Uncovering new families and folds in the natural protein universe

Durairaj, Janani and Waterhouse, Andrew M. and Mets, Toomas and Brodiazhenko, Tetiana and Abdullah, Minhal and Studer, Gabriel and Tauriello, Gerardo and Akdel, Mehmet and Andreeva, Antonina and Bateman, Alex and Tenson, Tanel and Hauryliuk, Vasili and Schwede, Torsten and Pereira, Joana (2023) Uncovering new families and folds in the natural protein universe. Nature, 622 (7983). pp. 646-653. ISSN 0028-0836

[thumbnail of s41586-023-06622-3.pdf] Text
s41586-023-06622-3.pdf - Published Version

Download (7MB)

Abstract

We are now entering a new era in protein sequence and structure annotation, with hundreds of millions of predicted protein structures made available through the AlphaFold database1. These models cover nearly all proteins that are known, including those challenging to annotate for function or putative biological role using standard homology-based approaches. In this study, we examine the extent to which the AlphaFold database has structurally illuminated this ‘dark matter’ of the natural protein universe at high predicted accuracy. We further describe the protein diversity that these models cover as an annotated interactive sequence similarity network, accessible at https://uniprot3d.org/atlas/AFDB90v4. By searching for novelties from sequence, structure and semantic perspectives, we uncovered the β-flower fold, added several protein families to Pfam database2 and experimentally demonstrated that one of these belongs to a new superfamily of translation-targeting toxin–antitoxin systems, TumE–TumA. This work underscores the value of large-scale efforts in identifying, annotating and prioritizing new protein families. By leveraging the recent deep learning revolution in protein bioinformatics, we can now shed light into uncharted areas of the protein universe at an unprecedented scale, paving the way to innovations in life sciences and biotechnology.

Item Type: Article
Subjects: STM Open Academic > Multidisciplinary
Depositing User: Unnamed user with email admin@eprint.stmopenacademic.com
Date Deposited: 14 Nov 2023 07:15
Last Modified: 14 Nov 2023 07:15
URI: http://publish.sub7journal.com/id/eprint/1642

Actions (login required)

View Item
View Item