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Abstract

In this article, we consider a two-dimensional symmetric space-fractional diffusion equation in
which the space fractional derivatives are defined in Riesz potential sense. The well-posed feature
is guaranteed by energy inequality. To solve the diffusion equation, a fully discrete form is estab-
lished by employing Crank-Nicolson technique in time and Galerkin finite element method in
space. The stability and convergence are proved and the stiffness matrix is given analytically.
Three numerical examples are given to confirm our theoretical analysis in which we find that even
with the same initial condition, the classical and fractional diffusion equations perform differently
but tend to be uniform diffusion at last.
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1. Introduction

Fractional convection-diffusion equations are generalizations of classical convection-diffusion equations, which
have come to be applied in Physics [1]-[4], hydrology [5] [6] and many other fields. As it is difficult to get the
analytic solutions of these equations, numerical approaches to different type of fractional convection-diffusion
equations are proposed in recent years. Tadjeran et al. [7] considered one-dimensional space-fractional diffusion
equation with variable coefficient by fractional Crank-Nicholson method based on the shifted Griinwald formula,
and obtained an unconditional stable second-order accurate numerical approximation by extrapolation. Later,
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Tadjeran and Meerschaert [8] utilized the classical alternating directions implicit (ADI) approach with a Crank-
Nicholson discretization and a Richardson extrapolation to solve two-dimensional space-fractional diffusion
equation, and proved it is unconditional stable second-order accurate. Sousa [9] derived an implicit second-order
accurate numerical method which used a spline approximation for space-fractional diffusion equation and the
consistency and stability were examined. A space-time spectral method for time fractional diffusion equation
was developed by Li and Xu [10], in which the convergence was proven and priori error estimate was given. Xu
[11] proposed a discontinuous Galerkin method for one-dimensional convection-subdiffusion equations with
fractional Laplace operator and derived stability analysis and optimal convergence rate. Jin et al. [12] gave a full
discretization scheme for multi-term time-fractional diffusion equation by using finite difference method in time
and finite element method in space, and discussed its stability and error estimate.

The symmetric space-fractional convection-diffusion equation (including both left and right derivatives) was
firstly proposed by Chaves [13] to investigate the mechanism of super-diffusion and was later generalized by
Benson et al. [14] [15]. It is a powerful approach for a description of transport dynamics in complex systems
governed by anomalous diffusion. Zhang [16] et al. considered one-dimensional symmetric space-fractional
partial differential equations with Galerkin finite element method in space and a backward difference technique
in time, and the stability and convergency were proven. Sousa [17] derived a second order numerical method for
one-dimensional symmetric space-fractional convection-diffusion equation and studied its convergence.

Recently, numerical methods for multi-dimensional problems of fractional differential equational are studied.
For example, in [18], a semi-alternating direction method for a 2-D fractional reaction diffusion equation are
proposed to solve FitzHugh-Nagumo model on an approximate irregular domain. In [19], Crank-Nicolson ADI
spectral method is presented to approximate the two-dimensional Riesz space fractional nonlinear reaction-
diffusion equation. In [20] [21], Wang and Du proposed fast finite difference methods to compute three-dimen-
sional space-fractional diffusion equations, which reduce the computational cost a lot.

In this paper, we consider the following two-dimensional symmetric space-fractional diffusion equation (SSFDE)

au(x,y,t) :a[aau(x, y,t)+6“u(x, y,'t)]Jr £ (% y.1)
ot o|x[ aly|*

)

o"u(x,y,t) and o“u(x,y,t)

where 1<a <2, a>0 is a constant, are Riesz fractional derivatives defined

opd" oly[
as follows
—;(XDS+XD§),n—1<a<n
“ an
0 u(x,ay,t): 2005( 5 j
ol o
—u(x,y,t), a=n,(neN)
X
1 a a
_—an<yDL +yDR), n-l<a<n
a"u(x,y,t): 2003(2)

oly[" o

n

u(x,y,t), a=n,(neN)

Remark: In this paper, the default fractional derivative is Riemann-Liouville derivative.

