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Uncovering new families and folds in the 
natural protein universe

Janani Durairaj1,2, Andrew M. Waterhouse1,2, Toomas Mets3,4, Tetiana Brodiazhenko3, 
Minhal Abdullah3,4, Gabriel Studer1,2, Gerardo Tauriello1,2, Mehmet Akdel5, 
Antonina Andreeva6, Alex Bateman6, Tanel Tenson3, Vasili Hauryliuk3,4,7,8,  
Torsten Schwede1,2 ✉ & Joana Pereira1,2 ✉

We are now entering a new era in protein sequence and structure annotation, with 
hundreds of millions of predicted protein structures made available through the 
AlphaFold database1. These models cover nearly all proteins that are known, including 
those challenging to annotate for function or putative biological role using standard 
homology-based approaches. In this study, we examine the extent to which the 
AlphaFold database has structurally illuminated this ‘dark matter’ of the natural 
protein universe at high predicted accuracy. We further describe the protein diversity 
that these models cover as an annotated interactive sequence similarity network, 
accessible at https://uniprot3d.org/atlas/AFDB90v4. By searching for novelties from 
sequence, structure and semantic perspectives, we uncovered the β-flower fold, 
added several protein families to Pfam database2 and experimentally demonstrated 
that one of these belongs to a new superfamily of translation-targeting toxin–
antitoxin systems, TumE–TumA. This work underscores the value of large-scale efforts 
in identifying, annotating and prioritizing new protein families. By leveraging the 
recent deep learning revolution in protein bioinformatics, we can now shed light into 
uncharted areas of the protein universe at an unprecedented scale, paving the way to 
innovations in life sciences and biotechnology.

Since the sequencing of the first protein, large-scale efforts brought 
about by faster and cheaper genome sequencing techniques have 
shed light into some of the sequences that nature has sampled so far. 
At present, there are more than 350 million unique protein coding 
sequences deposited in UniProt and more than 3 billion in MGnify3,4. The 
rate at which these data are growing is much faster than experimental 
functional characterization. To close the gap, functional information 
is gathered for a subset of proteins and the findings extrapolated to 
close homologues. Manual curation is carried out by those assembling 
the genomes and by biocurators5 and incorporated into automated 
annotation pipelines such as InterPro6.

Despite the great success of such approaches, only 83% of UniProt 
sequences are covered by InterPro, and many correspond to domains 
of unknown function (DUF). Thus, numerous protein sequences remain 
functionally unannotated and unclassified. Some of these may just cor-
respond to divergent forms of known protein families that lie beyond 
the detection horizon of automated, homology-based methods;  
others could belong to so-far undescribed protein families with 
yet-to-be determined molecular or biological functions7.

The three-dimensional (3D) structure of a protein is intrinsically 
linked with its molecular function. Experimental structure determina-
tion is an expensive and time-consuming process, and homology-based 
computational prediction loses its power for proteins without close 

homologues8. Notwithstanding, deep learning-based approaches have 
recently achieved unprecedented accuracy, with AlphaFold2 at the 
forefront. Its success drove the establishment of the AlphaFold data-
base (AFDB), which contains predicted structural models for about 
215 million natural protein sequences from UniProt, including many 
of the unannotated proteins. At the same time, deep learning-based 
approaches have also recently been used for predicting functional 
properties from structure9 and protein names from sequence10.

In this work, we combine sequence similarities and structure features 
with deep learning-based function prediction tools to shed light on 
‘functionally dark’ proteins in UniProt. We revised their proportion, 
evaluated how many of them now have high-confidence structural 
models that can be leveraged for downstream analysis, and constructed 
an annotated and interactive sequence similarity network with millions 
of proteins. By exploring this network, we discovered 290 putative new 
protein families, identified at least one new protein fold and defined 
a new superfamily of translation-targeting toxin–antitoxin (TA) sys-
tems that we experimentally validated and dubbed TumE–TumA. This 
work demonstrates that functional annotation of proteins, even from 
a purely computational perspective, requires a combination of data 
sources and approaches, which become increasingly available and 
attainable due to the rapid and continuing advances at the interface 
between life sciences and deep learning.
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Functional darkness in UniProt and AFDB
As of August 2022, there were more than 350 million unique protein 
sequences in UniProt (that is, UniRef100 clusters11). We focus our analy-
sis on these as they have a higher confidence than those deposited 
in metagenomics databases such as MGnify. These sequences corre-
spond to roughly 50 million non-redundant proteins when clustered to 
a maximum sequence identity of 50% (UniRef50). Starting from these 
clusters, we define the ‘functional brightness’ of a given protein as the 
full-length coverage with annotations of its close homologues, and a 
UniRef50 cluster is as ‘bright’ as the ‘brightest’ sequence it encompasses 
(Fig. 1a). For that, we only considered those annotations that corre-
spond to domains and families whose title does not include ‘putative’, 
‘hypothetical’, ‘uncharacterized’ and ‘DUF’, but included predicted 
coiled-coil and intrinsically disordered segments to focus our analysis 
solely on functionally dark proteins with a potential for a globular  
(or other) fold type.

We found that 34% of all UniRef50 clusters (10% of UniRef100, roughly 
34 million unique proteins) are dark as they do not reach a functional 
brightness higher than 5% (Extended Data Fig. 1a). Whereas the bright-
ness of a cluster is not directly proportional to the number of sequences 
within it (Pearson correlation coefficient of zero), bright clusters (func-
tional brightness greater than or equal to 95%) tend to be larger than 
those whose members are poorly annotated (mean 19 ± 123 unique 
sequences in bright clusters compared to 2 ± 7 in dark).

Whereas UniRef50 clusters encompass sequences from the UniProt 
Knowledgebase (UniProtKB) and the UniProt Archive (UniParc)12, the 
latest version of AFDB (v.4) covers only UniProtKB and excludes both 
long and viral sequences. Consequently, 78% of all UniRef50 clusters 
have members with a predicted structure in AFDB (Extended Data 
Fig. 1b). Of these, 29% are functionally dark, a proportion that drops 
with an increase in predicted model accuracy (Extended Data Fig. 1c,d) 
while retaining a similar proportion of DUFs (Extended Data Fig. 1e). 

Thus, there is a considerable proportion of proteins in UniProt that 
cannot be automatically annotated, but that high-confidence structural 
information can now be leveraged to gain insights about many of these.

Sequence similarity network of AFDB90
Whereas UniRef50 provides groups of sequences that are overall similar 
at the sequence level, they do not reach the family and superfamily 
levels and do not account for local similarities. To reach these levels 
and put functionally dark clusters into evolutionary context, we con-
structed a large-scale sequence similarity network of all clusters where 
structural information can be confidently leveraged to support func-
tional annotations. This corresponds to the 6,136,321 UniRef50 clusters 
(roughly 53 million unique protein sequences) that have structural 
representatives with an average predicted local distance difference 
test (pLDDT) score more than 90 in AFDB (the AFDB90 dataset).

We used MMseqs2 (ref. 13) for all-against-all sequence searches 
(Fig. 1b), connecting two sequences if they have an alignment that 
covers at least 50% of one of the proteins with an E value < 1 × 10−4. The 
resulting network has more than 4 million connected nodes and 10 mil-
lion edges, which includes 43% of all dark UniRef50 clusters (Fig. 2).  
Of these dark clusters, 40% connect to bright UniRef50 clusters, reveal-
ing potential evolutionary relationships for more than 700,000 unique 
proteins.

