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Abstract

For a connected graph G, a subset S = {s1, s2, . . . , sk} of vertices of G and each vertex x of G
we associate a pair of k-dimensional vectors (u, v), where u = (d(x, s1), d(x, s2), . . . , d(x, sk)) and
v = (δ(x, s1), δ(x, s2), . . . , δ(x, sk)), where d(x, si) and δ(x, si) respectively denote the lengths of a
shortest and longest paths between x and si. The subset S is said to bi-resolve G if no two distinct
vertices receive the same pair. The minimum cardinality of a bi-resolving set is called bi-metric
dimension of G. In this paper we show bi-metric dimension is lesser than or equal to the metric
dimension and determine bi- metric dimensions of some standard graphs.

Keywords: Metric Dimension, Landmarks, Bi-Metric dimension
2010 Mathematics Subject Classification: 05C12; 05C20

1 Introduction

All the graphs considered in this paper are simple, connected and undirected. For any two vertices x
and y, d(x, y) and δ(x, y) respectively denote the length of the shortest and longest path between x
and y and are called distance and detour distance between x and y. A subset S of the vertex set V
of a connected graph G is said to be resolving set of G if for every pair of vertices u, v ∈ V − S there
exists a vertex w ∈ S such that d(u,w) ̸= d(v, w). The metric dimension of a graph G, denoted by
β(G), is the minimum cardinality of a resolving sets S of G. Metric dimension is defined independently
by F. Harary et al. [1] and P.J. Slater [2], [3]. The terms not defined here may be found in [4], [5]. For
the similar work on metric dimension we refer [6], [7], [8], [9], [10], [11].
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2 Bi-Metric Dimension
Let G(V,E) be a simple connected graph. For each vertex x ∈ V , we associate a pair of vectors
(u, v), denoted by Sx, with respect to a subset S = {s1, s2, . . . , sk} of vertices of G where u =
(d(x, s1), d(x, s2), . . . , d(x, sk)) and v = (δ(x, s1), δ(x, s2), . . . , δ(x, sk)). The subset S is then said
to bi-resolve G if Sx ̸= Sy, whenever x ̸= y. The minimum cardinality of a bi-resolving set S is
termed as bi-metric dimension of G and is denoted by βb(G). The vertices in a minimal bi-resolving
set S are called landmarks and the set S constitute a bi-metric basis for G. The bi-metric basis and
dimension defined here also serve the same purpose of metric dimension introduced for the sake of
unique addressing and locating property. In this paper we show that for certain families of graphs the
bi-metric dimension is lesser than as that of metric dimension.

For example consider the graph G as shown in Figure 1. The set S = {v1, v2} is a metric basis
of G and the vectors assigned for each vertex with respect to S and the shortest distance d is also
shown in the figure.

Figure 1: A graph G with metric dimension 2.

For the graph G shown in Figure 2, S = {v1, v2} is a bi-metric basis and βb(G) = 2. The pair of
vector assigned for each vertex are also shown in the figure.

We recall the following results for immediate reference.

Theorem 2.1. [12] For a graph G, β(G) = 1 if and only if G is a path on n vertices.

Theorem 2.2. [1] For any positive integer n, β(G) = n− 1 if and only if G ∼= Kn.

Theorem 2.3. [13] A graph G with β(G) = k cannot have K3,3 if k = 2 and K5×2k−3,5×2k−3+1 if
k ≥ 3 or K2k+1 − (2k−1 − 1)e as a subgraph for any k ≥ 2.

Remark 2.1. In particular if the metric dimension of a graph is 2, then the above theorem tells that G
should not contain a subgraph isomorphic to K5 − e.

Theorem 2.4. [6] If G is a connected graph of order n, then β(G) ≤ n− diam(G).

We begin with the lemma whose proof is a direct consequence of the definition of bi-metric
dimension and Theorem 2.4.

Lemma 2.5. For any non-trivial connected graph G of order n, 1 ≤ βb(G) ≤ β(G) ≤ n− diam(G).
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Figure 2: A graph G with bi-metric dimension 2.

By Lemma 2.5 it follows that, if G is path then βb(G) = 1. Now consider a connected graph
G = (V,E), with βb(G) = 1. Let S = {w} be a bi-resolving set of G. If deg(w) ≥ 2, then we can
find at least two vertices u, v both are adjacent to w in G such that δ(w, u) = δ(w, v). (If w is not in
any cycle of G, then for any two vertices u, v both are adjacent to w we find δ(w, u) = δ(w, v) = 1
and if w is vertex in a cycle of G then we choose u, v both are adjacent vertices of w and which are
in a largest cycle containing w). Which is a contradiction to the fact that S is a bi-resolving set. Thus
deg(w) = 1.

Claim: There is no vertex of degree greater than two in G.
Assume that there are vertices of degree greater than two. Let w′ be the nearest vertex to w

such that deg(w′) ≥ 3. Then there exist two vertices u, v adjacent to w′ such that d(w, u) = d(w, v).
(If w is not in any cycle of G, then for any two vertices u, v both are adjacent to w we find δ(w, u) =
δ(w, v) = d(w,w′) + 1 and if w is vertex in a cycle of G then we choose u, v both adjacent vertices
of w and which are in a largest cycle containing w). Further, since we have deg(w) = 1 and w′ is the
nearest vertex of degree greater than two, we must have δ(w, u) = δ(w, v) which is a contradiction to
the fact that S is bi-resolving set of G. Hence the claim.