This article is organized as follows. In Section 2, we introduce some functional spaces. In Section 3 and
Section 4, we prove existence and uniqueness of the variational solution. The full discretization of SSFDE is
given in Section 5, where we apply Crank-Nicolson technique in time and Galerkin finite element method in
space. Moreover, a detailed stability and convergence analysis is carried out. In section 6, we present the imple-
mentation of how to get the stiffness matrix. Finally, some numerical examples are given in Section 7 to confirm
our theretical analysis and to compare the difference between fractional diffusion and integer order diffusion

system.
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2. Two-Dimensional Fractional Derivative Spaces

Ervin and Roop [22] had given the definitions of one-dimensional fractional derivative spaces, and later were
generalized to R" via fractional directional integral and derivative in [23]. Here we present some definitions
and theorems needed in this paper.

Definition 2.1 (Directional Integral [23]). Let x>0, ¢<[0,2n) be given. The th order fractional
integral in the direction of @ is given by

D, u(x, Y)1=ﬁf:§”‘lu(x—§cose,y—§sin0)d§ )

Definition 2.2 ([23]). Let ne N, ¢ <[0,2z) be given. The nth order derivative in the direction of 6 is
given by

o . oY oy
Dyu(x,y)=|cos@—+sind— | u(x,y)=([cosd,sind] -V ] u(x,y). 3
o(y)(ax ayj(w([ I-v) u(xy) ©
Definition 2.3 (Directional Derivative [23]). Let x>0, ¢9<[0,2x) be given. Let n be the smallest integer

then x>0, n-1<u<n, and define o =n— . Then the wth order directional derivative in the direction of
6 is defined by

Dyu(x, y):=Dy;D,%u(x,y). (4)
Definition 2.4 ([23]). Let x>0, @<[0,2x) be given. Define the semi-norm
|U|Jt‘,o(0) = "Dg‘u 12(q)
and norm
12
el = (e e, ) ©)

and let J{, () denote the closure of Cg () with respect to ||~||Jﬁ,€(9)

Definition 2.5 ([23]). Let ©>0, u=n-12, neN, 9<[0,2xn) be given as before. Define the semi-norm

12
s = ‘(Dgu, /1)
and norm
12
il = (Il + 1l ) ©)

and let J¢, () denote the closure of Cg () with respect to ||-||Jé,9(9)

Theorem 2.1 ([23]). Let >0, u#n-1/2, neN, fe [0,2m) be given. Then the spaces Jy (Q) and

J¢, (Q) are equal, with equivalent semi-norms and norms.
Theorem 2.2 ([23]). For ueCy (Q), Q< R?, we have

F(Dju(x,y)) = (iw cos 0 +iw, sin0)" Gy, o,), ()
Definition 2.6 ([23]). Let Q< ®* and x> 0. Define the semi-norm
|u|H“(Q) = ”|“’|” a LZ(*Jez)
and norm
2
oy = (el o) 10 ®

()
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where d denotes the Fourier tansform of u with variable @ =[w,,®,]. Also let H{' (Q) denote the closure
of Cg(Q) with respectto |.
In the following, a semi-norm is defined by integral ||jﬂ @ with respect to the probability measure
[
M (d@). And
2n

[ lsin6[* M (d(0-y))=C 9)

holds independent of the value of y e[-n/2,7/2].
Remark: The condition holds if M (de) is atomic with at least two atoms, ¢,,6,, suchthat 6 =6, +=. In
this case, (9) reduces to [23]

Iy lsinof" M (d(0-y)= 3 P(6=6,)fsin(6 +v )"
which is positive for all such y ifandonly if 6 =6, += forsomeiand j.
Definition 2.7 ([23]) For u >0, define the semi-norm

2n
|u|J,{;(Q) = (.[o

Wy oM (de))w

Wole

and norm

12
"u"m @~ (”U"iz(g) +|u|jg (Q)) (10)
and let Jj; (Q) denote the closure of Cg" () with respectto |, @

Theorem 2.3 ([23]). Let M satisfy (9). Then the spaces H”(Q) and Jj (Q) are equivalent with equivalent
semi-norms and norms.
Theorem 2.4 (Fractional Poincara Friedrichs Inequality [23]). For u e J§, (Q) we have

"u”Jﬁ (Q) < 7|U|Jg (@) " (11)

The definitions and theorems above are basic frame of multi-dimensional fractional derivative spaces. In terms
of Equation (1), we let M be atomic with atoms {6, =0, 6, ==/2} Or {6, ==, 6, =3r/2}, then the semi-
norm and norm of J}; (Q) can be defined in the following way:

