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ABSTRACT 
 

Human gait is a non-linear complex process requiring appropriate mathematical 
measuring tools. Entropy is a measure that quantifies regularity in time series: the more 
predictable a series is the lower the entropy value. The mathematical methods used to 
estimate entropy have evolved over time. At present, three algorithms are the most used 
to study human gait complexity: the approximate entropy (ApEn), the sample entropy 
(SampEn), and the multi-scale entropy (MSE). Most studies on human gait complexity 
have been conducted on elderly subjects or subjects with specific disorders affecting gait 
patterns and they used ApEn; but, because of a set of conceptual errors, the ApEn is not 
the most appropriate algorithm for the analysis of biological signals. Very few studies use 
SampEn or MSE to analyze human gait variability, but they agree that these algorithms 
might contribute new perspectives in the analysis of human gait and that MSE seems to 
be the most sensitive algorithm to changes in gait in healthy subjects. 
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1. INTRODUCTION  
 
Physiological signals present complex and irregular fluctuations that cannot be analyzed with 
conventional statistical analysis methods, as these methods yield very limited information on 
behavior patterns. 
 
There is not any clear definition of “complexity”. Generally, a complex signal accounts for 
one (normally more than one) of the following characteristics [1]: a) Non-linearity; complex 
systems are composed of multiple subunits that should not be separately analyzed since 
they may interact with each other; b) non-stationarity: the statistical properties of the system 
input change with time; c) time irreversibility or asymmetry: the system operation is not 
balanced; d) multi-scale variability: the system exhibits patterns on multiple space-time 
scales. 
 
Human gait is considered a complex, non-linear process [2-4] by which the locomotor 
system incorporates input from the cerebellum, the motor cortex, and the basal ganglia, as 
well as feedback from visual, vestibular, and proprioceptive sensors. Traditionally, under 
healthy conditions, the locomotor system is thought to produce a remarkably stable walking 
pattern; the kinetics, kinematics, and muscular activity of gait appear to remain relatively 
constant from one step to the next, even during unconstrained walking [4-9]. For this reason, 
most conventional biomechanical studies are based on the thorough analysis of a walking 
cycle. The data obtained are then extrapolated into the whole walking process. However, a 
number of studies, conducted using the non-linear dynamic approach, have revealed that 
gait patterns present fluctuations even under apparently stable conditions [10-13]. Thus, 
human gait dynamics have a complex behavior that many studies have attempted to 
elucidate [14] using practical applications mainly focused on aging and pathologies affecting 
human walking. 
  
There are several devices which analyze human gait complexity using pressure or force 
sensors [15-16] or hip and knee angles [17]. Also, there are many mathematical methods 
that have proven useful in examining the complexity of biological signals such as stride 
intervals [18,19], Detrended Fluctuation Analysis (DFA) [20-22], power law scaling by 
Fourier’s method (23),  the Lyapunov exponent (24-25) or entropy [26]. This paper focus on 
the entropy as the most common nonlinear tool for human signals analysis.  
 
This review is divided into two sections: the first section develops the concept of entropy as 
a nonlinear tool for the analysis of physiological signals complexity and the second section 
shows the application of entropy to the analysis of human gait complexity. 
 
2. CONCEPT OF ENTROPY. ALGORITHMS FOR ESTIMATING EN TROPY 
 
The concept of “entropy” was first developed in classic thermodynamics as a measure of the 
molecular disorder within a closed system. 
 
In the field of non-linear dynamic systems, entropy quantifies the regularity of a system: the 
more predictable a series is the lower the entropy value. For example, it is known that aging 
reduces entropy and impaired systems exhibit lower entropy than healthy systems [27]. 
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The more regular a series, the more predictable and the less complex it will be, which is 
indicative of a less adaptive system. Therefore, in any time series accounting for a system 
output variable, entropy is a measure of its uncertainty. 
 
The mathematical methods used to estimate entropy have evolved over time. At present, 
there are three algorithms: the approximate entropy (ApEn), the sample entropy (SampEn), 
and the multi-scale entropy (MSE). 
 
In 1991, Pincus introduced ApEn (26) as a tool to measure regularity of a time series under 
the assumption that a series is regular when it contains repetitive patterns [28,29]. A time 
series containing many repetitive patterns will have lower values of ApEn, while a complex 
series (i.e. without repetitive patterns and, consequently, poorly regular and less predictable) 
will show greater values of ApEn. 
 
The SampEn was proposed by Richmann and Moorman [30] to correct some errors to which 
the ApEn leads. As the ApEn counts each sequence as matching itself, in a time series it 
yields a degree of similarity greater than the real one. So, when the calculations above are 
applied to physiological data, impaired systems sometimes yield greater values of entropy 
than healthy systems [31]. This is illogical, since an impaired system is less adaptive, less 
complex and more regular than a healthy system and it should yield a lower value of 
entropy. Such inconsistencies do not appear with SampEn.  
 