Thus G is a connected graph in which w is vertex of degree one and all other vertices are of
degree less than three, hence G must be a path. Thus we have proved the following theorem.

Theorem 2.6. For a non-trivial graph G, βb(G) = 1 if and only if G is a path.

In a non-trivial complete graph, d(x, y) = 1 and δ(x, y) = n− 1, for each pair of vertices x and y,
hence it follows that βg(Kn) ≥ n−1 whenever n ≥ 2. Thus, by Lemma 2.5, we get βb(Kn) = n−1 for
all n ≥ 2. For a nontrivial connected graph G, if βb(G) = n−1, then as n−1 = βb(G) ≤ β(G) ≤ n−1,
it follows that β(G) = n− 1, which is possible if and only if G ≡ Kn. Hence we conclude;

Theorem 2.7. For a non-trivial connected graph G on n vertices, βb(G) = n− 1 if and only if G is a
complete graph Kn.

For each pair of vertices x and y in the cycle Cn, δ(x, y) = n−d(x, y), wheel Wn, δ(x, y) = n− 1
and for tree T , δ(x, y) = d(x, y). Therefore for the graphs Cn, Wn and a tree T we observe that
bi-metric dimension is equal to metric dimension.

Now we see the cases where the Bi-metric dimension is strictly less than the metric dimension.
The graphs in Figure 3 are some examples of graphs for which bi-metric dimension is strictly less
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than metric dimension. In fact, for the graphs G1 and G2, the set S = {v1, v2, v3, v5} is a minimum
resolving set and hence their metric dimensions is 4. But, the set S = {v2, v3, v6} is a minimum
bi-resolving set for both the graphs. Thus, bi-resolving dimension is 3.

Figure 3: The graphs having Bi-metric dimension less than metric dimension

3 Complexity in determining Bi-resolving Sets
We now see the complexity in computation of the bi-metric dimension of a graph G. Consider the
graphs G1 and G2 shown in the Figure 4. The Bi-metric dimension of G1 is 2 with a minimum bi-
resolving set S = {v1, v2} and that of the graph G2, obtained from G1 by adding an edge v1v3, is also
2 with the same bi-resolving set. Thus, addition of an edge does not alter the bi-metric dimension in
this case. However it is not true in general, for example, the bi-metric dimension of K4 − e is 2 (see
graph G2 of figure 3) and K4 is 3 (by Theorem 2.2).

Figure 4: Graph G1 and G2 with bi-metric dimension 2.

Further, by adding an edge to the graph, its bi-metric dimension may decrease also. For example
we see that for the graph G3 shown in the Figure 5, the bi-metric dimension of is 3 and that of graph
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G4 obtained from G3 by adding the edge v5v1 is 2. A similar set of graphs can also be obtained for

Figure 5: Graphs G3 and G4 with βb(G3) = 3 and βb(G4) = 2.

the addition of vertices. Thus, determination of a bi-metric dimension for a given graph cannot be
derived from any graph of higher or lower dimensions. At the first glance it appears that, an edge
common to two cycles in a graph is a necessary condition for bi-metric dimension to be lesser than
metric dimension. But we can find examples of mono cyclic graphs with bi-metric dimension lesser
than metric dimension. For the graph G in Figure 6, S = {v2, v3} is a bi-resolving set, therefore
βb(G) = 2, where as β(G) = 3 with minimum a resolving set S = {v3, v5, v6}.

Comparing with metric dimension, bi-metric dimension varies in characterization. Unlike graphs
with metric dimension 2, graphs with bi-metric dimension 2 can contain K5 or K3,3 as subgraphs. For
the graph G5 shown in Figure 7, which has K5 as its subgraph, S = {v2, v5} is a bi-resolving set, and
βb(G5) = 2. For the graph G6 shown in Figure 7, which has K3,3 as its subgraph, S = {v2, v5} is a
bi-resolving set, and βb(G6) = 2.

4 Graphs with βb(G) ≤ β(G)
2

The purpose of finding a minimal resolving set and metric dimension of a graph can be met much
effectively through a minimal bi-resolving set and bi-metric dimension. Further a graph with bi-metric
dimension less than or equal to half of metric dimension is of greater importance, as the length of the
code of each vertex is less than that of metric basis. This will lead to reduction of cost of establishing
a network with navigation agents to nearly half of the original cost. We can establish a network with
desired minimum number of vertices having bi-metric dimension less than or equal to half of metric
dimension. We can reduce the bi-metric dimension of certain graphs to half the metric dimension by
superimposing it into another graph of slightly higher order.

For any integer n ≥ 4, let {v1, v2, . . . , vn} be the vertex set of Kn. Define a graph G∗
n by

V (G∗
n) = V (Kn)

∪{
w1, w2, . . . , w⌊n

2
⌋

}
E(G∗

n) = E(Kn)
∪{

wiv2i−1, wiv2i : i = 1, 2, . . . ,
⌊n
2

⌋}
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Figure 6: The Graph G with single cycle, having βb(G) = 2 and β(G) = 3 .

The graphs G∗
4 and G∗

5 are shown in the Figure 8.