Definition 2.8 Let x>0, define the semi-norm

12
|U|JK/’|(Q) :( «Dlu 2LZ(Q) +"VD{IU ZLZ(Q)) 12)
or
12
|U|Jﬁ(Q) :( XDSU ZLZ(Q) +||yD£u 2L2(Q)) (13)
and norm
12
(@) = iz(n) j& @) -
Jul Jullz g +ul (14)

It is easy to derive that (12) is equivalent to (13) with using theorem 2.1 and Parseval equality.
Lemma 2.1 (The relationship between R-L and Caputo fractional order derivatives [24]). Assume that the
derivatives ") (t),(k=1,2,---,n) are continuous in the closed interval [a,t] and n-1<p<n, then

ot (0 corf (0 50 15
a~t (t) a—t (t)+§r(k+1_p) (a)' ( )

where SDP denotes Caputo fractional order derivative, which is defined as
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1

D ()= mf (t=2)"" 17 (2)dz.

Sowhen f® (a)=0 for k=0,1,---,n—1, the two kinds of derivates is equivalent, i.e.
DPf(t)=5D2f(t). (16)

Andif f®(b)=0 for k=01--,n-1, there have D} f (t)=SDf(t).
Lemma 2.2 ([24]). If f(t)eH®"(a,b) and m-1<p<m,n-1<qg<n,then
n-1

aDtp(athf(t)): aDlp+qf( ) J:l[ Dq it ( )]t_ar(t(l__a—[))i;).

So, if f® (a) =0 for k=0,1,---,n—1, associating with Lemma 2.1 and the definition of Caputo fractional
derivative, it is easy to obtain that

aDtp(ath f (t)) = ,DPf (t)—:zj[thqJ f (t)] t_al“(t(l_—a—Z)j;)

Lemma 2.3 (Adjoint Property). The left and right Riemann-Liouville fractional integral operator are adjoints
inthe sense L°,i.e., forall p>0,

(aD:°1.0) 5, =(F:0570) 5,0 Vgl (ab). (29)

(17)

= DP9 (1), (18)

Theorem 2.5 Let m-1<p<m, n-1<q<n, and if f*(a)=0 for k=0,3---,n-1, g"(b)=0 for
i=0,1---,m-1 ,then

(D7 1.9) .,y = (D01 D00) (20)
Proof. Let & =m- p, combining Lemma 2.2 and Lemma 2.3 we have
(aDtmqf’g)Lz(a,b) :( D0 g)L2 a,b) ((DmaD‘_G)aD‘qf’g)LZ(a,b)
— -o q _ — q -0 (_ )"
—(aDt D(-0)"g), =(.D'. D (-D)" g,
= (ath f ' ?Dbpg)l_z( b
From Lemma 2.1, we know if g(i)(b): 0 for i=0,1,---,m-1,then $DP’g=,Dfg.So we have
(D7, g)Lz(a,b) =Dt Dbpg)ﬁ(a,b) (1)
For convenience, we denote
* U’/Z l a o a o
(—A) UZW[(XDL+XDR)+(yDL+yDR):|u' (22)
then Equation (1) can be written in the following form
6 «\a/2
— Yt -A Y.t = f(xy,t
atu(xy )+a( ) u(x y,t)=f(xyt) 23

u(xy,t)[ =0, u(xy.0)=0(xy)
where o e(1,2],a>0, Qe R? isan open convex subset.

To derive the variational form of (23), we introduce two properties of (—A*)Q/2 firstly.

Property 1 (Fourier Transform of (—A*)a/z) If veH? (‘Rz) then the Fourier Transform of (—A*)a/2 is
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*\a/
f((—A) ? ) (|w1| +|a)2| ) a)l a)z) (24)
where V(w;,@,) denotes the Fourier Transform of v,
V(o 0,)= ﬂmze’(""lx”“’?y)v(x, y) dxdy. (25)

Proof. In view of Theorem 2.1, we can derive the Fourier Transform
]—'([( D + D")+(ny + yDF‘j)]v>
i) + (i) + (i@, ) +(-i@,)" )¥(@;, @)

(
[ a'ﬂ\wﬂ gaian(ior) +eaiar9(fiﬂa))+ea'n\wz\(eaiarg(iwz)+eaiar9(fiwz)ﬂ\7(wllw2)
(
=2c0

a’1| +|a)2| ) Ian/2+e—|an/2) (0,0,)
s(an/2) (|a)1| +|e,|” ) o, w,)
Therefore, we have

F((-a) )= (jal +Henl o).