The SampEn is defined as the negative natural average logarithm of the conditional 
probability that two sequences are similar for m points remain similar when the number of 
points is increased to m+1. 
 
The calculation is as follows [32]: 
 

Given a sequence of N measures, { }N21N u,...,u,uU = , where xm(i) y xm(j) are two vectors 
of UN,  both with a length of m. In the sequence xm(i)  the vector starts at the ui element of the 
series, and in the sequence xm(j), the vector starts at the uj  element. The d[xm(i),xm(j)] 
distance between two vectors of xm(i) and xm(j) is defined as the maximum difference 
between their respective components. Consequently, the two vectors will be similar if 
d[xm(i),xm(j)] < r, where r is the parameter defining the criterion of similarity. 
 
Let Xm  be the set of all vectors with a length of m within UN (i.e. xm(1) , xm(2), …,xm(N-m+1)). 
Given a vector xm(i), count the number of vectors xm(j),  where 1 ≤ j ≤ N-m, so d[xm(i),xm(j)] < 
r.  Let Bi be the number of vectors. Thus, define the function 1 ≤ i ≤ N-m as: 
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The same procedure applies to m+1 to obtain Am(i) and Am 
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Let SampEn be defined as: 
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As N is a finite number: 
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The selection of m and r is key to estimating the SampEn. The default values are m=1 or 
m=2 (preferably m=2) and r between 10 and 25% of the standard deviation of the time 
series. This is due to the fact that r must be at least greater than the noise contaminating the 
signal; furthermore, it cannot have a very high value, as we would miss a great part of the 
signal information content. 
 
As it is said above, SampEn measure the degree of regularity of a time series. However, 
SampEn is calculated on a single scale  where the structure and organization in higher 
scales of the series is not considered [33] and, also, SampEn is extremely sensitive to 
parameter choices, especially for very short data sets, N≤200 [34]. 
 
To solve this, Madalena Costa introduced the concept of MSE [35]. Given a discrete time 
series, we generate new series which points are average values of k sequential elements of 
the original series (where k is the order of the scale) with no overlapping. Thus, for a time 
scale = 1, we have the original series; for a scale = 2 the new series will be composed of the 
average value of the elements taken in pairs on each scale. Finally, we calculate the 
SampEn for each of the new series generated accounting for values obtained against the 
scale factor. Therefore, entropy is highly dependent on the time scale. 
 
The maximum value of the scale will depend on the length of the series. Previous studies 
[36] take a maximum scale factor of 20 with time series of a length of 20 000 data points. 
The MSE method uses the same statistical formula as SampEn. Therefore, the results lose 
consistency as the number of data points decreases.   
 
Recently, a new algorithm called Composite Multiscale Entropy (CMSE) has been proposed 
[37]. This concept is introduced to overcome some difficulty of MSE related to a reduction of 
statistical reliability as a time scale factor is increased. 
 
3. APPLICATIONS OF ENTROPY TO THE ANALYSIS OF HUMAN  GAIT 

COMPLEXITY  
 
Most studies on human gait complexity have been conducted on elderly subjects, patients 
with disorders affecting walking or after anterior cruciate ligament reconstruction. 
 
Kurz and Stergiou [38] used the ApEn to elucidate whether the neurophysiological changes 
associated with aging have an impact on the nervous system operation which gives more 
stability to human gait. They studied elderly and young control groups walking on a treadmill 



 
 
 
 

British Journal of Applied Science & Technology, 3(4): 1097-1105, 2013 
 

 

1101 
 

at a self-selected pace. Joint angles were calculated for the ankle, knee and hip. The yielded 
results supported the hypothesis that aging is associated with a loss in the ability of the 
neuromuscular system to move the lower limbs during walking. They hypothesized that such 
changes might yield inappropriate input from visual, vestibular, and somatosensory sensors 
(proprioceptive, cutaneous and articular). Therefore, an aged neuromuscular system 
provides inappropriate input that hinders correct walking. This might be the cause of the 
frequent falls in the elderly. 
 
Later, Khandoker et al. [39] used the ApEn to study the risk for falls in the elderly by 
analyzing the variability of gait. On such purpose, they compared the minimum foot 
clearance (MFC) data during treadmill walking for 14 healthy elderly and 10 elderly 
participants with balance problems and a history of falls (falls risk). The study demonstrated 
that the ApEn of elderly subjects with a history of falls was significantly greater than that of 
the control group (0.18 and 0.13, respectively), which is indicative of an increase in 
irregularities and randomness in their gait patterns and an indication of loss of gait control 
mechanisms. Therefore, they concluded that gait variability –as analyzed by ApEn– could be 
useful for the early diagnosis of at-risk gait and for the detection and prevention of falls in 
elderly subjects. 
 