The network is composed of 242,876 connected components with at 
least two nodes, with the largest encompassing about 50% of all AFDB90 
(Fig. 2a). Of these components, 19% have an average brightness content 
below 5% (‘fully dark’) (Fig. 2d). Only 25% of the components are ‘fully 
bright’ (that is, average functional brightness more than 95%). The 
percentage of UniRef50 clusters in fully dark components decreases 
with the component’s size (Fig. 2b,c), highlighting that the lower the 
number of homologues the harder a protein is to annotate. Still, and 
while the distribution is skewed towards smaller sizes in both fully dark 
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across the entire sequence. We selected the protein with the highest full-length 
annotation coverage (that is, brightness, Ci) as the functional representative  
of each cluster. b, From the collected UniRef50 clusters, we selected those  
with a structural representative with pLDDT greater than 90 in the AFDB v.4, 
and constructed a large-scale sequence similarity network by all-against-all 
MMseqs2 searches, representing the sequence landscape of more than 
6 million UniRef50 clusters.
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and fully bright components (Fig. 2e,f), the largest dark component in 
our network has more than 800 nodes. These fully dark components 
are fertile ground for new family discovery, as exemplified by the two 
new families we describe below.

A new glycosyltransferase family
The largest functionally dark connected component in our set is 
component 27, with 836 UniRef50 clusters (4,889 unique bacterial 
protein sequences, average brightness 2 ± 13%, Fig. 3a). Their repre-
sentatives have a median length of 665 ± 169 amino acids, most are 
predicted to be transmembrane and they are annotated as unchar-
acterized YfhO in InterPro. Indeed, the proteins in this component 
that are not called an uncharacterized protein mostly have the title 
YfhO family protein, which corresponds to a family involved in 
lipoteichoic acid or wall teichoic acid glycosylation14. However, the 
predicted structural model superposes poorly to the YfhO family (tem-
plate modelling (TM) score 0.58, Fig. 3b), prompting a more in-depth  
investigation.

HHPred15 and Foldseek16 find many medium-to-high confidence 
matches in the Protein Data Bank (PDB) (probability more than 
95% and TM score roughly 0.6, Fig. 3b), including the eukaryotic 
dolichyl-diphosphooligosaccharide-protein glycosyltransferase 
subunit STT3 and its bacterial homologue oligosaccharyltransferase 
PglB17,18, absent from our network because their representatives have an 
average pLDDT less than 90. We collected sequences for all four groups 
of proteins (YfhO, STT3, PglB and component 27) and built a sequence 
similarity network to investigate how they may relate at the sequence 
level (Fig. 3a). This network highlighted that most dark proteins in 
component 27 cluster separately from the reference YfhO, forming a 
single YfhO-like protein family that is linked to the STT3/PglB groups 
by several hypothetical proteins, mostly of prokaryotic origin, often 
annotated as ‘glycosyltransferase family 39 protein’.

These results support the notion that component 27 belongs to 
the well-studied superfamily of transmembrane oligosaccharyl- and  
glycosyltransferases, but also indicate that it is a hitherto undescribed 
bacterial protein family. In this case, inspecting the AlphaFold model 
revealed possible inconsistencies in their automated annotation,  
illustrating the added value of structural models to guide sequence- 
based family classification.

A new TA superfamily
Component 159 is composed of 327 UniRef50 clusters, correspond-
ing to 1,222 unique protein sequences, mostly annotated as DUF6516 
(Fig. 4). These proteins are predicted to adopt a conserved α + β fold, 
where two α-helices pack against an antiparallel β-sheet with seven 
strands (Extended Data Fig. 2). Contrary to component 27, HHPred 
and Foldseek searches found no confident matches in the PDB. A 
high-resolution similarity network unravelled seven distinct classes 
of DUF6516-containing proteins (Fig. 4a).

On the basis of the AFDB models, structure-based function predictor 
DeepFRI9 proposed that they may bind DNA or other nucleic acids and 
carry a hypothetical catalytic site with a hydrolase activity over ester 
bonds (Fig. 4c and Supplementary Table 1). Genomic context analysis 
with GCsnap19 highlighted that DUF6516-coding genes are commonly 
found in a conserved two-gene (bicistronic) genomic arrangement, 
with DUF6516 predominantly located downstream of the conserved 
bicistronic ‘partner’ (clusters 1, 2, 4 and 6).

Whereas most of the partner genes associated with DUF6516 code 
for hypothetical proteins of unknown function, one in cluster 1 is a 
remote homologue of RelB, a well-characterized antitoxin20. Indeed, 
the bicistronic arrangement is typical for TA systems21. When active, 
the TA toxin proteins abolish bacterial growth, and the control of this 
toxicity is executed by the antitoxin, which, in the case of type II TA 
systems, is a protein that acts by forming an inactive complex with the 
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toxin. DeepFRI predictions for DUF6516 partners suggests they may 
also bind DNA (Supplementary Table 1), an activity characteristic for 
diverse antitoxins21, and cofolding prediction with AlphaFold-Multimer 
generated high-confidence models (93 average pLDDT, 0.902 iPTM) 
that support the interaction between the two proteins as a dimer of 
dimers (Fig. 4b), as commonly observed for type II TAs. Therefore, we 
hypothesized that DUF6516 is a new toxic TA effector that is neutral-
ized either in trans by diverse unrelated antitoxins (subclusters 1–4, 
6 and 7) or in cis by a fused unknown antitoxin domain (subcluster 5).

To validate the putative TAs experimentally and gain insights into 
the mechanism of DUF6516-mediated toxicity, we used our established 
toolbox for TA studies22. We targeted TA from six gammaproteobacte-
rial species for testing in Escherichia coli surrogate host, and all the 
putative toxins markedly abrogated E. coli growth (Fig. 4d) while the 
putative antitoxins had no effect (Extended Data Fig. 3). Neutraliza-
tion assays showed full suppression of toxicity when the toxins were 
co-expressed with cognate antitoxins (Fig. 4d), thus directly validating 
that these gene pairs are, indeed, bona fide TA systems.

To probe the mechanism of DUF6516-mediated toxicity, we car-
ried out metabolic labelling assays with 35S methionine (a proxy for 
translation), or 3H uridine (a proxy for transcription) or 3H thymidine  
(a proxy for replication). Expression of Allochromatium tepidum strain 
NZ DUF6516 toxin resulted in a decrease in efficiency of 35S methionine 
incorporation (Fig. 4e), indicative of the inhibition of protein synthesis. 
We propose that the effect could be mediated by the yet-unproven 
RNase activity of the DUF6516 toxin.

We conclude that DUF6516 is a bona fide translation-targeting toxic 
effector of a new TA family, and propose renaming it TumE (meaning 
‘dark’ in Estonian), with the antitoxin components dubbed as TumA, 
with A for antitoxin. This example illustrates the difficulty of automat-
ing functional annotation for proteins from completely new superfami-
lies. Here, the combination of genomic context information, remote 
homology searches on genomic neighbours and deep learning-based 
structure-guided function prediction helped to formulate a testable 
functional hypothesis.

Semantic consistency across the network
Recently, the ProtNLM10 large language model was implemented as 
an approach to automatically name proteins in UniProtKB that were 

titled as uncharacterized proteins. Given that language models have the 
tendency to ‘hallucinate’ predictions when faced with an unknown23, 
we propose that such an approach would generate a wide diversity of 
predicted names for completely new protein families. To investigate 
this hypothesis, we compared the diversity of names predicted by the 
first release of ProtNLM for proteins in fully dark components and 
those in fully bright.