*\a/2 . . a .
Remark: Here, we use (—A ) to make difference from the fractional Laplace operator (—A) /2, which

defined as [25] [26] and its Fourier Transform is || V(w;, ®,), where o = (w,, @,) .
Property 2 If u(x,y,t)|., =0. V(X ¥,t)[, =0, then

«\a/2 _ 1 a2 a2 al2 a2
[],(-47) uvdxdy—W”QVL UV + v¥2uvvdxdy (26)
where
Va/Z _( D|_ "y Diz/Z), va/Z _( Dg/Z’y Ds/Z).

In fact, when « = 2, the formula is the classical Green formula.
Proof. Using Theorem 2.5 and taking notice that « /2 < (0,1) and u|an

jjﬂ(—A* )a/z uvdxdy

= =0, we have

1
= 2ems(arz) Mol (+DF +:D5)+(,DF +,0F ) Juvscy

ST —— Cos(la 72 [IN [( ,Df%u, DY+, Dfu, DE?v) +(, D%, D+, DY ny/zV)} dxdy

= L a/2\72/2 a/2) \7a/2
_W”QVL UV v+ VEFuvivdxdy

3. Variational Formulation

In order to derive the variational form of (23), we assume u is a sufficiently smooth solution of (23), and
multiply by arbitrary ve H{/?(Q) to obtain

I, Zu(tva(-a') " u(taay = [, 1 () voxcy @)

The weak formulation of the equation is to find the ue Hg/z (Q) which can make the following equation
established
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8 *\@/2 a
E(u(t),v)+(a(—A ) u(t),v):(f(t),v), wv e H? (Q). (28)
With using property 2, the above formula could be written as

%(u (t).v) +mﬂﬂviﬂuvg/2v +VEPuvivdxdy = ( f (t),v).

Thus we define the associated bilinear form B: Hg/? (Q)xHy? (Q) >R as

_ a al al al al
B(u,v)= WHQVL 2uv /2y + VE2uv “/2vdxdy (29)

Theorem 3.1 The form B(-,-) defined by (29) is continuous and coercive.
Proof. According to the definition of B(u,v),

B(u,v)| =

al2 al2 al2 al2
—|Zcos an/2|U_|'V UV +ve2uve vdxdy‘

al2 al2 al2
u, Dg v|+|yDL u, D v+,

S|Zcos(omr/2)|-Uﬂ(X L R Ufo/2V|+|yD§/2uny‘/szdxdy

Using Cauchy-Schwarz inequality we can obtain

|B(u,v)|s;)|( Dy

|2cos(am/2

/2
+||ny u

(@) " y Dg/zv

Y LZ(Q))

a
<%
_|Zcos(an/2)|[( * LZ(Q))( <R Vg

+( X —R u LZ(Q))( x—L v LZ(Q)):|

Associating the definition of the semi-norm of Jﬁ,,/z (Q) and using Young’s inequality it follows

LZ(Q) x —~R LZ(Q)

(@)

+], D 2() |,oe”

(@)

LZ(Q) x —~L
D*?u

al2
+||yDL u

al2
+||yDR v

(@) )

(@)

/2
+||yDF§Z u

a2
+||yDL Y

(@) (@)

|B(u V)| —m“ |J&/2 (@) |V|J‘*/2 |u|J“/2 (@) |V|J"’/2 )
So we have
2a 2a
[B(u,v)|< lcos(am/2)] Uy Mgz < m'”“"ﬂz(g) M7z

Combining the equivalence of Jg/*(Q) and H*?(Q), we have

2ay,
B ey e M

i.e., the form B(.,-) iscontinuouson Hg 2 (Q)x HE? (Q). Replacing v with u in (29), we have

B(u,u)= ( D{?u,Dg%u+ ,Df?u ,Dg%u+,Dg?u D%u+ yD;f/zuny’/zu)dxdy

ZCOS(a /2) 'U

(,D{"°u,Dgu+ ,D"°u , Du)dxdy

2
38,9

- cos(a /2) HQ

- (|u (0 +|u
|cos(arm/2)|\" 5o (@)
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According to the equivalence of J¢,(Q) and J;‘o( ), and combining Theorem 2.4 we can obtain

B(u, u e 30
( |cos an/2|" Fa (30)

i.e., theform B(.-) iscoerciveon Hg/?(Q)xHy?(Q).
Theorem 3.2 (Energy Inequality). If uel*(0,T,H;*(Q)), %ue L*(0,T,12()), u, € *(Q) and

fel (QT ) ,Where Q; =(0,T)x<. Then, we can obtain the energy estimate

Jo O o) <O +

i.e. the solution of (23) is well posed.
Proof. Multiply the first formula of (23) by u and integrate both sides of the equation in Q , then we have

