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1 Introduction

Several results on Lie algebras have known extensions to the case of Leibniz algebras. See for
example [1],[2],[3].[4],[5], - - .. Lie’s theorems have been extended to Leibniz algebra, however most
of these results follow the pattern that from a Leibniz algebra L we get a Lie algebra obtained by the
quotient L/Ess(L) where Ess(L) is generated by the square of the elements of L, also called “partie
essentielle” [6].

The purpose of this paper is to adapt the proof of Lie’s theorem on soluble Lie algebra [7], and to give
proof which also covers in a more general way all soluble Leibniz algebras.

Here, our approach is based on the work of J. E. Hymphreys [7], we find the main results, having
evaded the difficulty that Ess(L) # {0} for a non Lie Leibniz algebra. Section 2 is devoted to
reminders on definitions and general results. In Section 3 some results on Leibniz modules are
given. Proofs of Lie’ theorems are then generalized in Section 4.

2 Preliminaries

Throughout this paper, F' will be an algebraically closed field of characteristic zero. All vector spaces
and algebras will be finite dimensional over F'. The dimension of an F-vector space V' will be denoted
dimr V. Note the sum of two vector subspaces V1, V> by V1 +V- and direct sum by Vi @ Va.
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Definition 2.1. (Leibniz algebra) [6]
A Leibniz algebra is a vector space L equipped with a bilinear map [—, —] : Lx L — L, satisfying
the Leibniz identity:

[z, [y, 2]] = [[z, 9], 2] — [[=, 2], y] forany z,y,z € L. (2.1)

If the condition [z,z] = 0 is fulfilled, the Leibniz identity is equivalent to the so-called Jacobi
identity. Therefore Lie algebras are particular cases of Leibniz algebras. A morphism of Leibniz
algebras is a linear map ¢ : L1 — Lo such that for any z,y € L1 ¢([z,y]) = [¢(x), ()]

It follows from the Leibniz identity that in any Leibniz algebra one has
[y, [z, 2]] =0, [z, [=,y]] + [z, [y, 2]] = 0, forall z,y, z € L.

Definition 2.2. (Ideal) A subspace H of a Leibniz algebra L is called left (respectively right) ideal if
fora € H and z € L one has [z, a] € H (respectively [a,z] € H). If H is both left and right ideal, then
H is called (two-sided) ideal.

If V' is a vector space, let Endr (V') denotes the set of all endomorphisms of V. An action of L
on Endr(V) is alinear map of L on Endr (V).

Definition 2.3. (Representation) Let L be a Leibniz algebra and V' a vector space. V is an L-module
if there are:

e aleftaction,i: L — Endr(V), x I

e arightaction, r: L — Endr(V), z — rg,

such that:
Tloy] = TyTe — TzTy,
llzy = Tyle —laTy,
l[w’y] = T'ylz 4+ lzly,
0 = lply +1lary.

For z in L, r-(v) will be denoted by vz and I, (v) will be denoted by zv. The triplet (I,r,V) is
called a representation of L on V. Now if L is a Leibniz algebra, we have the adjoint representation
“(Ad, ad, L)” defined as follows: for all z and y in L, ad, : L — L, y — [y,z] and Ad, : L — L,
y— [z,y]

Remark 2.1. Forxz € L, ad, : L — L is a derivation of L i.e. for all x,y, 2 in L,
adx([y, 2]) = ladz(y), 2] + [y, adz(2)].

Forx € L, Ad, : L — L is an anti-derivation of L i.e. for all z,y, z in L,
Ad([y, 2]) = [Ad=(y), 2] — [Ad=(2), y].

If L is a Lie algebra, for all z,y in L,

For an arbitrary algebra and for all non negative integer n let us define the sequences:
() D'(L) =LY =12, D" (L) = LI = [LI", L],
(i) L' =L, L = (LY L)+ (L2, LY o (L7 L2 (L0, 1Y),
Definition 2.4. [1]

An algebra L is called solvable if there exists m € N* such that D™ (L) = LI™ = {0}.
An algebra L is called nilpotent if there exists s € N* such that L° = {0}.
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Definition 2.5. Let X be a subset of V. The subspace of V' spanned by the subset X will be denoted
by Span(X) and note Span({v}) by Span(v).