Observation 4.1. In the graph G∗
n as for i ̸= j, d(vi, vj) = 1 and d(wi, wj) = 3.

d(vi, wj) =

{
1 for j = i or j = i+ 1
2 otherwise

Lemma 4.1. Let S be a resolving set of G∗
n and {v1, v2, . . . , vn} be the vertices of G∗

n corresponding
to vertices of Kn. Then one of v2i−1 or v2i must belong to S for each i, 1 ≤ i ≤ ⌊n

2
⌋.

Proof. Consider pair of vertices v2i−1, v2i where 1 ≤ i ≤ ⌊n
2
⌋, we find d(v2i−1, wi) = d(v2i, wi) = 1,

d(v2i−1, wj) = d(v2i, wj) = 3, for all j ̸= i, 1 ≤ j ≤ ⌊n
2
⌋ and d(v2i−1, vk) = d(v2i, vk) = 1. Thus for

any w ∈ V − {v2i−1, v2i}, d(v2i−1, w) = d(v2i, w). Hence no vertex in the set V − {v2i−1, v2i} can
resolve v2i−1 and v2i. Therefore one of v2i−1 or v2i must belong to S.

Theorem 4.2. For any integer n ≥ 4, β(G∗
n) = n− 1.

Proof. Let S be a metric basis for G∗
n. Then by Lemma 4.1, one of v2i−1 or v2i is in S for each i,

1 ≤ i ≤ ⌊n
2
⌋. Since v2i−1 and v2i are vertices of Kn which are the only vertices adjacent to wi in G∗

n,
without loss of generality, we consider v2i ∈ S for each i, 1 ≤ i ≤ ⌊n

2
⌋. Consider the pair of vertices

v2j−1, v2j+1 for some j, 1 ≤ j ≤ ⌊n
2
⌋. Then d(v2j−1, vk) = d(v2j+1, vk) = 1 for all k, 1 ≤ k ≤ n

and d(v2j−1, wl) = d(v2j+1, wl) = 2 for all l ̸= j, 1 ≤ l ≤ ⌊n
2
⌋. Hence for each j, 1 ≤ j ≤ ⌊n

2
⌋ one

of v2j−1, v2j+1, wj or wj+1 must belongs to S. Thus for each i, 1 ≤ i ≤ ⌊n
2
⌋, v2i ∈ S and one of

v2i−1, v2i+1, wi or wi+1 must belong to S. Thus |S| ≥ n− 1
To prove the reverse inequality, consider the set S = {v1, v2, . . . , vn−1}. For this set S, V (G∗

n)−
S = {vn, w1, w2, . . . , wn} and for any pair of vertices wi, wj ∈ V (G∗

n) − S, we find v2i−1 ∈ S such
that d(wi, v2i−1) = 1 and d(wj , v2i−1) = 2. For pair of vertices vn, wi ∈ V (G∗

n) − S we find one of
d(v1, wi) or d(v3, wi) is 2, but d(vn, vi) = 1 for i ̸= n. Therefore S is a resolving set with |S| = n− 1.
Hence β(G∗

n) = n− 1.

Lemma 4.3. Let S be a bi-resolving set of G∗
n and {v1, v2, . . . , vn} be the vertices of G∗

n corresponding
to vertices of Kn. Then one of v2i−1 or v2i must belong to S for each i, 1 ≤ i ≤ ⌊n

2
⌋.
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Figure 7: Graphs G5 and G6, with βb(G5) = βb(G6) = 2.

Proof. For any vertex wj ∈ V (G∗
n) we observe;

d(wj , v2i−1) = d(wj , v2i) =

{
1 if i = j
2 otherwise

and

δ(wj , v2i−1) = δ(wj , v2i) =

{
n+ ⌊n

2
⌋ − 2 if j = i

n+ ⌊n
2
⌋ − 1 otherwise

Hence none of the vertices wj resolves pair of vertices v2i−1, v2i. For any j ̸∈ {2i − 1, 2i}, we find
d(vj , v2i−1) = d(vj , v2i) = 1 and δ(vj , v2i−1) = δ(vj , v2i) = n + ⌊n

2
⌋ − 1. Thus none of the vertices

vj , j ̸∈ {2i − 1, 2i} resolves pair of vertices v2i−1, v2i. Therefore for each i, 1 ≤ i ≤ ⌊n
2
⌋ one of the

vertices v2i−1 or v2i must belong to S.

Theorem 4.4. For any integer n ≥ 4, βb(G
∗
n) = ⌊n

2
⌋.

Proof. Let S be a resolving set of G∗
n. By the Lemma 4.3, for each i, 1 ≤ i ≤ ⌊n

2
⌋ one of the

vertices v2i−1 or v2i must belongs to S. Hence |S| ≥ ⌊n
2
⌋ and βb(G

∗
n) ≥ ⌊n

2
⌋. Consider S =

{v1, v3, v5, . . . , v2⌊n
2
⌋−1}. Then |S| = ⌊n

2
⌋. It is enough to prove S is a bi-resolving set of G∗

n.
For each vi ∈ S d(vi, vj) = 1 for i ̸= j,

d(vi, wj) =

{
1 if i = 2j − 1
2 otherwise ,

δ(vi, vj) =


n+ ⌊n

2
⌋ for j = i

n+ ⌊n
2
⌋ − 2 for j = i+ 1

n+ ⌊n
2
⌋ − 1 otherwise

and δ(vi, wj) = n+ ⌊n
2
⌋ − 1 for all j. Thus for i = 2k − 1, vi resolves vi+1 and wk with the remaining

vertices of G∗
n. Hence S is a bi-resolving set and βb(G

∗
n) = ⌊n

2
⌋.