In both cases, the distributions of names and words (collectively 
referred to as semantic diversity) were highly skewed towards extremely 
low diversities, but the fully dark set was significantly different from 
the fully bright (Kolmogorov–Smirnov two-sided test statistic 0.2915,  
P value = 8.882 × 10−16, Extended Data Fig. 4a,b). Most bright compo-
nents had a low semantic diversity, indicating a coherent and consistent 
naming. The maximum word diversity in these was 37%, correspond-
ing to cases with variations of the same name (for example, several 
Cytotoxins with different labels for component 100,340). On the other 
hand, fully dark components tended to have a higher semantic diversity, 
with a name diversity of 19% (compared to 10% in fully bright) and a 
word diversity of 7% (compared to 4%). The more consistently named 
dark components were those with previously submitted names, such 
as DUF6516.

The dark component with the highest semantic diversity (45%) 
was component 3,314, composed of 53 proteins with a wide variety 
of unrelated predicted names, including Integrase, NADH-quinone 
oxidoreductase subunit F, dynein light chain, prophage protein and 
so on. Despite this, proteins in component 3,314 share a common fold 
(Extended Data Fig. 5a) but Foldseek found no hits in the PDB. HHPred 
searches highlighted a small local match to the tubulin-binding domain 
of Chlamydomonas reinhardtii TRAF3-interacting protein 1 (proba-
bility 71%), but when clustered together at sequence level these two 
groups of proteins only formed a few weak connections (Extended Data 
Fig. 5a). Although small, component 3,314 is dispersed throughout bac-
teria and bacteriophages, and the members do not share a conserved 
genomic context (Extended Data Fig. 5b). Together with the presence 
of prophage-associated protein encoding genes in these genomic con-
texts, such as host-nuclease inhibitor protein Gam24, these data support 
the prophage protein title.

Another example with a high semantic diversity (35%), and in 
which structure information aided function assignment, is compo-
nent 6,732. It consists of 54 entries, some of which are annotated 
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inconsistently as AbiEi_1 domain-containing protein, Transposase, 
Acyl-CoA dehydrogenase and TetR family transcriptional regulator. 
HHPred searches found no hits in the PDB, but structure-based searches 
using AFDB models yielded matches to several type II restriction 
endonucleases. The most similar was EndoMS, a mismatch restric-
tion endonuclease25 that superposes with a root-mean squared error 
(r.m.s.d.) of 2.3–2.6 Å. Within the structural alignment, the most 
conserved residues are those constituting the EndoMS active site 
(Extended Data Fig. 5c), which are invariant in all members of com-
ponent 6,732. This suggests that they share a similar active site archi-
tecture that has a common restriction endonuclease active site motif 
(E/D)-Xn-(E/D)XK26,27, and that component 6,732 may represent a new 
family of putative restriction endonucleases whose precise function  
is unknown.

These results highlight that ProtNLM when presented with families 
with no homologues was indeed hallucinating a diverse range of names. 
By setting a word diversity cut-off of more than 20% for components 
with more than 50 proteins, we identified 290 such functionally dark 
components, covering 4,618 UniRef50 clusters and 37,211 unique 
protein sequences, and are defining Pfam2 families for each of them  
(133 new families available in the next Pfam releases 36.0 and 37.0; 
Supplementary Table 2). This includes component 3,314 as the PF21779 
family and whose members are now titled DUF6874, and component 
6,732, which is now PF22187 and its members named DUF6946.

Overall, pooling predictions across the network can help to assess 
the consistency of automated annotation methods, especially in data- 
driven approaches. As we define new Pfam families, their naming should 
become consistent as future versions of ProtNLM consume this data. 
Starting from UniProt release 2023_01, the criteria for showing ProtNLM 
names has changed to include an ensemble approach, an increased 
confidence threshold and an automatic corroboration pipeline  

(https://www.uniprot.org/help/ProtNLM), thus many of these hal-
lucinated names have now reverted to being called uncharacterized 
proteins.

Structural outliers across the network
Just as semantic diversity revealed novelties in protein sequence space, 
we also investigated how different the predicted structural character-
istics of proteins in our network are from the structures in the PDB. 
For this, we introduced the concept of structural outliers by using an 
alphabet of substructure representations covering 1,024 local struc-
tural contexts (16 residues in sequence and 10 Å spatial neighbourhood, 
Extended Data Fig. 6). We trained an outlier detector on PDB structures 
and predicted that 699,084 AFDB90 structures have substructure 
compositions that are rare or absent in the PDB, giving us a measure 
of plausibility that can help to prioritize protein family classification.

Whereas the examples described in the previous section are all 
structural inliers, we found that 30% of outliers are in dark UniRef50 
clusters (Fig. 5a) and that they tend to be shorter and more repetitive 
than inliers (Fig. 5a,b). Proteins may be structural outliers for a variety 
of reasons, including new folds as in the next section. Short outliers 
typically represent fragments of existing families (Fig. 5c), probably 
due to frameshift errors introduced during whole-genome sequencing. 
Long outliers tend to be highly repetitive proteins (6,791 clusters, with 
more than 500 residues and shape-mer diversity fraction less than 0.1, 
of which 4,948 are bright), which are rare or absent in the PDB (Fig. 5d). 
Proteins that require conditions to fold that are not modelled by Alpha-
Fold2, such as binding partners (Fig. 5e), sometimes have models in 
AFDB that do not resemble the single chain of the complex as found 
in the PDB, that is, the predicted monomeric fold may not always be 
functionally meaningful.
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incubation at 37 °C. e, Metabolic labelling assays with E. coli BW25113 expressing 
A. tepidum TumE/DUF6516 toxin. Error bars indicate the standard error of the 
arithmetic mean. All experiments shown in d and e were performed as n = 3 
biologically independent replicates (individual independent cultures).  
All repetitions of the experiments shown in d yielded similar results.
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Whereas most fully dark and fully bright components do not contain 
structural outliers, the outlier content is significantly different between 
the two sets (Kolmogorov–Smirnov two-sided test statistic 0.0586, 
P = 5.245 × 10−81, Extended Data Fig. 4c). Fully dark components have on 
average a higher outlier content (21%) than fully bright (15%), but these 
only correspond to about half of the structural outliers. Indeed, 44% 
of outliers are singletons, that is, UniRef50 clusters that do not form a 
component with at least two nodes, giving us a measure to prioritize 
even these cases for further analysis, as in the example below.

The β-flower fold
UniRef50 A0A494VZL1 is an example of a structural outlier that is a 
singleton in the network. It folds as a shallow, symmetric β-barrel with 
96 residues, made of ten short antiparallel β-strands that form a hydro-
phobic channel. On one side of the β-barrel, the loops connecting each 

strand are much longer (nine residues) than those on the other side 
(four residues). Some are enriched with positively charged arginine 
and lysine residues, and phenylalanines at the tips pointing towards  
the exterior of the β-barrel (Fig. 5f). Overall, it looks like a flower (Fig. 5g) 
and hence we named it the β-flower fold.