In the field of pathology, Moraiti et al. [40] studied gait variability after anterior cruciate 
ligament reconstruction (ACL). They compared patients with ACL reconstruction, 2 years 
postoperatively, and 6 healthy control subjects walking on a treadmill at a self-selected pace 
while 2 minutes of continuous kinematic data were recorded with a 6-camera optoelectronic 
system. Stride-to-stride variability was calculated from the knee flexion/extension data. The 
results obtained showed that subjects undergoing ACL surgery presented ApEn values 
significantly greater than those of the control group (0.24 and 0.30, respectively). 
 
Previously, the same authors [25,41] analyzed gait variability in subjects undergoing surgery 
for ACL tear. They hypothesized that the ACL deficient knee will exhibit more regular and 
less variable walking patterns than the contralateral intact knee. Ten subjects with unilateral 
deficiency walked on a treadmill at their self-selected speed, 20% faster and 20% slower, 
while kinematics was collected. They analyzed knee joint flexion-extension time series and 
they found that the ApEn values were significantly less in the injured leg as compared to the 
healthy leg. So, the ACL deficient knee exhibited more regular and less variable patterns 
than the contralateral intact knee. 
 
In our opinion, the ApEn is not the most appropriate algorithm for the analysis of biological 
signals because of some conceptual errors. In fact, a study [41] yield consistent changes in 
ApEn values from a physiological perspective, but numerical values were characteristic of a 
period time series. 
 
We only found three studies where either the SampEn or the MSE were used in the analysis 
of gait variability. Firstly, Tochigi et al. [42] applied the SampEn to analyze the cycle-to-cycle 
variability in leg acceleration signals during walking in elderly subjects and in adults with 
symptomatic knee osteoarthritis. The authors found that the study group showed a lower 
variability than the control group. Secondly, Costa et al. [43] used the MSE to analyze 
human gait variability by a pressure sensor installed in the footwear in different experimental 
situations (normal spontaneous walking at higher and lower speed, and walking controlled 
with a metronome). On such purpose, they asked a sample of ten healthy young subjects 
aged between 18-29 years to walk for one hour on the floor. The authors observed that 
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normal, spontaneous free walking has the highest complexity as compared to the other 
forms of walking. 
 
Sánchez et al studied different forms of gait and running using the three entropy algorithms 
described above [44]. In particular, they analyzed time series of stride interval in ten healthy 
young subjects in three experimental situations: walking at a comfortable speed across the 
floor for 25 minutes in a form chosen by the subject (Situation A); walking on a treadmill at 
the same speed as in Situation A for 25 minutes (Situation B), and running on a treadmill at 
a 8 Km/h speed for 20 minutes (Situation C). The authors found (Table 1) that ApEn yielded 
values significantly lower than those obtained by the SampEn or MSE and no significant 
changes were observed in ApEn when the experimental situations were compared (A vs B 
and B vs C). The significant decrease in MSE (all scales) indicated that signal complexity 
was greater during spontaneous free walking than walking or running on a treadmill. 
 
Table 1. ApEn, SampEn, MSE 2, MSE3 MSE4 and MSE5 va lues expressed as the mean 

and standard deviation of the time series for each of the experimental situations  
 
 Situation A  Situation B  Situation C  Significance level (p)  
 MEAN SD MEAN SD MEAN SD A vs B B vs C 
ApEn 0.529 0.109 0.403 0.362 0.377 0.451 0.146 0.449 
SampEn 1.666 0.094 1.559 0.182 1.306 0.245 0.070 0.003 
MSE 2 1.607 0.050 1.517 0.064 1.482 0.082 0.002 0.035 
MSE 3 1.497 0.082 1.390 0.074 1.316 0.081 0.006 0.001 
MSE 4 1.408 0.098 1.305 0.059 1.247 0.068 0.002 0.007 
MSE 5 1.363 0.110 1.253 0.074 1.158 0.063 0.006 0.001 
 
Walking at a comfortable speed across the floor for 25 minutes in a form chosen by the 
subject (Situation A); walking on a treadmill at the same speed as in Situation A for 25 
minutes (Situation B), and running on a treadmill at a 8 Km/h speed for 20 minutes (Situation 
C). Significance level p < 0.05. From (44) with permission. 
 
4. CONCLUSION 
 
In short, entropy –especially SampEn and MSE algorithms– might contribute new 
perspectives in the analysis of human gait and might be useful in the evaluation of 
pathological situations of the locomotor system. The MSE seems to be the most sensitive 
algorithm to changes in gait in healthy subjects. 
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