
nonparametric estimators. In addition, we test if the perfor-
mance can be increased by down-sampling the training sample
to an equal number of variable and nonvariable AGNs (the
latter are randomly selected). Indeed, we achieve a higher
purity and completeness (93% and 90%) determined on the
training sample. However, the performance is worse if
determined on the full sample. This is likely because of the
small size of the training sample (1502 AGNs, out of which
751 are variable). Giving a different weighting to the classes of
AGNs could improve the performance in future analyses, but
implementing this is beyond the scope of this paper.

3.3. Comparison with Deep-learning Neural Networks

Finally, we compare the performance of the SOM with a
more commonly used supervised deep-learning neural network
approach—here the Multilayer Perceptrons (MLP) method
implemented in the Python TensorFlow package. We build a
sequential model with three Dense layers. Two of them with 64
and 128 nodes and a rectified linear unit (tf.nn.relu)
activation and one with two nodes (yes/no) and normalized
exponential (tf.nn.softmax) activation. The model is
compiled using a stochastic gradient descent (SGD) optimizer
with a sparse categorical cross entropy. The deep-learning
algorithm is trained on the training sample using the same set

of nonparametric estimators as used to train the SOM. We find
a confusion matrix of

c :(0.89 0.01)
deee = \0.04 0.05)°

with ACC = 0.94, MCC = 0.65, and an F score of 0.67. The
purity and completeness are 79% and 58%, respectively,
comparable to the SOM algorithm. With a similar amount of
training time as needed to train the SOM, we find a comparable
performance between the two methods. Compared to other
optimizers (e.g., the adams or RMSprop optimizer) we find that
the SGD optimizer shows the best performance. We also test a
convolutional neural network method and find very similar
results.

(10)

4. Conclusions

In this Letter, we demonstrate the combination of domain
knowledge of how to measure variability with the flexibility
and optimization that ML-based approaches bring to large data
sets. Using simulated light curves of different variability, we
demonstrate how unsupervised self-organizing maps can be
used to identify variable AGN light curves in a heterogeneous
data set. This provides powerful means of using ML to identify
variability in the presence of photometric noise, selection
functions, and heterogeneous sampling in future surveys. We
apply our method to a sample of 8309 AGN light curves, out of
which ~10% are identified as variable by our visual inspection.
The SOM algorithm can recover variable AGNs with a purity
of 86% and completeness of 66%. The training of the SOM
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Figure 4. Distribution of different estimators on the 30 x 30 cells SOM map. The light red contours show cells with a variable fraction of >50%. Only nonparametric
estimators (panels (1a)—(1h)) are used to train the SOM. Most of the estimators correlate well with variability. The estimators o,,, MAD, IQR, and O'IZ\JXS show offsets

indicative of degeneracies in the low signal-to-noise limit.

(done only once) takes less than 100s (~4000 objects, 8
estimators) on a 3.1 GHz processor. The classification of a test
sample of similar size is instantaneous and can be achieved in
real-time for much larger data sets. In the same CPU time and
identical test situations, supervised deep-learning networks
perform comparable to the SOM but lack the visualization of
the correlation between estimators and the “fitted” quantity and

cannot easily be applied to data sets with missing labels (i.e.,
unsupervised). The SOM framework is powerful to reveal and
study connections between variability and other physical
properties and processes (e.g., connection between variability
and properties of the host galaxy or accretion models). We here
used variable AGN as use-case, but our method can be applied
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to any light curves to identify supernovae, transiting exopla-
nets, pulsars, and other transient events in large data sets.
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