The following two lemmas can be found in [8] but for self contained we give proofs here.

Lemma 2.1. Let L be a Leibniz algebra and (I, r,V') a representation of L. We have:

i) Ess(V) = Span ({zv + vz, for all (z,v) € L x V'}) is a submodule of the L-module V' and
Ess(V) C ker(l,) for a//m eL;

ii) if L is viewed as a L-module equipped with the two actions Ad and ad, then Ess(L) is an ideal of
L and Ad.(v), ad.(v) are elements of Ess(V') for all (z,v) € Ess(L) x V.

Proof. Clearly Ess(V) is a subspace of V, Ess(L) is a subspace of L.

i) Letl.(v) + r-(v) be a generator of Ess(V). For z in L we have:

L(lz(v) +rz(v) =1 (1s(v)) + 1 (ra(v))
= l[z,a:] (U) — Tz (lz('U)) - l[z@] (U) + e (lz(v)) =0.

7z (lo(v) +72(v)) =72 (l2(v) +rz (ra(v))
:lzz1() Lo (r2(0)) + 7(a,2 (V) + 72 (r2(v))
= (le, +sz1(v))+( ( 2(v) + 72 (r=(v))) .

It follows that I (I (v) + r»(v)) = 0and r, (Iz(v) + 7. (v)) is a sum of generators of Ess(V') so
Ess(V) is stable under the actions of I, r. for all z € L. Then Ess(V') is a submodule.

ii) Applying the first result to the L-module L equipped with the two actions Ad and ad; we have that
Ess(L) is an ideal of L and for all generator z = [a, b] + [b, a] of Ess(L) and all v in V:

So that Ad.(v) is a sum of two generators of Ess(M).

T2(V) =T (V) + e (V)
=1 (ra(v)) — 7a (1p(v)) + 7a (r6(v)) — 13 (ra(v)) = 0.

It follows that ad. (v) and Ad.(v) belong to Ess(V).

Lemma 2.2. Let L be a Leibniz algebra. We have
i) for any derivation D of L, D(Ess(L)) C Ess(L);
ii) for any anti-derivation D of L, D(Ess(L)) = {0}.

Proof. For any generator [z, y] + [y, z] of Ess(L) we have

i) D([z, y] + [y, z]) = D([z, y]) + D([y, z])
= ([D(2),y] + [y, D(2)]) + ([D(y), 2] + [z, D(y)]).
So D([z,y] + [y, z]) is a sum of two generators of Ess(L) and hence D(Ess(L)) C Ess(L).
i) D([x,y] + [y, 2]) = D([z,y]) + D([y, «]) -
=g (), 2] = [D(2),y] + [D(x),y] — [D(y), =]
The lemma is proved. O
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Definition 2.6. Let f be in EndrV and W a subsapce of V, say the subspace W is f-stable if
fw)cw.

For example, let (I,r, V) be a representation of L. For any x € L, the submodule Ess(V) is
l,-stable and r,-stable.
Here we recall some results on linear algebra.

Lemma 2.3. Leta € F, f an element of Endr (V') such that Ess(V) is f-stable and u, a vector of
Ess(V) \ {0}. Set

U=Span(ui -+ ,um---)and W = Span(wi, -+ , Wm, ")

where for any integeri > 1
Uit1 = f(ul), and W; = Ui+1 — QU

Then W C U are subspaces of V, f-stable and for a suitable « in F' we have dimp W = dimp U — 1.

Proof. Let m be the least integer such that (u1,-- -, um+1) is linearly dependant and hence we have
m
Um41 = Zajuj for a; in F.
j=1
We have also
m—1
Um+1 — QUM = (Olm - OC) Um + Z QjUj
=1
! m—1
= (am — @) (Um — QUm—1) + (ama — a2) Um—_1 + Z U
j=1

= (am — @) (Um — QUm-1) +
m—2
+ (am1 + oma = 0) um-1 + Y ojuy
j=1
= (am — @) (Um — QUm—1)
+ (am-1 4 ama — &) (Um-1 — QUm—2)

m—3
+ (am—Q + am_10 + a7na2 - a3) Um—2 + Z a5 Uy
j=1
Step by step we obtain that:
m—1
Wi = Umt1 — QU = Z Pj(a) (uj — auj—1) + Pi(a)ur
Jj=2
where P;(t) = > axt*™ =" orj=1,--- ,m.
k=j
Let o be a root of the polynom P (t), then wy, = Y~ P;(a)w; 1.
j=2
B' = (w1, ,wm—1) is a basis of W.
We can note that VV and W are f-stable. O