Foldseek searches found hits to 43 AFDB90 clusters (TM score of 
<0.6, most from bacteria) across 13 different components, some of 
which are bright because they are annotated as Cell wall-binding 
protein or MORN repeat variant. There are at least three globally dif-
ferent folds (Fig. 5f), differing in the number of strands (8, 10 or 12), 
with their ‘petals’ comprising β-hairpins that are arranged in four-, 
five- or sixfold symmetry. Some of the hits resemble half of a flower, 
perhaps corresponding to fragments of longer domains, and many 
enclose a C-terminal hydrophobic α-helix. Some β-flowers also contain 
N-terminal lipoprotein attachment motifs28,29, suggesting they may be 
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Fig. 5 | Structural outliers can represent fragments, repetitive proteins, 
proteins requiring folding conditions out of the scope of AlphaFold2 or 
new folds. a,b, Distribution of brightness, shape-mer diversity and length of 
the structural outliers (a) and the same number of structural inliers (b) with the 
most positive outlier scores. Shape-mer diversity is defined as the number of 
unique shape-mers by the length of the protein. c, An AFDB model of TonB- 
dependent receptor-like protein that is a fragment of the β-barrel domain. 
More than 16,500 proteins across 1,258 components have this annotation,  
of which 86% are fully bright. From these, 82% have fewer than the required 
number of β-sheet shape-mers, despite 55% not being explicitly annotated as 
fragments in UniProtKB. d, Two long repetitive outliers, one belonging to the 
PE-PGRS superfamily (G0TGH8), thought to be new folds and found widely in 
mycobacteria40, and one to the Tetratricopeptide-like helical domain superfamily 
(A0A015IZK3) in which the median PDB structure length of structures with 

resolution less than 3 Å is only 370. e, AFDB model annotated as containing 
‘putative type VI secretion system, Rhs element associated Vgr domain’ 
(A0A377W562), a trimeric PDB structure (PDB ID 6SK0) also containing this 
domain and an AlphaFold-Multimer model of the A0A377W562 trimer that  
has 1.1 Å r.m.s.d. to the PDB structure. The AFDB model does not resemble the 
PDB structure because these proteins form obligate complexes and adopt a 
trimeric β-solenoid fold. f, AlphaFold models of different variations of the 
β-flower, with positively charged residues in red and phenylalanine in green for 
A0A494VZL1, and PDB structure of the human Tubby C-terminal domain (PDB 
ID 2FIM). Black arrows indicate the circularly permuted loop in A0A0S7BXY3 
and PDB ID 1ZXU. g, AlphaFold model of A0A0S7BXY3 and PDB structure of 
Arabidopsis thaliana putative phospholipid scramblase (PDB ID 1ZXU). Black 
arrows indicate the circularly permuted loop.
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associated with the bacterial inner membrane or transferred to the 
inner leaflet of the outer membrane.

Although no similarity to the PDB was highlighted by Foldseek or 
HHPred searches, the β-flower folds with sixfold symmetry are remi-
niscent of the Tubby C-terminal domain30, which adopts a 12-stranded 
β-barrel fold enclosing a hydrophobic α-helix (Fig. 5f,g). Tubby-like 
proteins either bind to phosphoinositides or function as phospholipid 
scramblases30. β-Flowers and Tubby-like proteins share a network of 
aromatic hydrophobic residues that flank the edges of the β-strands 
and point towards the interior of the β-barrel, thus engaging in tight 
contacts with the central hydrophobic helix. The N-terminal strand 
of Tubby is circularly permuted in β-flowers (Fig. 5g), which leads to a 
different entry point of the α-helix into the β-barrel channel, and to a 
difference in its directionality. Furthermore, the length of the β-strands 
and the connecting loops in the β-flower proteins are notably shorter.

On the basis of their global structural similarity and the presence of a 
semiconserved [DNEQ]XXG sequence motif at the tip of the β-hairpin, 
and the repeat unit of both β-flowers and Tubby-like, the diversity of 
these proteins has been added to Pfam as the new entries PF21784, 
PF21785 and PF21786, which together with the Tubby C-terminal domain 
now form the CL0395 clan. This, together with the different types of 
structural outliers described, highlights that the 3D context provided 
by the models in AFDB is highly informative for protein analysis efforts 
and that the structural space covered needs to be put into a coherent 
evolutionary, functional and local structural context before any model, 
even with high predicted accuracy, is used as a reference.

Towards large-scale function annotation
In this work, we carried out a large-scale analysis of the UniProt protein  
sequence space covered by high-confidence predicted structural  
models, as made available through AFDB v.4. To aid functional anno-
tation of this space, we constructed an interactive sequence similar-
ity network accounting for about 53 million proteins enriched with 
predicted name diversity and structural plausibility scores, on a large 
scale. We demonstrate that this network is a rich source of putative new 
protein folds, families and superfamilies, providing several starting 
points for further downstream studies.

We find that many functionally unannotated proteins are remote 
homologues of annotated ones, relationships that can now be easily 
explored. Further, more than 1 million proteins belong to completely 
unannotated connected components, many of which cannot be named 
consistently using the most recent deep learning-based approaches 
or contain proteins with structural features distinct from what is 
seen in the PDB. When combined with traditional protein evolution 
approaches, structure-based comparisons, genomic context informa-
tion, structure-based function prediction, and the conservation of 
local features such as active sites, we could gather support for com-
mon evolutionary origins, gain valuable insights into putative func-
tions and put forward concrete testable hypotheses for experimental 
characterization.

Indeed, the functional annotation of dark proteins, even from a 
purely computational perspective, requires a combination of data 
sources and approaches. It is crucial to combine individual predic-
tions across connections in the network to increase the confidence 
of any hypothesis. Most of our examples had such support from both 
sequence and structure, and even for the new β-flower fold, a singleton 
in our network, the presence of a semiconserved sequence motif cap-
tured only because of local structural similarities allowed us to generate 
an initial classification. This information can now help to guide further 
validation experiments, such as those carried out for TumE.

Our study has some caveats and limitations, however. All align-
ments required coverage across the entire protein sequence, whereas 
a domain-based exploration would provide a possible complementary 
solution. Our functional brightness definition excluded predicted 

intrinsically disordered and coiled-coil proteins, and misclassifies some 
functionally uncharacterized proteins as bright due to ambiguous 
annotations (for example, transmembrane or repeat), or characterized 
ones as dark due to Putative annotations. Furthermore, we focus only 
on proteins with high-confidence predicted structures from AFDB, 
setting aside the wealth of potential darkness in metagenomic data 
for which structural models are also now available through the ESM 
(evolutionary scale modelling) Metagenomic Atlas31. Although we could 
already highlight a marked proportion of novelty, in-depth exploration 
combining many sources of evidence could only be carried out for a few 
families and folds. Thus, the examples we discuss are the low-hanging 
fruit of uncharacterized or unannotated protein families, and they are 
only the tip of the iceberg.

Similarity networks are a common representation of protein space32,33 
and recent approaches to categorize protein diversity and uncover 
novelties have showcased the importance of incorporating several per-
spectives and methods in protein annotation31,34–36. Our work combines 
these concepts by providing an annotated similarity network model 
of protein sequence space on a large scale, which we make available as 
an interactive and accessible web resource. We anticipate that further 
advances in deep learning-based methods for function prediction9, 
remote homology detection37,38 and protein structure prediction31 will 
allow for analyses on an even larger scale, incorporating more diverse 
data sources with greater confidence. As such advances continue, we 
as a community are closer than ever to harnessing the full potential 
of the protein universe, from unknown biology to new biomedical, 
pharmaceutical and biotechnological applications.
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Methods

Data collection
We started from the 53,625,855 UniRef50 (ref. 11) clusters as of August 
2022 (UniRef v.2022_03) and the 214,683,829 structural models for 
most UniProtKB entries available through the AFDB (v.4). For each 
Swiss-Prot5, TrEMBL3 and UniParc12 entry in each UniRef50 cluster we 
collected their sequence, taxonomy and functional and structural 
annotations from UniProt and InterPro6 using custom Python v.3.6 
code. Redundant, overlapping annotations were continuously merged 
(Fig. 1a), selecting as the preferential name the first occurrence that 
did not include putative, hypothetical, uncharacterized and DUF. Each 
entry in AFDBv4 was mapped to their UniRef50 cluster, selecting as the 
structural representative the longest protein with an average pLDDT41 
more than 70.