[%u(t),u(t)j+ B(u(t),u(t))=(f(t).u(t))

As the coercivity of the form B(.,-) and Young’s inequality, we obtain

|cos an/2 )|

e ] O @

2dt " "LZ |cos omt/Z |" H”/Z( Q)

Oy + SOy =5 Oy + 20 0)
2 2¢

Ha/z( )

2

ac . . . .
/4 | and integrating over (0,t), te(0,T] to the above inequality we get

Take ¢= 20
e e |cos(arm/2)

|cos (an/2)| .«

o (i) < 1O o)+ Sl (i @

Corollary. The solution of variational formulation (28) exists and is unique.
Proof. The existence can be derived directly from Theorem 3.6 with Lax-Milgram theorem and Theorem 3.7
ensure the uniqueness.

2acy’

4. Crank-Nicolson-Galerkin Finite Element Fully Discrete System

Let S, denote a uniform of partition of Q, with grid parameter h, and G ={UK|K € Sh}. V, denote the
continuous functions on G. We define the finite dimensional subspace

X§={veC(G):v|, eR.(K),vK eS|
with the piecewise polynomials B, of order k(k e N) or less then k. Taking a uniform mesh for the time

variable t and let
:(n_]/z)r, t, =nr,n=01---,N

n-=
2

where 7 >0 being the time step, and T =t, = Nz . Then by the Galerkin finite element method and Crank-
Nicolson technique, (23) is transformed into the following problem: find uy eV, = Hg/2 (Q)ﬂ X,'f such that

%(u —-ul v, +B( Up +Up,” /2 vh) [ [ 2j,vh],whevh @2

0 _
U, =Ugy
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hold for each n=1,2,---,N, where u,, €V, isasuitable approximation of initial data u, .
Theorem 4.1 For fel?(Q;) and u, € L*(Q), the fully discrete scheme (32) has a unique solution
UE ev, .

Proof. Assume that B'(u,v)= (u,v)+% B(u,v). Then the first formula of (32) can be written as

B’(uﬁ,vh): (uﬁ‘l,vh)—%B(uQ‘l,vh)

(33)
+r(f [t 1J,th, v, €V,.

In view of Theorem 4.1, we have

ot (] <l
+L-|u 200 V]2
|cos (e m/2) Hy2(@) MlHg (@)
ar ,
and
B (ug. ) =100 + 5 8000 =l * s e

2

He/? (@)

n
h

. ar
> mm[l,ml u

Therefore, the bilinear B’(-,-) form is continuous over V, xV, and coercive over V, . Furthermore,

r(f (tn_j/z),vh)—%B(u{,"l,vh)Jr(uQ’l,vh)

n-1
uh

ar
< T“f (t"*l/z )HLZ(D) s "H5’/2(9) +[|cos(a n/2)| +1J (@) vy "L2(9)
i.e., the right side of (33) is continuous. According to Lax-Milgram theorem, the fully discrete approximating
system (32) has unique solution u eV, .
Theorem 4.2 (Energy Inequality). If f(t)eL?(Q;) then the fully discrete approximating system (32) is
unconditionally stable and u? satisfies

<|li;0
2@ ~ “uh

Uy

L¥(@)

+T sup]” f (t)||L2(Q) (34)

te[O,T

Proof. Taking v, =up +u;™ in (32), noticing the coercivity of the bilinear form B(.,-) and employing
Holder inequality, we have
n—E 5

L°(©)
f[t ] (
"2 2(Q)

2
(@)

2
ul,  —futt <7
(@)

n n-1
Uh +Uh

(@)

<r

n-1
uh

Uy

2oy "

o)

Then we can obtain
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n
+
uh LZ(Q) g

@) ~

(o

(@)

<|up? +7 f(t J + f(t j
(@) { ni% 2(Q) n717% 12(0)
g---s"uﬁ 2 T f(t 1J + f[t 1} ot f(tlJ
@ "2 |2 ) "2 (@) 2 (@)
S”u,? +T sup ||f ||L2

te[0,T]