From Theorem 4.2 and 4.4 we conclude that, for any integer n ≥ 5, βb(G
∗
n) =

⌈
β(G∗

n)

2

⌉
.
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Figure 8: The graphs G∗
4 and G∗

5, obtained from K4 and K5 respectively

5 Metric dimension of K1 ⊙ Pn

Let G and H be two graphs of order n1 and n2, respectively. The corona product G⊙H is the graph
obtained from G and H by taking one copy of G and n1 copies of H and joining by an edge each
vertex from the ith-copy of H with the ith-vertex of G. The graph C3 ⊙ P2 is shown in Figure 9.

Figure 9: The Graph C3 ⊙ P2.

The graph K1 ⊙Pn is of order n+1, in which the vertex of K1 is adjacent to every vertex of path
Pn. In this section we determine metric dimension of K1 ⊙ Pn for all positive integers n. Through out
this session, we consider G = K1 ⊙ Pn with {v1, v2, v3, . . . , vn, v} being the vertex set of G where
v1, v2, v3, . . . , vn correspond to vertices of Pn such that d(vi, vi+1) = 1 for each i, 1 ≤ i ≤ n− 1 and
v corresponds to the vertex of K1.

Lemma 5.1. For n ≥ 4, if S is metric basis of K1 ⊙ Pn, then {v1, v2, v3} ∩ S ̸= ϕ.

Proof. Let S be metric basis of K1 ⊙ Pn. We note that d(v1, vi) = d(v2, vi) = 2 for all i > 3 and
d(v1, v) = d(v2, v) = 1. Thus for i > 3, vi as well as v does not resolve pair of vertices v1, v2.
Therefore one of v1, v2, v3 must belong to S and hence {v1, v2, v3} ∩ S ̸= ϕ.

Lemma 5.2. For n ≥ 7, if S is metric basis of K1 ⊙ Pn, then {v1, v2, vn−1, vn} ∩ S ̸= ϕ.
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Proof. Let S be metric basis of K1 ⊙ Pn. For any i, 3 ≤ i ≤ n− 2, d(v1, vi) = d(vn, vi) = 2. Thus for
3 ≤ i ≤ n− 2, vi cannot resolve pair of vertices v1, vn. Therefore one of v1, v2, vn−1, vn must belong
to S and hence {v1, v2, vn−1, vn} ∩ S ̸= ϕ.

Remark 5.1. In Pn we can rename vertices in reverse order if required and above lemma can be
stated as, “If S is a resolving set of K1 ⊙ Pn, then {v1, v2} ∩ S ̸= ϕ or {vn−1, vn} ∩ S ̸= ϕ”.

Remark 5.2. For n ≥ 6, by the Lemma 5.1 and Lemma 5.2, and in view of the remark 5.1 we conclude
that “If S is a resolving set of K1⊙Pn, then among v1, v2, v3, vn−2, vn−1, vn at least two vertices must
belong to S”.

Lemma 5.3. Let S be a resolving set of K1 ⊙ Pn such that {vi, vi+2} ∩ S = ϕ for some i, 1 < i < n,
then {vi−1, vi+3} ∩ S ̸= ϕ

Proof. Let {vi, vi+2}∩S = ϕ for some i, 1 < i < n. Suppose {vi−1, vi+3}∩S = ϕ, then d(vk, vi−1) =
d(vk, vi+1) = 2 for each vertex vk ∈ S. Which is a contradiction to that S is a resolving set. Hence
{vi−1, vi+3} ∩ S ̸= ϕ.

Lemma 5.4. If S be a resolving set of K1 ⊙ Pn then for each i, 1 < i < n − 1, {vi, vi+1, vi+2,
vi+3} ∩ S ̸= ϕ

Proof. Let S be a resolving set of K1 ⊙ Pn. Suppose {vi, vi+1, vi+2, vi+3} ∩ S = ϕ for some i,
1 < i < n − 1, then d(vi+1, vk) = d(vi+2, vk) = 2 for each vertex vk ∈ S. A contradiction to the fact
that S is a resolving set and hence the lemma.

Remark 5.3. In view of the Lemma 5.3 and Lemma 5.4 we can conclude that “If S is a resolving set
of K1 ⊙ Pn, then {vi, vi+1, vi+2, vi+3, vi+4} ∩ S ̸= ϕ for each i, 1 < i < n”.

Lemma 5.5. If S is a metric basis of K1 ⊙ Pn with |S| ≥ 3, then v ̸∈ S.

Proof. Let S be a resolving set of K1 ⊙ Pn and v ∈ S. By the Theorem 2.6, |S| ≥ 2. Since
d(v, vi) = d(v, vj) = 1 for each i, j, 1 ≤ i, j ≤ n, v cannot resolve any pair of vertices vi, vj ∈ V − S.
Thus v resolve only the pair of vertices v, vi, for all vi ∈ V − S. If vi ∈ V − S and d(v, w) = d(vi, w)
for all w ∈ S − {v}, then every vertex in S must be adjacent to vi because d(v, w) = 1. Which is not
possible when |S| ≥ 3, since vi can be adjacent to at most two vertices of Pn.