Darkness estimation
We define functional brightness of a given protein as the full-length 
coverage with annotations of its close homologues, with 0% mean-
ing dark and 100% meaning bright. We first computed the full-length 
coverage with annotations for all entries in all UniRef50 clusters, and 
considered a cluster as bright as the brightest sequence it encom-
passes (Fig. 1a). Annotations considered were: domains annotated in 
InterPro, and families, predicted disorder and predicted coiled-coil 
regions annotated in UniProtKB and UniParc. All those with puta-
tive, hypothetical, uncharacterized and DUF in their name were 
given a coverage of zero. Pearson correlation was computed using  
SciPy (v.1.5.4).

Large-scale sequence similarity network
To model the sequence landscape covered by all UniRef50 clusters with 
a high-confidence structural model, we built a large-scale sequence 
similarity network of 6,136,321 clusters having a structural repre-
sentative with pLDDT more than 90 (AFDB90 dataset). All-against-all 
MMseqs2 (ref. 13) (release 13-45111) comparisons were carried out with 
the UniRef50 cluster representatives of all selected clusters, connect-
ing two sequences if they have a match that covers at least 50% of their 
full-length sequences with an E value better than 10−4. Each edge was 
given a weight proportional to the E value of the match, and a maximum 
of four outbound edges were considered per node (Fig. 1b). The direc-
tion of the edges was not further considered.

To visualize the graph, each connected component was simplified 
to a set of connected communities, detected using the asynchronous 
label propagation algorithm, as implemented in the asyn_lpa_commu-
nities method in networkx (v.2.5.1)42. This reduced the graph to a total 
of 688,852 communities (hereafter referred to as the AFDB90Com-
munities set) connected by 1,488,764 edges, whose layout could then 
be computed with Cosmograph (https://cosmograph.app/) with the 
following settings: maximum space allowed 8,192, gravity 0.5, repul-
sion 1.4, repulsion theta of 1.71, link strength 2, minimum link distance 1  
and friction 1. For each community, we collected the longest and 
median-length representatives, whose structures were used in our 
analyses. Individual connected components were visualized in figures 
with Datashader (v.0.12.1, https://datashader.org/index.html).

The interactive, annotated and searchable web version of this 
network was created using the Cosmograph library (https://github.
com/cosmograph-org/cosmos, v.1.3.0) for network visualization and 
the Mol* toolkit (v.3.35.0)43 for 3D macromolecular visualization of 
individual structure representatives. Sequence searches across the 
interactive network are carried out with a simple k-mer search to  
rapidly identify close homologues in the AFDB (more than 70% sequence 
identity) and structure searches with Foldseek (3Di method16, E value 
better than 10−1) through its API over the AFDBv4 database filtered to 
50% sequence identity (UniProt50). Returned matches are mapped 
back to their corresponding communities.

Sequence-based prioritization of dark connected components 
and their semantic name diversity
Each node in a connected component was attributed a functional 
brightness value, and components were sorted by their average bright-
ness and their overall size (that is, number of nodes), so that the top 
ranking were the largest and darkest. To analyse UniProt name diversity, 
we extracted names as of UniProt v.2022_04 (December 2022, which 
includes the initial release of ProtNLM10 predictions) for all UniRef100 
representatives included in clusters of fully dark (average functional 
brightness less than or equal to 5%) and fully bright (average functional 
brightness more than or equal to 95%) connected components with 
at least 50 unique protein sequences. We computed the proportion 
of unique names (that is, name diversity) as well as the proportion of 
unique words (that is, word diversity), to account for small variations 
of the same name. Kolmogorov–Smirnov statistical test (two-sided) 
was computed using SciPy (v.1.5.4).

Protein substructure decomposition
To represent and analyse 3D substructure composition, we built on 
Geometricus (v.0.5.0, Python v.3.9)44, and use 16 rotation invariant 
moments45–47 and one chiral invariant moment48. These moments were 
calculated on α-carbon coordinates for overlapping k-mers of sizes 
8 and 16, and overlapping spheres of radii 5 and 10 Å; for a total of 68 
moments for each central residue in a protein, using ProDy (v.2.2.0). 
We trained a neural network using PyTorch (v.1.12.0)49 with these 68 
moments as input, two linear hidden layers of size 32, a sigmoid output 
layer with a size of ten and with contrastive loss to reduce the output 
distance between equivalent pairs of central residues and increase the 
distance between non-equivalent pairs in a training set. The output 
of the network for each residue, ten floating point numbers between 
zero and one, was discretized into 10 bits on the basis of whether the 
value was greater than or less than 0.5, resulting in 1,024 shape-mers.

The training set was created from structures from the CATH database 
(v.4.2.0) having less than 40% sequence identity (CATH40) that could be 
assigned to a CATH functional family (FunFam50) with an E value better 
than 1 × 10−6. From these 8,333 structures, US-align (v.20220924)51 was 
used to align and superpose all pairs within each FunFam cluster and 
three randomly chosen pairs for each protein across clusters. Aligned 
pairs of residues from two same FunFam proteins with TM score more 
than 0.8 were considered as positive pairs. Aligned or random pairs of 
residues from two proteins belonging to different CATH superfamilies, 
with TM score less than 0.6 were considered as negative pairs. In addi-
tion, using all 31,883 CATH40 proteins, we sampled up to 50 pairs of 
central residues from each protein, in which positive pairs had fewer 
than two sequences distance and negative pairs had 5–20 sequences 
distance. In total, this resulted in 6 million residue pairs for training, 
of which 42% were positive pairs. This dataset could be used for train-
ing and/or refining any kind of residue-level contrastive learning task. 
Training took 30 min on one RTX-3080TI with the ADAM optimizer, a 
batch size of 1,024 and a learning rate of 10−3 over five epochs.

Shape-mers were calculated for ProteinNet CASP12 proteins in 
the 100% sequence identity set52 with more than 20 amino acids. 
Extended Data Figure 6 shows an example protein with its six most 
common shape-mers highlighted. We trained a FastText model53 on 
the shape-mer bit representations using Gensim54 (v.4.2.0, window 
size of 16, embedding size of 1,024). Extended Data Figure 7a shows the 
sensitivity of SCOPe family retrieval on the SCOPe40 dataset of 11,211 
structures for all-versus-all Smith–Waterman alignment with FastText 
shape-mer similarities used as the score matrix (runtime of 12 min on 
ten threads). Shape-mer FastText alignment scores are compared to 
three structure aligners, Dali55, Foldseek16 and TM-align56; one sequence 
aligner, MMseqs2 (ref. 13) and two other structure alphabet-based struc-
tural sequence aligners, 3D-BLAST57 and CLE-SW58, using the scripts 
and benchmark data provided in van Kempen et al.16. Protein-level 
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embeddings are obtained by averaging across normalized FastText 
embeddings using the get_sentence_vector function. Extended Data 
Figure 7b shows the distributions of cosine distances of these embed-
dings within the same SCOPe family and across SCOPe folds.