So the result is valid.
Lemma 4.1 (Approximation Property [27]) Let ueH' (Q),O <r<k+1,0<s<r, then there exists a
constant C, dependingonlyon Q such that

||u —P*ul .
H>(Q)
where Pf, 1H”(Q)— X\ isa projection operator.
Theorem 4.3 (Convergence). Assume that a/2<r<k+1 fel?*(Q;), u,eH"(Q), and u satisfies
u el’(0,T,H(Q)), u, e*(0,T,H*(Q)), u, €l’(0,T,L°(Q)) Then u} satisfies

ut) TG R T ey

w, (36)
ot + j (-a")"u (t)‘LZ(Q)dtJ

<Coh™ Ul (35)

0
= "uh ~U (@)

t
+C'rz( "u

fo

+Chr(

HT(Q)

Proof. Let
e" =up —u(t,)=uy —P,u+PSu-u(t)=¢"+n"

where P(;h is the elliptic projection operator from H(‘,’/z( ) into V, which is defined as follows for each
v,

P¥, (V) eV, B(ngh (v),vh)z B(v,v, ). (37)

n_ n-1

Define 0,&" = , then

T

(a_[g",vh)+ B((g”+g"_l)/2,vh)
=(a_t(u;‘—P:,hu(t ), Vh)+ B((u“—thu(t )+u,?’l—Pakvhu (t.4))/2. vh)
:(a_tu;‘,vh)+ B( THTHS /2 vh) (8 PY.u vh)—B((thu )+Plu(t, /2 vh)

Looking back to the first formula of (32), we can derive

(é_ten,vh)+B((g”+g”’1)/2,vh)
:(f[tn;j,vhj—(a_lP;,hu(tn),vh)—B((P;h (t,)+Pfu(t,, /2 vh)

Noting that
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holds for wv e H/?, and with using (37), we can obtain
65 vh)+B((g +&" 1 /2 vh)

fo s e
ot

athhu 6_u(tn)—6_tu(tn),vhj+8[u[t l]—(u(tn)+u(tnl))/2,vh]

"2
= _[(P;h -1 )a_tu(tn)"'(a_tu(tn)_ut (t 1]}\41]4' B[U(t 1}‘(”(tn)+u(tn1))/2thJ
2 2
Taking v, = &' +e , hoting B aﬂ ( )a uvdxdy and combining Cauchy-Schwarz inequality,
we can obtain
1 J— J—
Z_T( & ZLZ(Q) _ gn‘1 iZ(Q))S (P{;h —1 )atu (tn)+(6tu (tn)_ut (tn_;J]’((q” +g”—1)/2
+ B{u(t 1]—(u(tn)+u(tn1))/2,(3"+e”1)/2}
2
1 A, ey n n-
<3 ”(Pﬂfh—l)atu(tn)Lz(Q)+ [du(tn)—ut(tn_;n } e,

(@)

+2 (—A*)a/z ult —(u(t )+u(t ))/2 . (g”+g”’l)

2 n—; n n-1 LZ(Q) LZ(Q)
<[rt-Nau),,, +| dutt)-ult

2 " 2
(@)

+a (—A*)a/z{u (t 1j—(u(tn)+u(tn1))/2J ("gn"g(m +e™t LZ(Q))

" (@)
So we have
" eI n-1 o S [(pk _|)6 u(t, )L(Q + (a_‘”(t")_”t{tn;D o

S U CEIOR LZ(J

In the following we will estimate the three parts of the above inequality respectively. The first part

(P, —1)ou(t,) o satisfies
(Fin=1)2u(t) a) end(t) -2 () o <G ou(t,) (o)
C.h" |t Ch
= 12' _[tHUt(t)ds <= t(t)"Hr(n)dt
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The second part [Q,u(t,)—u,| t 1] satisfies
" 2(a)
l t 2 2
J— n-= ty Tty
au(t,)-u, (tnlJ = jrnf (t—tnlJ Ug (t)dt+ | 1[t—tn1j Uy (t)dt ngtn,l Uy |2 O
2 LZ(Q) 2 n 2 2 LZ(Q)
third part |(—A") / [ [tn_lj—(u (tn)+u(tn1))/2] satisfies
2 LZ(Q)
«\2/2
(-a7) t [~ (u(t)+u(t, 1))/2
L))
«\@/2 ety T (ty “\@/2
=H(—A ) Jtn_lt_tng U, (1)t 2 <2 (-a7)" uy (1) o dt
L
Hence we can obtain a recursive inequality
- tn
g" @~ et |L2(Q) < Clhr.[tH u (t) . dt
2 tn ar’ th \a/2
+E'[tn—1 um”'-z(ﬂ) dt+T th1 (_A ) e (t) (@) &
Summing up from1to N then
n 0 r [t
€ 2(Q) S"‘9 Q) +Gih .[to U (t)"Hr(Q) dt
% ar® *\&/2
+EL0 uttt|||_2(Q) dt+7 B (—A ) Uy (t) @) dt
Take s=0 in(35), then we can obtain
n" o) <Coh"|u(t,) W)