Theorem 5.6. For any integer n ≥ 1 we have,

β(K1 ⊙ Pn) =


1, if n = 1
2, if 2 ≤ n ≤ 5
3, if n = 6⌊

2n+2
5

⌋
, if n ≥ 7

Proof. Let G = K1 ⊙ Pn with {v1, v2, v3, . . . , vn, v} being the vertex set of G where v1, v2, v3, . . . , vn
correspond to vertices of Pn and v corresponds to the vertex of K1.

If n = 1 or n = 2, then G is a complete graph and the result is obvious.
If n ∈ {3, 4, 5}, then C3 is a subgraph of G and hence β(G) ≥ 2. On the other hand, in these

cases S = {v2, v3} is a resolving set of G and hence β(G) = 2.
If n = 6, then clearly β(G) ≥ 2. Let S be any subset of V (G) with |S| = 2. Then we claim that “S

is not a resolving set of G”. Let S = {v, vk} for some k, 1 ≤ k ≤ 6. Then for every vertex vi ∈ V − S,
d(v, vi) = 1 and d(vk, vk+2) = d(vk, vk+3) = 2 if k ≤ 3 and d(vk, vk−2) = d(vk, vk−3) = 2 when
k > 3. Hence S is not a resolving set of G.

In case if v ̸∈ S, say S = {vi, vj}, for some i < j. For j − i = 1 or 5 then there exist two vertices
vl and vm such that d(vl, w) = d(vm, w) = 2 for every w ∈ S and hence S is not a resolving set. If
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j − i = 2 then vertices vi+1 and v are adjacent to every vertex in S and hence S is no a resolving
set of G. In case if j − i ≥ 3 or 4, then two vertices vi−1 and vi+1 (or vj−1 and vj+1) are equidistant
from every vertex in S and hence S is not a resolving set of G. Hence the claim. Therefore if S is a
resolving set of G, then |S| ≥ 3 and hence β(G) ≥ 3. Now we choose S = {v1, v4, v6}, then S is a
resolving set of G and hence β(G) = 3 in this case.

Now we consider the case n = 7. By the Remark 5.2, among v1, v2, v3, v5, v6 and v7 at least two
vertices must belong to S. Also by the Lemma 5.1 and Lemma 5.2, and the symmetry of the graph
it is enough to discus the following cases. If v1, v5 ∈ S or v2, v5 ∈ S, then to resolve pair of vertices
v4, v6, we require one more vertex in S. If v1, v6 ∈ S, or v1, v7 ∈ S, then to resolve pair of vertices
v3, v4, we require one more vertex in S. Thus if |S| is resolving set then |S| ≥ 3 =

⌊
2n+2

5

⌋
. The set

S = {v1, v4, v6} is a resolving set for K1 ⊙ P7. Hence result holds in this case.
Finally when n > 7, if S is any resolving set of K1 ⊙ Pn, then first we prove that |S| ≥

⌊
2n+2

5

⌋
and later we construct a resolving set S of desired cardinality.
Case 1: n ≡ 0 (mod 5).

In view of the Remark 5.3, we require at least 2n
5

vertices in S to resolve every pair of vertices
in V . Thus |S| ≥ 2n

5
. If n ≡ 0 (mod 5), then 2n

5
=

⌊
2n+2

5

⌋
. Hence |S| ≥

⌊
2n+2

5

⌋
.

Case 2: n ≡ 1 (mod 5).
If n ≡ 1 (mod 5), then n − 1 ≡ 0 (mod 5) and 2(n−1)

5
=

⌊
2n+2

5

⌋
. Since n − 1 ≡ 0 (mod 5), in

view of the Remark 5.3, we require at least 2(n−1)
5

vertices in S to resolve every pair of vertices
in V . Hence |S| ≥

⌊
2n+2

5

⌋
.

Case 3: n ≡ 2 (mod 5).
If n ≡ 2 (mod 5), then by the Remark 5.3, and by the Lemma 5.2 we require at least 2(n−2)

5

vertices in S to resolve every pair of vertices in {v1, v2, v3, . . . , vn−3} ⊂ V . Then by the Lemma
5.1, at least one of the vertices in vn−2, vn−1, vn must be in S. Hence |S| ≥

⌊
2(n−2)

5

⌋
+ 1 =⌊

2n+2
5

⌋
.

Case 4: n ≡ 3 (mod 5).
If n ≡ 3 (mod 5), then n − 3 ≡ 0 (mod 5) and by the Remark 5.3, and by the Lemma 5.2 we
require at least 2(n−3)

5
vertices in S to resolve every pair of vertices in {v1, v2, v3, . . . , vn−3} ⊂

V . Then by the Lemma 5.1, at least one of the vertices in vn−2, vn−1, vn must be in S. Hence
|S| ≥

⌊
2(n−3)

5

⌋
+ 1 = 2n−1

5
=

⌊
2n+2

5

⌋
.

Case 5: n ≡ 4 (mod 5).
In view of the Remarks 5.1, 5.2, and by the Lemma 5.4 we find that, if S is a resolving set,
then between two consecutive pairs of vertices belonging to S, there will be alternately 1 and
2 vertices of V − S. Therefore a Bi-resolving set S can be one of the following.

1. S = {v1, v3, v6, v8, v11, . . . , vn−3, vn}.
2. S = {v1, v4, v6, v9, v11, . . . , vn−3, vn}.
3. S = {v2, v5, v7, v10, v12, . . . , vn−5, vn−2}.
4. S = {v2, v4, v7, v9, v12, . . . , vn−5, vn−2}
5. S = {v3, v5, v8, v10, v13, . . . , vn−4, vn−1, vn}.

