Zheng, Shijun (2010) Note on Gradient Estimate of Heat Kernel for Schrödinger Operators. Applied Mathematics, 01 (05). pp. 425-430. ISSN 2152-7385
AM20100500010_29910365.pdf - Published Version
Download (248kB)
Abstract
Let be a Schrödinger operator on . We show that gradient estimates for the heat kernel of with upper Gaussian bounds imply polynomial decay for the kernels of certain smooth dyadic spectral operators. The latter decay property has been known to play an important role in the Littlewood-Paley theory for and Sobolev spaces. We are able to establish the result by modifying Hebisch and the author’s recent proofs. We give a counterexample in one dimension to show that there exists in the Schwartz class such that the long time gradient heat kernel estimate fails.
Item Type: | Article |
---|---|
Subjects: | STM Open Academic > Mathematical Science |
Depositing User: | Unnamed user with email admin@eprint.stmopenacademic.com |
Date Deposited: | 03 Jun 2023 09:24 |
Last Modified: | 10 Nov 2023 05:29 |
URI: | http://publish.sub7journal.com/id/eprint/562 |