Lemma 2.4. Leta € F, f an endomorphism of V such that Ess(V) is f-stable and u, a vector of
V \ Ess(V). Set

U' = Ess(V)4+Span(uy -+« ,um ---); W = Ess(V)4+Span(wi, -+ , wm, )

where for any integeri > 1
Ui+1 = f(uz)7 Wi = Ui4+1 — QUG-

2573



British Journal of Mathematics and Computer Science 4(18), 2570-2581, 2014

Then W' C U’ are subspaces of V, f-stable and for a suitable o in F' we have
dimp W/ = dimp U/ — 1.

Proof. Proof is similar to the proof of the Lemma 2.3. O

Remark 2.2. Let N = dimpV be the dimension of vector space V. Let f an endomorphism of V'
and u; # 0.

If ur € Ess(V), put W° = V. Throughout Lemma 2.3, we can constructed an f-stable subspace
W which is of dimension N — 1. By repeating the process with the vector space W', it follows that
W?is an f-stable subspace which dimension is N — 2.
And so on, a decreasing chain of f-stable subspaces are constructed:

We=vVow!' 2 - 2w 22wV ! 5 {0}

It is consequently clear that any generator w of W™ ! satisfies f(w) = Aw for some X € F.

If ur € V \ Ess(V), put W° = V. Throughout Lemma 2.4, we can constructed an f-stable
subspace W' which is of dimension N — 1. By repeating the process with the vector space W', it
follows that W2 is an f-stable subspace which dimension is N — 2.

And so on, a decreasing chain of f-stable subspaces are constructed:

We=vow' 2 2wV 22w 2 {0}

It is also clear that any generator w of W~ " satisfies f(w) = \w for some A € F.

3 On Leibniz Modules

Definition 3.1. (Complement of subspace)
Let V be an L-module and v a vector in V. Let Comp(v) denotes the complement in Fv+Ess(V') of
the one dimensional subspace Fv.

Thus if {0} € Fv C Fv+Ess(V) we can obtain a basis {v,v1, -+ ,v,} of Fu+Ess(V) such that
Comp(v) = Span({vi,--- ,vp}) andif Ess(V) C Fv we set Comp(v) = {0}.

Definition 3.2. (Dual space and pseudo-weights)
Let L be any vector space. Then we denote the set of F-linear maps from L to F by L* and call it the
dual space of L. Let K be an ideal of a Leibniz algebra L and V' a finite-dimensional L-module. For
A€ L* and set

Vi = {U eV, (lx — )\(k‘)lv (U) S CO/TI,O(U) forall k K}

(
Virxr ={v €V, (re — A(k)1v) (v) € Comp(v)forall k € K}
Vix={veV, (. — Az)lv) (v) € Comp(v)forall z € L}
Vix={v eV, (r: — A(z)lv) (v) € Comp(v)forallz € L}
A pseudo-weight of L (on V') is an element A € L* such that V; »+V;.» # {0}.

When V; » # {0} (respectively V;.» # {0}), we call it a pseudo-weight spaces.

Lemma 3.1. LetV be an L-module, (\, ) € L* x L* and K an ideal of L. Then
I) ESS(V) - VK,Z,O
II) VKJ,A N VKJ,“ ;é {0} if and on/y ifA = M.

Proof. i) Let 0 # w, a vector of Ess(V); w1 is an eigenvector of I, with eigenvalue equals 0. (see
the Lemma 2.1).
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i) Letv # 0 avectorin Vi x N Vk,1,., then for any k € K there are wz(k), ws(k) in Comp(v) such
that:
kv = A(k)v + w2 (k)
kv = p(k)v + ws (k)

S0 0 =(A—p)(k)v+ (wa(k) —ws(k)) € Kv@® Comp(v) which implies w2 (k) = ws(k) and
A(k)=p(k)forany k € K.
O

Remark 3.1. Let A € L* and A # 0. Let vg € Vk.x. (SO vy ¢ Ess(V)). Let 0 # w € Ess(V). We
have, for all k € K, l(vo) = A(k)vo + w1 (k) where w1 (k) € Comp(vg) = Ess(V).