In any of the case |S| = 2n+2
5

.
Now consider the set S = {v3, v5, v8, v10, v13, v15, . . ., vk} ⊆ V , where k = n, if n ≡ 0, 3, 4 (mod

5) and k = n− 2, if n ≡ 1, 2 (mod 5).
Let vi, vj ∈ V −S, 3 < i < j < n−3. By the choice of S, either vi−1 ∈ S or vj+1 ∈ S. If vi−1 ∈ S,

then d(vi−1, vi) = 1 and d(vi−1, vj) = 2, hence vi−1 resolves pair of vertices vi and vj . If vj+1 ∈ S,
then d(vj+1, vi) = 2 and d(vj+1, vj) = 1, hence vj+1 resolves pair of vertices vi and vj in this case.
v3 resolves pair of vertices v1 and v2. By the Remark 5.1, one of vn−i or vn must be in S. Which
resolves the pair of vertices vn and vn−1. Hence S is a resolving set with desired cardinality.
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6 Bi-metric dimension of K1 ⊙ Pn

In most of the applications, the network system constructed will be looked as corona product or a
general corona product of two graphs. Here a main network consists of subnetworks and in each
subnetwork we have to locate navigators. The problem of minimizing the number of navigators and
thereby optimizing the cost reduction is seriously thought about. In this way the bi-metric dimension
of a corona product or general corona product of paths will be of special interest. In this section we
completely determine bi-metric dimension of graph K1 ⊙ Pn for all positive integer n.

Lemma 6.1. Let G = K1 ⊙ Pn, {v1, v2, . . . , vn} be the vertices of Pn, such that vi is adjacent to vi+1

for each i = 1, 2, . . . , n− 1 and v be the vertex corresponding to K1, then

δ(v, vi) =

{
n+ 1− i, for i ≤ n

2

i, for i > n
2

and for any i < j,
δ(vi, vj) = n+ 1−min{i, j − i, n− j + 1}

Proof. The graph G = K1⊙Pn is hamiltonian having a hamiltonian cycle Cn : v−v1−v2−· · ·−vn−v.
The longest path from vertex v to the vertex vi is the part of this cycle. For i ≤ n

2
, the longest path is

v − vn − vn−1 − · · · − vi and the length of the path is n + 1 − i. When i > n
2

, the longest path from
vertex v to vi is v− v1 − v2 − · · · − vi and the length of the path is i. To find δ(vi, vj), i < j, we divide
the path, v1, v2, . . . , vn into three parts P1, a path from v1 to vi, P2 a path from vi to vj and P3 a path
from vj to vn.

Case 1: Length of P1 is least. In this case the longest path from vi to vj is vi − vi+1 − · · · − vj−1 −
v − vn − vn−1 − · · · vj and length of the path is n+ 1− i (as shown in Figure 10).

Figure 10: Longest path from vertex vi to vertex vj in K1 ⊙ Pn.

Case 2: Length of P2 is least. In this case the path vi − vi−1 − · · · v1 − v − vn−1 − · · · − vj is the
longest path from vi to vj and the length of the path is i + 1 + (n − j) = (n + 1) − (j − 1).
(Figure 11)

Case 3: Length of P3 is least. In this case the path vi − vi−1 − · · · v1 − v − vi+1 − vi+2 − · · · − vj
is the longest path from vi to vj and the length of the path is i + 1 + (j − i − 1) = j =
(n+ 1)− (n− j + 1)(Figure 12).

This completes the proof.

Remark 6.1. Let G = K1 ⊙ Pn, {v1, v2, . . . , vn} be the vertices of Pn such that vi is adjacent to vi+1

for each i = 1, 2, . . . , n−1 and v be the vertex corresponding to K1, then δ(v, vi) = δ(v, vn−i) (follows
by the Lemma 6.1).
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Figure 11: Longest path from vertex vi to vertex vj in K1 ⊙ Pn.

Figure 12: Longest path from vertex vi to vertex vj in K1 ⊙ Pn.

Remark 6.2. For any fixed vi,

δ(vi, vj) =


n+ 1− j, for 1 ≤ j ≤ ⌈ i

2
⌉

n+ 1 + j − i, for ⌈ i
2
⌉ < j ≤ i

n+ 1− j + i, for i ≤ j ≤ i⌈n−1
2

⌉
j, for ⌈n−1

2
⌉ ≤ j ≤ n.

Theorem 6.2. For any integer n ≥ 6, we have

βb(K1 ⊙ Pn) ≤
⌈n
6

⌉
+ 1

Proof. Let G = K1⊙Pn, {v1, v2, . . . , vn} be the vertices of Pn such that vi is adjacent to vi+1 for each
i = 1, 2, . . . , n − 1 and v be the vertex corresponding to K1. Let S = {v, v2, v5, . . . , vk : where k =
3⌈n

6
⌉ − 1}. Then |S| = ⌈n

6
⌉+ 1. We prove that S is bi-resolving set of G.