Structural outlier detection
The benchmarking and comparison results (Extended Data Fig. 7) dem-
onstrate that the learned structural alphabet and FastText similari-
ties still have discriminative power in distinguishing protein families, 
despite being much less local than approaches such as Foldseek and 
TM-align that work on individual coordinates of up to two residues. We 
do not explore further alignment optimization, such as compositional 
bias correction or penalty optimization to increase sensitivity, as more 
local structural aligners will still have the advantage of higher resolution 
alignment. However, for the task at hand, our substructure representa-
tions give us a good compromise: a discriminative structural alphabet 
for representing a protein structure as a structural sequence, and sub-
structure decomposition at the level of whole secondary-structural 
elements allowing for a broader exploration of substructure composi-
tion across the AFDB.

For this, we trained the Isolation Forest outlier detection algorithm59 
as implemented in scikit-learn (v.1.1.1)60 on the ProteinNet CASP12  
FastText sentence embeddings with 1% contamination rate. Shape-mers 
for all AFDB90 structural representative AlphaFold models were  
calculated following the approach described in the analysis of AFDBv1 
(ref. 35) to split each protein into segments with Gaussian smoothed 
pLDDT more than 70, after first splitting into domains on the basis 
of a combination of pLDDT and the predicted aligned error matrix, 
and concatenating shape-mers across each segment in each domain.  
A shape-mer diversity fraction was defined for each protein as the num-
ber of unique shape-mers divided by the total number of residues for 
which shape-mers are calculated. The trained outlier detection model 
was used to predict structural outlier scores for AFDB90 proteins. 
Proteins with negative scores are labelled as outliers. The Kolmogorov–
Smirnov statistical test (two-sided) was computed using SciPy (v.1.5.4).

Computational investigation of selected examples
For the analysis of all examples, we combined data from the sequence- 
based network and its functional brightness annotations, as well as 
from structural searches with Foldseek and the outlier scores. Struc-
tural homologues for selected representatives (those with a length 
close to the median length in the component) in the PDB or the  
AFDB90Communities set were searched with Foldseek (v.7.04e0ec8) 
using the TM-align mode16. Remote sequence homologues were 
detected for selected representatives by HHPred searches over the 
PDB, ECOD and Pfam databases through the MPI Bioinformatics toolkit 
using default settings61,62. AlphaFold-Multimer63 v.3 was used for protein 
complex prediction when required, with default settings and relaxation, 
and the model with the best predicted TM score (pTM) and interface 
pTM score was selected. PyMol (v.2.5.0) was used to visualize selected 
examples. Further case-by-case analyses were carried out as below.

Component 27. All UniRef100 representatives represented by the 
nodes of connected component 27 were collected and filtered to a 
maximum sequence identity of 50% with MMseqs2. The reduced set 
of sequences was aligned with MUSCLE64 (v.5.1) and the resulting mul-
tiple sequence alignment (MSA) used as input for three independent 
BLASTp65 searches over the eukaryotic, archaea and bacterial sequences 
in nr filtered to 70% sequence identity (nr_euk70, nr_arc70, nr_bac70) 
through the MPI Bioinformatics toolkit as of January 2023. The same 
BLAST searches were carried out for Swiss-Prot representatives of the 
PglB, STT3 and YfhO families (UniProt IDs PGLB_CAMJR, STT3_YEAST 
and YFHO_BACSU). The full-length sequences matched in all searches 
were then combined with those representatives of connected com-
ponent 27 and filtered to a maximum sequence identity of 30% with 

MMseqs2. The resulting set of 7,004 sequences was clustered on the 
basis of BLASTp all-against-all searches with CLANS66 at E value of 
1 × 10−20 until equilibrium.

Component 159. Ninety-four randomly selected sequences from com-
ponent 159 were aligned with MUSCLE. The resulting alignment was 
used for three independent PSI-BLAST65 searches over the eukaryotic, 
archaea and bacterial sequences in nr (nr_euk, nr_arc, nr_bac) with 
eight rounds through the MPI Bioinformatics toolkit as of October 
2022 (refs. 61,62). All collected sequences were filtered to a maximum 
sequence identity of 95% with MMseqs2 and clustered on the basis of 
BLASTp all-against-all pairwise searches with CLANS until equilibrium 
at E value of 1 × 10−10.

The resulting sequence similarity network was used as input for 
GCsnap (v.1.0.17)19 for the analysis of the conservation of the genomic 
contexts encoding for each of the proteins in the individual clusters. A 
window of four flanking genes was used, MMseqs2 was used for protein 
family clustering at an E value better than 1 × 10−4 and clusters of similar 
genomic contexts were detected using the operon_cluster_advanced 
method, which uses PaCMAP (v.0.7.0)67 to project genomic contexts in 
two dimensions on the basis of their family composition and DBSCAN68 
(as implemented in scikit-learn v.1.2.2) to identify clusters of similar 
genomic contexts. Only families that were found in at least 30% of all 
genomic contexts were considered. For each cluster in the sequence 
similarity network and each identified neighbour family, up to 100 
structure representatives were selected from AFDBv4 and used as input 
to DeepFRI (v.1.0.0)9 with default settings. The top ten most common 
predictions per cluster and/or context family were retrieved. The high-
est average scoring and most frequently predicted molecular functions 
were considered the most likely for each case.

We generated the 3D structure of a tetramer consisting of two chains 
of the A. tepidum TumE toxin (EntrezID WP_213381069.1) and two of its 
putative, cognate TumA antitoxin (EntrezID WP_213381068.1) using 
AlphaFold-Multimer.

Component 3,314. All non-redundant protein sequences represented 
by the nodes of connected component 3,314 were collected and filtered 
as for component 27, but over nr filtered to 90% sequence identity 
(nr_euk90, nr_arc90, nr_bac90, nr_vir90). The same BLAST searches 
were carried out for the tubulin-binding domain of Chlamydomonas 
reinhardtii TRAF3-interacting protein 1 (UniProt ID A8JBY2_CHLRE, 
residues 1–131). The full-length sequences matching component 3,314 
homologues and the local sequence matching the TRAF3-interacting 
protein 1 tubulin-binding domain were then combined with representa-
tives of component 3,314 and filtered to a maximum sequence identity 
of 90% with MMseqs2. The resulting set of 890 sequences was clustered 
on the basis of BLASTp all-against-all searches with CLANS at E value 
of 1 × 10−5 until equilibrium. The 141 sequences making subcluster 1 in 
the resulting network, which included the component 3,314-like pro-
teins, were extracted, filtered to a maximum sequence identity of 50% 
with MMseqs2 and used as input for GCsnap (v.1.0.17), where a window 
of four flanking genes was used and MMseqs2 used for protein family 
clustering at an E value better than 1 × 10−4.

Component 6,732. We have built the Pfam family PF22187 (named 
DUF6946) using component 6,732 sequences and iteratively searching 
for homologues using HMMER (v.3.3)69. Selected members of this Pfam 
family were subjected to HHPred searches (HHblits70 against UniRef30, 
three iterations with an E value cut-off for inclusion 1 × 10−3 for multiple 
alignment generation and PDB70 search database). Foldseek and Dali 
server (DaliLite v.5)55 were subsequently used for structure similarity 
searches, using AFDB models as queries. The obtained structural align-
ments were manually inspected and compared with the Pfam family 
alignment. PF22187 was assigned to clan CL0236 that includes diverse 
families of nucleases.

https://www.uniprot.org/uniprotkb/Q5HTX9/entry
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β-flower fold. We constructed three new Pfam families to cover the 
sequence space of β-flower proteins. To do this we selected exam-
ple proteins with four-, five- and sixfold rotational symmetry and 
iteratively searched for homologues using HMMER’s hmmsearch. 
In general, we used an inclusion threshold of 27 bits, but manually 
lowered the threshold to identify more homologues or raised it to 
exclude false matches as identified by AlphaFold2 models. These 
three families were added to Pfam with accession numbers: PF21784, 
PF21785 and PF21786 and Pfam clan CL0395, which includes the Tubby  
C-terminal domain.