Set v1 = 2vg +w, forall k € K, we have I (v1) = A(k) (v1) + (2w1 (k) + M(k)w). Clearly Comp(vi) =
ESS(V) and IS VK,Z,A-

But we have w = v; — 2vg € Ess(V') C Vi0 and thus v1 — 2vo & Vi1, a.

Vi ,1,» is not a vector subspace of a vector space V' if A # 0.

Let vo, v1 be two vectors of the pseudo-weight space Vi ;,» (with A # 0). Let ap € F, ay € F such
that covo + anvn ¢ Ess(V) then agvo + avr € Vieyx. S0 Ess(V)4-Vi i » is a vector subspace of V.

Before introduce the following lemma, we shall note that: for all € L, basic results on linear
algebra imply that there is a basis By = (eo,--- ,ep) of Ess(V) and a (p + 1)-uplet (Ao, -+, \p) of
FP*lsuch that,

rz(e0) = Aoeo;
rs(e;) — Niei € Span(eo, -+ ,ei—1), i=1,--- ,p;
lz(e;)=0,9=0,---,p. (3.1)

Let My, be the matrix of the restriction of I, to Ess(V') and N, the matrix of the restriction of r,,
to Ess(V), relative to basis By, we have:

Ao @01 a@o2 - ao,p
0 --- 0 0 M a2 - aip
Mo, = =0, Nor = 0 ' ' :
0 - 0 Lo Mt apiy
0 0 e 0 Ap

Lemma 3.2. /f\ 75 0 then VKJ,)\ - Vquyf)\ - ESS(V)-i—VK,l,)\.

Proof. Since X # 0, there are some k € K and v # 0 in V1, such that A(k) # 0 and
Ik (v) = kv = A(k)v + w(k) for some w(k) in Comp(v).

A(k) # 0 implies that v ¢ Ess(V') and Comp(v) = Ess(V).

Also we have w; (k) = lx(v) + rx(v) € Ess(V) which implies that 7, (v) = —A(k)v + w1 (k) — w(k).
Indeed w1 (k) — w(k) € Ess(V) = Comp(v), SO v € Vi r _x.

Now let v # 0 in Vi, —x such that 7 (v) = vk = —X(k)v + w(k) for some w(k) in Comp(v).

If v € Ess(V) we have v € Vi 2+Ess(V), else v ¢ Ess(V) and then Comp(v) = Ess(V), in
such case we have i (v) = A(k)v + wi(k) — w(k) and indeed wi (k) — w(k) € Ess(V)) = Comp(v).
Then we have v € Vik;.» and so v € Ess(V)+Vi i x.

O

Remark 3.2. If Ess(V') = {0}, V is a Lie-module, Vi, is the the set of eigenvectors (of i;, associated
with the eigenvalue \(k)) as defined in [7, page 16].

W = VKJ,)\ = VK7T7_>\ = {’U S Vv, lk(v) = —Tk(v) = M\vforall k e K}
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Example 3.3. Let L = Cx + Cy be the two dimensional complex Leibniz algebra which generators
satisfy [z, z] = [y, y] = [y, z] = 0; [z,y] = =. And let L viewed as an L-module.
Let X € L* define by A (z) = 0; A (y) = 1. Then:

Vaa,x = Cuz, Vaa,0 = Cy, Vadgo = L, Vaa,-» = {0}.
We note that Vad»\ 75 VAd,7>\ and Vad,o 7é VAd,O-

Proposition 3.1. Let A # 0in L*, v # 0in Vk ., z be in L and Ess(V) = Span(eyp,--- ,e1), the
sequence defined by w1 = v, un+1 = zu, = "v, n € N* satisfies for all k € K, the equations:

kur = Ak)ur +w'(k)
N——
€Span(ep,---,e1)
kun = AEk)un +w"(k) (forn >2)
N——
€Span(uy 1, ,u1,€p, - ,€1)
andU = Span(e1,--- ,ep,u1,- - ,un,---) s invariant under K and under x.
Proof. 1t is obvious that the subspace defined by U = Span(e1,- - ,ep,u1, - ,un,---) is invariant

under z. Since, A # 0, Vk.a N Vk,1,0 = {0} so v ¢ Ess(V') and the subspace
Comp(v) = Comp(u,) = Ess(V') = Span(eyp,--- ,e1).
Forall k € K, kui — A(k)u1 € Comp(u1) and then we have, for all k € K, ku1 = A(k)ui +w' (k).