For any pair of vertices vi, vj ∈ V (G) − S, if δ(v, vi) = δ(v, vj), then i = n + 1 − j, and one
of i and j is less than ⌈n

2
⌉. Without loss of generality say i < ⌈n

2
⌉. By the choice of set S we

observe that one of vi−1 and vi+1 must belong to S and d(vi, vi−1) = d(vi, vi+1) = 1, where as
d(vj , vi−1) = d(vj , vi+1) = 2. Hence S is a bi-resolving set of G.

Conjecture 6.3. For any integer n ≥ 6, we have

βb(K1 ⊙ Pn) =
⌈n
6

⌉
+ 1

7 Bi-metric dimension of Pm ⊙ Pn

Consider the graph Pm ⊙ Pn, where n ≥ 6. Let {v1, v2, v3, . . . , vm} be the vertices of Pm, such
that vi is adjacent to vi+1, 1 ≤ i ≤ m. For i ≤ k ≤ m, {wk1 , wk2 , wk3 , . . . , wkn} be the vertices
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of kth copy of Pn, such that wki is adjacent to wki+1 for each i, 1 ≤ i ≤ n. The set S =

{v1}∪n
k=1{wk2 , wk5 , . . . , wkl : l = 3

⌈n
6

⌉
−1} is a bi-resolving set because, as in the proof of Theorem

6.2, {wk2 , wk5 , . . . , wkl : l = 3
⌈
n
6

⌉
− 1} along with v1 bi-resolve the vertices of kth copy of Pn and v1

resolves vertices of Pm. Thus we have proved the following.

Corollary 7.1. For any positive integer m and an integer n ≥ 6, we have

βb(Pm ⊙ Pn) ≤ m
⌈n
6

⌉
+ 1

8 Bi-Metric Dimension of Power of a Graph

The kth power of a graph G, denoted by Gk, is defined on the vertices of G, with the property that
two vertices in G are adjacent whenever dG(u, v) ≤ k. If d is diameter of G then we note that Gd is a
complete graph and G1 = G. In this section we determine bi-metric dimension of powers Paths and
cycles.

Lemma 8.1. For any positive integer n, the length of longest path between any two vertices vi and
vj of P 2

n is

δ(vi, vj) =


n, if i = j
max{i− 1, n− i+ 1}, if i = j − 1 or j + 1
n− 1, otherwise

Proof. Let v1, v2, . . . , vn be the vertices of Pn such that vi is adjacent to vi+1 for 1 ≤ i ≤ n − 1.
Consider G = P 2

n and vi, vj be any two vertices of G with i ≤ j. Since the graph P 2
n is hamiltonian,

δ(vi, vi) = n. Let i = j − 1. If i is odd then the path vi, vi−2, vi−4, . . . , v3, v1, v2, v4, . . . , vi−1,
vi+1 is a path of length i − 1 and vi, vi+2, vi+4, . . . , vn−2, vn, vn−1, vn−3, . . . , vi+3, vi+1 is a path
of length n − i + 1 if n is odd and vi, vi+2, vi+4 . . . , vn−1, vn, vn−2, vn−4, . . . , vi+3, vi+1 is a path
of length n − i + 1 if n is even. Therefore δ(vi, vi+1) = max{i − 1, n − i + 1}. If i is even, then
the path vi, vi−2, vi−4 . . . , v2, v1, v3, v5, . . . , vi−1, vi+1 is of length i − 1, for n odd, the path vi,
vi+2, vi+4, . . . , vn−1, vn, vn−2, vn−4, . . . , vi+3, vi+1 of length n − i + 1 and for n even, the path vi,
vi+2, vi+4, . . . , vn−2, vn, vn−1, vn−3, . . . , vi+3, vi+1 is of length n − i + 1. Therefore in any case
δ(vi, vi+1) = max{i− 1, n− i+ 1}.

If i ̸= j, j − 1 then we prove the result for n odd the case n is even follows similarly.

Case 1: Both i and j are odd
In this case both i−1 and n− j are even. The path vi, vi−2, vi−4, . . . , v1, v2, v4, . . . , vi−1, vi+1,
vi+2, vi+3, . . . , vj−1, vj+1, vj+3, . . . , vn−1, vn, vn−2, vn−4, . . . , vj is of length n− 1.

Case 2: Both i and j are even
In this case both i − 1 and n − j are odd. The path vi, vi−2, vi−4, . . . , v2, v1, v3, v5, . . . , vi−1,
vi+1, vi+2, vi+3, . . . , vj−1, vj+1, vj+3, . . . , vn−2, vn, vn−1, vn−3 . . . , vj+2, vj is of length n− 1.

Case 3: i is odd and j is even
In this case i − 1 is even and n − j is odd. The path vi, vi−2, vi−4 . . . , v1, v2, v4, . . . , vi−1,
vi+1, vi+2, vi+3, . . . , vj−1, vj+1, vj+3, . . . , vn−1, vn, vn−2, vn−4, . . . , vj+2, vj is of length n− 1.

Case 4: i be even and j be odd
In this case i− 1 is odd and n− j is even. The path vi, vi−2, vi−4, . . . , v2, v1, v3, v5, . . . , vi−1,
vi+1, vi+2, vi+3, . . . , vj−1, vj+1, vj+3, . . . , vn−1, vn, vn−2, vn−4, . . . , vj+2, vj is of length n− 1.

Thus if i ̸= j − 1, j, we can find a vi − vj path of length n− 1, hence δ(vi, vj) = n− 1.