Experimental validation and characterization of a predicted TA 
family (component 159)
Six Proteobacteria TumE examples from subcluster 1a in the CLANS 
sequence similarity network produced for component 159 and their 
cognate TumA antitoxins were selected for experimental charac-
terization (Supplementary Table 3). The plasmids were constructed 
using the circular polymerase extension cloning (CPEC)71 approach 
with synthetic DNA procured from Integrated DNA Technologies. 
Open reading frames were synthesized with an added strong Shine– 
Dalgarno sequence (AGGAGGAATTAA) and flanking sequences over-
lapping with multicloning sites of pBAD33 (ref. 72) (toxin genes) or 
pMG25 (ref. 73) (antitoxin genes). The DNA fragments were amplified 
with Phusion polymerase (Thermo Scientific) using pBAD_SD_TOX_fwd 
and pBAD_TOX_MCS_rev or pMG25_insert_fwd and pMG25_insert_rev 
primer pairs. pBAD33 was linearized using primers pBAD_lin_1 and 
pBAD_lin_2 and pMG25 was linearized using pMG25_lin_from_BlpI and 
pMG25_lin_from_HindIII. CPEC with Phusion polymerase (Thermo 
Scientific) was performed to clone the genes into the vector backbone 
(25 cycles with 5 min 30 s extension). The CPEC reaction mixture was 
transformed into DH5α E. coli cells and colony PCR with HOT FIREPol 
Blend Master Mix (Solis Biodyne) was used to identify colonies with 
correctly sized inserts. Plasmids were extracted from the overnight 
cultures using FavorPrepTM Plasmid Extraction Mini Kit (Favorgen) 
and sequenced. The cognate antitoxin plasmid or empty pMG25 was 
cotransformed with the toxin plasmids into BW25113 E. coli cells. DNA 
fragments and DNA oligonucleotides used for plasmid construction 
are provided in Supplementary Table 3.

Validation of toxicity and metabolic labelling experiments with 35S 
methionine, 3H uridine and 3H thymidine were performed as described 
earlier by Kurata et al.22. In brief, E. coli BW25113 strains were trans-
formed with a plasmid pair that allowed for controllable co-expression 
of putative TumE toxins (pBAD33 derivatives, the toxin is expressed 
under the control of l-arabinose-inducible PBAD promotor) and TumA 
antitoxins (pMG25 derivatives73, isopropyl-β-d-thiogalactoside 
(IPTG)-inducible expression of the antitoxin is driven by PTac pro-
motor) and pregrown in liquid Luria-Bertani (LB) medium (Lennox)  
supplemented with 100 µg ml−1 carbenicillin (AppliChem) and 25 µg ml−1 
chloramphenicol (AppliChem) as well as 0.2% glucose (for repression of 
toxin expression). Serial tenfold 5 µl dilutions were spotted on LB plates 
supplemented with antibiotics (carbenicillin and chloramphenicol) as 
well as either 0.2% glucose (repressive conditions) or 0.2% arabinose 
and 1 mM IPTG (induction conditions). Plates were scored after an 
overnight incubation at 37 °C.

For metabolic labelling experiments with TumE toxins, E. coli 
BW25113 strains cotransformed with pBAD33 derivatives (for 
l-arabinose-inducible expression of toxins) as well as the empty pMG25 
vector were first plated out on LB plates supplemented with 100 µg ml−1 
carbenicillin, 25 µg ml−1 chloramphenicol and 0.2% glucose (to suppress 
the leaky expression of the toxin). Using fresh, individual E. coli colo-
nies for inoculation, 2 ml of liquid cultures were prepared in defined 
Neidhardt MOPS minimal media74 supplemented with 100 µg ml−1  
carbenicillin, 25 µg ml−1 chloramphenicol, 0.1% of casamino acids and 
0.2% glucose, and grown overnight at 37 °C with shaking. Next, experi-
mental 15 ml cultures were prepared in 125 ml conical flasks in MOPS 

medium supplemented with 0.5% glycerol, 100 µg ml−1 carbenicillin, 
25 µg ml−1 chloramphenicol as well as a set of 19 amino acids (lacking 
methionine), each at final concentration of 25 µg ml−1. These cultures 
were inoculated overnight to final optical density (OD600) of 0.05, and 
grown at 37 °C with shaking up to of OD600 of 0.2. At this point, one 
1 ml aliquot (the pre-induction zero time-point) was transferred to 
1.5 ml Eppendorf tubes containing 10 µl of radioisotope—35S methio-
nine (4.35 µCi, Perkin Elmer), 3H uridine (0.65 µCi, Perkin Elmer) or 3H 
thymidine (2 µCi, Perkin Elmer)—and transferred to the heat block at 
37 °C. Immediately afterwards, the expression of toxins in the remain-
ing 14 ml of culture was induced by addition of l-arabinose (final con-
centration of 0.2%). Throughout the toxin induction time course, 1 ml 
aliquots were taken from the 15 ml of culture and transferred to 1.5 ml 
Eppendorf tubes containing 10 µl of radioisotope (35S methionine, 
3H uridine or 3H thymidine). The incorporation of radioisotopes was 
stopped after 8 min of incubation at 37 °C by adding 200 µl of ice-cold 
50% trichloroacetic acid to 1 ml of culture. In parallel with taking the 
time-points for labelling, 1 ml aliquots were taken for OD600 measure-
ments. Isotope incorporation was quantified by normalizing radioactiv-
ity counts per million to OD600, with the pre-induction zero time-point  
set at 100%.

All experiments were performed in three biological replicates (that 
is, using three independent cultures inoculated from three different 
colonies).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data used for this study are publicly available in UniProtKB 
(https://www.uniprot.org/, UniRef v.2022_03), the AFDB (https://
alphafold.ebi.ac.uk/, v.4, with specific examples corresponding to 
UniProt IDs A0A0E3S9F7, A0A3R7AQ40, A0A520JWH3, A0A1W9UY89, 
A0A7J4P9B0, A0A0F9A5W1, A0A0P9GTS8, A0A418VYX3, A0A2S5M855,  
A0A2K2VML8, A0A098EYB0, G0TGH8, A0A015IZK3, A0A377W562, 
A0A494VZL1, A0A0S7BXY3, A0A7X7MB17, YFHO_BACSU, A8JBY2_
CHLRE and A0A3A8FAL8), the CATH database (https://www.cathdb.
info/, v.4.2.0), ProteinNet (https://github.com/aqlaboratory/protein-
net, CASP12 dataset), Foldseek benchmark data (https://wwwuser.
gwdg.de/~compbiol/foldseek), the PDB (https://www.ebi.ac.uk/pdbe/, 
PDB IDs 5FMT, 5GKH, 8D3P, 6SK0, 2FIM, 1ZXU, 6GXC and 7OCI) and 
National Center for Biotechnology Information GenBank (https://
www.ncbi.nlm.nih.gov/protein/, EntrezIDs WP_213381069.1 and 
WP_213381068.1). For the laboratory experiments, all data generated 
are included in the paper and Supplementary materials. All data and 
metadata generated supporting the large and the individual sequence 
similarity networks are available at https://zenodo.org/record/8121336 
(CC-BY 4.0). An interactive version of the large sequence similarity 
network, queryable by keyword, UniProt ID, connected component 
ID, community ID, protein sequence and protein structure, is available 
at https://uniprot3d.org/atlas/AFDB90v4. The interactive resource 
allows also for the downloading of the metadata associated with each 
individual connected component and community, as well as for the 
results of any search. Source data are provided with this paper.