N——
€Ess(V)
Let us = zu; then
kus = k(zu1)
= [k, z]ur — (kui)z
= Mk, a])ur + w' ([k, 2]) — (A(k)ur + w' (k))x
= ME)zu1 + M([k, z]))ur + w' ([k, z]) — w' (B)x — A(k)(u1z + zu1)
€Span(uy,ep,,e1)
= Ak)uz + M[k, 2]))us + w' ([k, z]) — w' (k)z — A(k)(u1z + zus).
€Span(uy,ep, - ,e1)
We have for all k € K, kus = A(k) (u1) + w' (k).
——
€Span(ui,ep,- ,e1)
Suppose, by induction that for all k € K and n > 1,
kun = A(k)un, +w™ (k).
——
€Span(up—1, ,u1,ep, - ,e1)
Then
kunt1 = k(zun)
= [k, z]un — (kun)z
= A[k, z])un + w™ ([, z]) — (A(k)un + w™(k))x
= AME)zun + A([k, 2)un — (k) (unT + zUn) + " ([, 2]) — W" (k)x
eSpan(upy —1, -+ ,u1,ep, - ,e1)
= AK)unt1 + Mk, 2))un +w™ ([k, 2]) — w" (k)x — A(k)(unz + 2Us),
ESpan(un’.“ JUL,€pyeet 7el)
thus for all k € K, ktunt1 = ME)uns1 + 0™ (E).
N——
eSpan(un -+ ,u1,ep, - ,€1)
Induction is done.
Induction shows also that U;, = Span(un,--- ,u1,ep,- - ,e1) is invariant under K.
O
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Letv € Vk,x \ Ess(V) and u; = v.

Let m be the least integer, such that (u1, -, um+1) is linearly dependent.
U = Span(um,--- ,u1,ep, -+ ,e1) is invariant under K and under the action of z. So U is an L-
module. According to Equation 3.1 and Proposition 3.1, we have that the matrix Mj of I, (the
restriction of I, to U), for any k € K, with respect to the basis B = (e1,--- ,ep,u1, - ,um) iS a@n
upper triangular matrix with all diagonal entries being nul or equal to A (k):

0 0 al,erl * al,p+m

0 0| appt1 e * ap,p+m
M = 0 - 0| AK) aprips2 - Ap+1,p+m

0 1o A(K) :

. 0 . ap+m71,p+m

o --- 0 0 ‘e 0 A(k)

Let N, be the matrix of r, (the restriction of r, to U), with respect to the basis B.
Due to I (v) + r&(v) € Ess(V'), we have

Ao bz oo by bip+r  * o bupem
0 A1
bp—lyp
Ny = 0o --- 0 Ap bppt+1 - * bp.p+m
0 --- 0 —Ak) aptrip+z 0 Gpilptm
0 : 0 —A(k)
: 0 : . o Gptm—tptm
_ o o o D

Now, we can prove the following
Lemma3.4. \([k,z]) =0forallk € K andallz € L.

Proof. If A(k) = 0for all k € K, there is nothing to prove.

Else thereisan k' € K, v € Vk,,» such that A (k') # 0 and (I — A(k")1v) (v) lies in Ess(V).

Then w1 = U (v) = k'v = XK')v + w(k') ¢ Ess(V). Let U be spanned by the linearly
independant family B = (e1,--- ,ep,u1,- - ,um). U isinvariant under K and under z, so it is invariant
under the whole Leibniz subalgebra K -+Span(z) of L. For every element k in K, the commutator
[k, z] is contained in K, so the matrix M, of its action on U with respect to the basis B is upper
triangular with A([k, z]) or zero on the diagonal. On the other hand, since I . = 7olx — k7,
its matrix is the commutator of the matrix N, and Mj, so in particular its trace is zero. Thus
tr(M,z)) = mA ([k, z]) = 0 implies A ([k, z]) = 0 and we have proved the Lemma.