Theorem 8.2. For any integer n ≥ 3, βb(P
2
n) = 2.
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Proof. For n = 3 the graph P 2
n is complete and hence result follows by the Theorem 2.2. Let n ≥ 4.

By the Theorem 2.1, it enough to find a resolving set of cardinality 2. For n = 4 the graph P 2
n
∼= K4−e

and β(K4 − e) = 2, hence the result holds in this case. Let n > 4. We prove S = {v2, v3} is a bi-
resolving set. For any i < j, let vi, vj ∈ V − S such that d(vi, v2) = d(vj , v2) and d(vj , v2) = d(vj , v3)
then i = 1 and j = 4. Then by the Lemma 8.1, δ(v1, v2) = n− 2 and δ(v4, v2) = n− 1 and hence v2
resolves vi and vj . Thus βb(P

2
n) = 2.

Lemma 8.3. For every integer n ≥ 4, the length of longest path between any two vertices vi and vj
of P 3

n is

δ(vi, vj) =

{
n if i = j

n− 1 if i ̸= j

Proof. We observe that P 2
n is a subgraph of P 3

n . Therefore by the Lemma 8.1 it is enough to prove
the result only in the case i = j − 1 or j + 1. Without loss of generality we assume that i = j − 1
(other case follows by interchanging the rolls of i and j). If i is odd, then for n even, the path vi, vi−2,
vi−4, . . ., v3, v1, v2, v4, . . ., vi−1, vi+2, vi+4, . . ., vn−1, vn, vn−2, vn−4, . . ., vj is of length n − 1 and
for n odd, the path vi, vi−2, vi−4, . . ., v3, v1, v2, v4, . . ., vi−1, vi+2, vi+4, . . ., vn−2, vn, vn−1, vn−3, . . .,
vj is of length n − 1. If i is even, then for n even, the path vi, vi−2, vi−4, . . ., v2, v1, v3, v5, . . ., vi−1,
vi+2, vi+4, . . ., vn−2, vn, vn−1, vn−3, . . ., vj is of length n − 1 and for n odd, the path vi, vi−2, vi−4,
. . ., v2, v1, v3, v5, . . ., vi−1, vi+2, vi+4, . . ., vn−1, vn, vn−2, vn−4, . . ., vj is of length n − 1. Therefore
for i = j − 1, δ(vi, vj) = n− 1.

Theorem 8.4. For every integer n ≥ 4, βb(P
3
n) = β(P 3

n).

Proof. By the Lemma 8.3, we find that whenever d(vk, vi) = d(vk, vj), then δ(vk, vi) = δ(vk, vj).
Therefore a vertex vk resolves pair of vertices vi, vj if and only if d(vk, vi) ̸= d(vk, vj). Hence
βb(P

3
n) = β(P 3

n).

Since P 3
n is a subgraph of P k

n for all k, 3 < k < n, By the Lemma 8.3, for any two vertices vi, vj
in the graph P k

n , we find

δ(vi, vj) =

{
n if i = j

n− 1 if i ̸= j

Hence the following result.

Theorem 8.5. For any two positive integers n, k with k < n, βb(P
k
n ) = β(P k

n ).

Lemma 8.6. For integer n ≥ 4, the length of longest path between any two vertices vi and vj of C2
n

is

δ(vi, vj) =

{
n if i = j

n− 1 if i ̸= j

Proof. The graph C2
n is hamiltonian. Therefore δ(vi, vi) = n for all i. Let vi and vj be any two

vertices of C2
n. without loss of generality we assume i < j. If j − i = 1 then the path vj , vj+1,

vj+2, . . . , vn−1, vn, v1, v2, v3, . . . , vi−1, vi is a path of length n− 1. Therefore for j − i = 1, δ(vi, vj) =
n − 1. If j − i ≥ 3 and it is odd, then the path vj , vj+1, vj+2, . . . , vn−1, vn, v1, v2, v3, . . . , vi−1,
vi+1, vi+3, . . . , vj−2, vj−1, vj−3, vj−5, . . . , vi+2, vi is of length n − 1. If j − i is even, then the path
vj , vj+1, vj+2, . . . , vn−1, vn, v1, v2, v3, . . . , vi−1, vi+1, vi+3, . . . , vj−1, vj−2, vj−4, . . . , vi+2, vi is of length
n− 1. Thus for i ̸= j, δ(vi, vj) = n− 1.

In view of the Lemma 8.6, one can conclude that βb(C
2
n) = β(C2

n). Since C2
n is a subgraph of Ck

n

for each k ≥ 3, the length of longest path between any two vertices vi and vj of Ck
n is given by

δ(vi, vj) =

{
n if i = j

n− 1 if i ̸= j

Hence the following theorem.
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Theorem 8.7. For any two positive integers n, k with k < n, βb(C
k
n) = β(Ck

n).

9 Conclusion
In this paper we have shown a new way of finding navigators in a network by considering detour
of a vertex from navigators. It is important to note that in some cases bi-metric dimension is much
less than conventional metric dimension, thereby indicating cost reduction in establishing a network of
communication system. We have also invented a novel and easy way of obtaining bi-metric dimension
of desired number. Further there is a scope of finding new results.

Many questions remain to be investigated, few of them are listed here.

1. For the given positive integers l,m, with l ≤ m, Is there a graph G of order n such that
βb(G) = l and β(G) = m? If so how to construct them.

2. Determine the least positive integer k such that β(G)− βb(G) ≤ k for any graph G.
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