Code availability
All the code to collect and process the annotation data in UniProtKB, 
UniParc and InterPro, and the pLDDT data from AFDB are available at 
https://github.com/ProteinUniverseAtlas/dbuilder. Model and train-
ing code for shape-mer generation can be found in https://github.
com/TurtleTools/geometricus/tree/master/training. All analysis 
code, including that to process the large sequence similarity network,  
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decompose structures and generate the plots shown, is available at 
https://github.com/ProteinUniverseAtlas/AFDB90v4 (Apache).
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Extended Data Fig. 1 | Distribution of functional darkness in UniProt  
and AFDB (version 4). Functional brightness distribution in (a) UniRef50,  
(b) UniRef50 clusters with models in AFDB (which excludes long proteins, and 
those UniRef50 clusters composed solely of UniParc entries and viral proteins), 
(c) UniRef50 clusters whose best structural representative has an average 
pLDDT > 70, and (d) UniRef50 clusters whose best structural representative has 

an average pLDDT > 90. For each set, the percentage of fully dark UniRef50 
clusters, and corresponding brightness bin, are highlighted in purple. The bar 
associated with functionally bright UniRef50 clusters (functional brightness 
>95%) is marked in white. (e) Percentage of fully dark UniRef50 clusters with 
proteins annotated as a domain of unknown function (DUF) in each set a-e.



Extended Data Fig. 2 | Structural conservation and structure-based 
function prediction of TumE. Structural superposition of five randomly 
selected members of component 159 (UniProt IDs A0A0E3S9F7, A0A3R7AQ40, 
A0A520JWH3, A0A1W9UY89, A0A7J4P9B0) with secondary structure elements 
labelled.

https://www.uniprot.org/uniprotkb/A0A0E3S9F7/entry
https://www.uniprot.org/uniprotkb/A0A3R7AQ40/entry
https://www.uniprot.org/uniprotkb/A0A520JWH3/entry
https://www.uniprot.org/uniprotkb/A0A1W9UY89/entry
https://www.uniprot.org/uniprotkb/A0A7J4P9B0/entry
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Extended Data Fig. 3 | Testing the toxicity of putative TumA antitoxins. 
Antitoxin expression plasmids were cotransformed with empty toxin expression 
vectors (pBAD33) into E. coli BW25113 cells. The bacterial cultures were started 
from a single colony and grown for five hours in liquid LB media supplemented 
with appropriate antibiotics. The cultures were normalised to OD600 = 1.0, serially 
diluted and spotted on LB agar plates containing appropriate antibiotics and 
500 µM IPTG for antitoxin induction and 0.2% arabinose to mimic the conditions 
in toxin neutralization assay. The experiment was made in n = 3 biologically 
independent replicates.



Extended Data Fig. 4 | Diversity of the (a) names predicted by ProtNLM and 
(b) their word composition, as well as the (c) fraction of structural outliers, 
for all fully dark and fully bright connected components. Name diversity  
is calculated as the number of unique protein names within a component by  
the total number of component proteins. Word diversity is calculated as the 
number of unique words across all protein names within a component by  
the total number of words, ignoring the words “protein”, “domain”, “family”, 
“containing”, and “superfamily”. Outlier content is calculated as the percentage 
of UniRef50 clusters with negative structural outlier scores within that 
component. Fully bright and fully dark distributions were compared using a 
two-sided Kolmogorov–Smirnov test, resulting in a test statistic of 0.2915  
and P-value = 8.8829 × 10−16 for (b) and test statistic 0.05859 and P-value =  
5.245 × 10−81 for (c).
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Extended Data Fig. 5 | The highly semantically diverse prophage-associated 
connected components 3,314 and 6,732. (a) Sequence similarity network of 
homologs of members of connected component 3,314 and the tubulin-binding 
domain of TRAF3-interacting protein 1, as computed with CLANS at an E value 
threshold of 1 × 10−5. Points represent individual proteins and grey lines BLASTp 
matches at an E-value better than 1 × 10−4. Individual subclusters are labelled 1-2 
and structural representatives are shown. For subcluster 1, 5 randomly selected 
structural representatives of component 3,314 are superposed (UniProt IDs 
A0A0F9A5W1, A0A0P9GTS8, A0A418VYX3, A0A2S5M855, A0A2K2VML8).  
For subcluster 2, the tubulin-binding domain of Chlamydomonas reinhardtii 

TRAF3-interacting protein 1 (PDB ID 5FMT, chain B) is shown. (b) Genomic 
context conservation of 30 sequences from subcluster 1 with a maximum 
sequence identity of 30%, as computed with GCsnap. (c) Structure superposition 
of component 6,732 representative (A0A098EYB0, purple) and mismatch 
restriction endonuclease EndoMS (PDB ID 5GKH, chain A, grey). The grey box 
indicates the active site pocket with conserved residues labelled. Note that the 
residue D165 corresponding to D86 is mutated to alanine in the PDB structure. 
Structural homologs were searched both with Foldseek, which resulted in a hit 
to Cas4 endonuclease PDB ID 8D3P with TM-score 0.34, and Dali55 multiple hits 
to restriction endonucleases, the top-ranking with a Z-score of 8.2.

https://www.uniprot.org/uniprotkb/A0A0F9A5W1/entry
https://www.uniprot.org/uniprotkb/A0A0P9GTS8/entry
https://www.uniprot.org/uniprotkb/A0A418VYX3/entry
https://www.uniprot.org/uniprotkb/A0A2S5M855/entry
https://www.uniprot.org/uniprotkb/A0A2K2VML8/entry
https://doi.org/10.2210/pdb5FMT/pdb
https://www.uniprot.org/uniprotkb/A0A098EYB0/entry
https://doi.org/10.2210/pdb5GKH/pdb
https://doi.org/10.2210/pdb8D3P/pdb


Extended Data Fig. 6 | An example of substructure decomposition.  
(a) An example AlphaFold protein model with its 6 most common shape-mers 
highlighted in different colours. Spheres mark the shape-mer central residue 
and backbone atoms within 4 Å are coloured. (b-g) Four random representatives 
of each selected shape-mer, obtained from CATH proteins with <20% sequence 
identity. Spheres depict positions within 8 residues in sequence and 10 Å 
spatially from the central residue.
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Extended Data Fig. 7 | Shape-mer representations combined with FastText 
can discriminate between protein families. (a) Cumulative distributions of 
sensitivity for homology detection on the SCOPe40 database of single-domain 
structures. True positives (TPs) are matches within the same SCOPe family, 
false positives (FPs) are matches between different folds. Sensitivity is the area 

under the ROC curve up to the first FP. Results based on shape-mer FastText 
Smith-Waterman alignment are shown in black. (b) Protein-level embedding 
distance measured as the cosine distance of FastText sentence vectors for 
proteins within the same SCOPe family (top) and from different SCOPe folds 
(bottom).
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