Note that we have proved at the same time that

U= Span(ul, s ,um) C VKJ,)\

Lemma 3.5. The subspace Ess(V)+Vi ;,» is a submodule of V.

Proof. For v in Ess(V)+Vk,,», we have to show that I, (v) and r,(v) belong to Ess(V)+Vi i x.
Thanks to Lemma 3.1, Ess(V) is a submodule lying in the kernel of I, for all z in L; so we will deal
with a vector u not in Ess(V').

2577



British Journal of Mathematics and Computer Science 4(18), 2570-2581, 2014

ifA=0, Ess(V)+Vi,0 = V.o and let u € Vi o then we have k (zu) = [k,z]u — (ku)z =
w’ ([k, z]) — w’(k)x where w'([k, x]), w’ (k) belong to the subspace Comp(u) = Ess (V).
This shows that k% (zu) = k (w'([k, z]) — w’(k)z) = 0 and then zv lies in Vi ; 0. Moreover the
relation I, (v) + 7. (z) € Ess (V) tells us that also 7, (v) lies in Vi i,0.
So that Vi 1,0 is @ submodule.

if A $é 0, letu € VK,L)\ then

Al (zu) — (k) (zu) = [k, z]u — (ku)x — A(k)(zu)

=k

= A[k, z])u + w([k, z]) — (k) (ux + zu) — w(k)z.
Let us note that w([k, z]) and w(k) ly in Ess(V'), then

w([k, z]) — AMk)(uz + zu) — w(k)z € Ess(V).

By the Lemma 3.4, \([k,z]) = 0, which implies that (Ix — A(k)1x) (zu) lies in Ess(V') and
80 zu = I, (u) € Ess(V)+Vk,,». Indeed, since Ix(u) + ri(u) € Ess(V), also uxr = ry(u) €
ESS(V)-;—VKJ,)\.

O

Let u; € Ess(V) \ {0} and z an element of L notin [L, L].
Consider the sequence w1, us = ro(u1), « ,Unt1 = ro(un) =715 (u1),--- foralln € N*.

Proposition 3.2. Let L be a solvable Leibniz F-algebra, V an L-module and K be an ideal of L
of codimension one such that L = K ® Fx for x ¢ [L,L]. Suppose there are a non-zero vector
u1 € Ess(V') and the functions o,¢ : K — F such that l;,(u1) = ((h)u1 = Ov, rn(u1) = o(h)u: for
allh € K. ThenU = Span(ui, -+ ,un,---) iS an L-module in which lies a common eingevector i. e.
a vectorv € U along with the functions o, : L — F such thatl,(v) = ¢(y)v = Ov, ry(v) = o(y)v
forally € L.

Proof. Note that by induction we have for all< > 1 and all h € K:

rh(tiv1) = Th(re(ui)) = 1o (ra(ui)) 4+ 7, (u))
= o(h)re(wi) + o([h, z))us = o(h)uit1.

Note also that r, is an endomorphism of the vector space L and u; satisfies the hypotheses of
Lemma 2.3. Thanks to Lemma 2.3 and Remark 2.2 there is a vector w € Span(ui,- - ,um, ")
which satisfies r, (w) = Aw. Make g an element of L* by defined o(h + az) = o(h) + aXforall h € K,
a € F. Clearly we have, for any y € L, r,(w) = o(y)w. Since w € Ess(L), forany y € L, I, (w) = 0.

Hence Fw is one dimensional submodule and w a common eingevector. O

Let ui; ¢ Ess(V') and z an element of L not in [L, L].
Let Bo = (e1,--- ,ep) be a basis of Ess(V)
Consider the sequence ui,uz = ro(u1),  + ,Unt1 = ro(un) =75 (u1), -~ foralln € N*.

Proposition 3.3. Let L be a solvable Leibniz F-algebra, V an L-module and K be an ideal of L
of codimension one such that L = K ® Fx for x ¢ [L,L]. Suppose there are a non-zero vector
u1 ¢ Ess(V') and the functions o, : K — F such thatlp(u1) = ((h)ur = —o(h)u1, re(u1) = o(h)u1
forallh € K. Then U’ = Span(e1,--- ,ep,u1,--+ ,Um, ) iS an L-module in which lies a common
eingevector i. e. a vector v € U and the functions o,c : L — F such that l,(v) = —o(y)v,
ry(v) = o(y)v forally € L.
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Proof. Note that by induction we have for all< > 1 and all h € K:

Th(tit1) = rr(re(ui)) = ro(rn(ui)) + rpe)(ui))

Note also that r, is an endomorphism of the vector space L and u; satisfies the hypotheses of
Lemma 2.4. Thanks to Lemma 2.4 and Remark 2.2 there is a vector w € Span(ui,- -+ ,tum, ")
which satisfies r.(w) = Aw. Make ¢ an element of L* by defined o(h + az) = o(h) + aX for all
h € K, a € F. Clearly we have, forany y € L, ry(w) = o(y)w. If w € Ess(L), then forany y € L,
ly(w) = 0 else ly(w) = —ry(w) = —o(y)w. Hence Fw is one dimensional submodule and w a
common eingevector. O

4 On Lie’s Theorems

Theorem 4.1. [Lie.] Let L be a solvable Leibniz algebra over an algebraically closed field F of
characteristic zero, and V' an L-module. Then we can find a basis B of V such that for every x in L
the matrix of l,, and r,, with respect to the base B, are upper triangular matrix.

By induction on dimr L + dim gV this reduces to the following

Theorem 4.2. [Lie.] Under the same hypotheses, there exists a common eigenvector v and the
functions x, s : L — F such that

ly(v) = x(y)v, ry(v) =c(y)vforally € L.

Proof. We will procced by induction on dim L + dim V. Let suppose that L # {0} and V # {0} .

Let dim L + dim pV = 2, then dim pL = dim pV = 1, then L = Fz and V = Fv and results
are obvious.

Let us suppose by induction that the result holds for any couple (L, V), where L is solvable
Leibniz algebra and V' an L-module, with dim L + dim rV < n.

Consider now a couple (L, V) with dim L + dimrV = n + 1. Since L is solvable, pick an
element z of L\ [L, L]. Denote by K the complement in L of the one dimensional subspace F'z. We
have L = Fz & K.

Notice also that [L, L] C K and K is an ideal of L of codimension one.

We have dim pK + dim V' = n, so by induction there is a non-zero vector v; € V and the
functions g, ¢ : K — F such that I, (u1) = ¢(h)u1, ra(u1) = o(h)u: forall h € K.

If u, € Ess(V') then by Proposition 3.2 there is a common eingevector v along with the functions
0,5 : L — F such that I, (v) = ¢(y)v = Oy, ry(v) = o(y)v forally € L.

Else if u1 ¢ Ess(V') then by Proposition 3.3 there is a common eingevector v along with the
functions g,¢ : L — F such that I, (v) = ¢(y)v, ry(v) = o(y)vforally € L.
So proofs of theorems are done. O

Remark 4.1. If v € Ess(V) then x(y) =0forally € L
else x(y) = —s(y) for all y € L since I, (v) + ry(v) = (x(y) + s(y))v € Ess(V).

In the case of the adjoint representation (I = Ad,r = ad,V = L), a flag of subspaces stable
under L is a chain of ideals. This proves the following corollary.

Corollary 4.3. If L is a solvable Leibniz algebra there exists a chain of ideals 0 = Lo C L1 C --- C
L, = L such that dimL; = 1.
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Corollary 4.4. If L is solvable Leibniz algebra, then x € [L, L] implies that = is ad-nilpotent. In
particular [L, L] is nilpotent.

Proof. Find a flag of ideals as in the Corollary 4.3.

Relative to a basis(z1,- - ,z,) of L where (z1,--- ,z;) spans L;, the matrix of ad, is an upper
triangular matrix.
Thus the matrix of ad|, ) = [ad.,ad,] is a strictly upper triangular matrix. Hence ad., is nilpotent for
x € [L, L]. The last statement follows by Engel’'s theorem for Leibniz algebras [2]. O

5 Conclusion

We give here a panoramic exposure on solvable Leibniz algebras. By this paper, we bring another
way, more elegant and simple, to give the proof of Lie’ theorems on solvable Leibniz algebras, which
generalizes that known on Lie algebras.
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