From (38) and (39), we can derive the following error estimate
_ T
(@) _"u (t,)-up
< ||u|? —U,

2
T
* gﬁo

Finally, the formula (40) leads to (36).

n n

e" <|m L2(Q)+ &

(@)

H'(Q) +Clhr.[;n U (t)"Hr(Q) dt

2
n *\a/
U 8+ 5T | (7))

#(0)
: +C,h" ||u (t,)

(e}

dt

(@)

fo

5. Computational Implementation

The

(38)

(39)

(40)

Since the fractional derivative is a non-local operator, the implementation of finite element method for fractional
differential equations is very complex. The main problem is how to obtain the stiffness matrix. In [28], Roop
investigated the computational aspects of the Galerkin approximating using continuous piecewise polynomial
basis functions on a regular triangulation of the domain. In this section we give the computational details, in
which the bilinear functions are chosen as the basis functions. The computational domain is ©=[a,b]x[c,d]

and the number of computational grid is N, x N, .

First of all, we consider the problem of finding the fractional derivative of each of the basis function D%y, .

The support set of the ith basis function w, is K, UK, UK;UK, (see Figure 1). Itis defined as
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v1
Y - N K4 K3
1 7
Y b K,
8 |9
1 12 |314|5(|6]7
Yo
0 X, X, X, X

Figure 1. Sketch for the element and node number.

U, X=X |4, Y= Yo
ile. =@ =—|1+ 1+
l//||K1 ¢1 4( Il ][ |2

1(, x=x y—y?
=0, ==1-—2 || 1+ 0
l//||K2 P, 4 Il j[ |2
1(, x-x¢ y—ys
| =@, ==|1- 0 1| 1— 0
l//||K3 (p3 4 I1 ][ I2
1(, x=x; y—VYe
1 =@, ==1+ 0 11— 0
l:[/I|K4 (04 4 Il ]( |2
where (x5,¥5),(X3.v2 ). (%.¥5). (x5.ys ) are the centers of the blocks K, K, KK, and | = _ZXH’
I :%. Assume the coordinate of the ith node (see Figure 1) is (x,,y,,), then we can derive
. i—-n
n=imod(N,-1), m= +1. (41)
N, -1
If (x,y)eK,,we have
1 x a2, Y= Yo
D2y, = D2p, = x—&) %1+ 220 |g
a —x l//l a —x ¢1 4|1r(1_a/2)!xn_1( 5) I2 é:

1 vai2(, Y-V
=— = (x- 1
4|1F(2—a/2)(x 1) (+

IZ

If (x,y)eK,,taking notice that y; =y?, we can get

1
Dy, = Dip s Dfg = L
a—x l//l Xn-1 Xn wl + o X ¢)2 4I1r (1_a/2)‘[

1 X a2, Y=Yo
“ara-az ) (“ Jdg

1,

3 y=Yo /2 1af2
:4I1r(2_0¢/2)[1Jr j[(x—xnl) 2 _a(x=x,) /J

1,

Xn-1 |2

i (x—g)“/z(u—y_yé]dg
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If x>x..,ye[Vn Yn]  We have

1
Dy = ’ (X—f)'a/z(Hdef

Xn-1

1
Da/2 Da/z —
Xn-1 — %n ¢)1 + Xn Xn+1¢)2 4|1F (1_ a/2) J'

1 w2, Y=Y
a0 e

1
1 (1+ y; y"j[(x—xn_l)l_“/2 —2(x=x%, )"+ (x- XM)M/ZJ
2

T AT (2-a/2)

For (x,y)eK,, (xy)eK; and x>x,.ye[V,. Vn.]  replacing y; by y; in the three cases above
respectively, we can get _ D%y, in the corresponding region.

Secondly, we consider the problem of calculating the inner product (an/Zy/i, Xth‘/zz//j) for a fixed i and
j=12,---,N,where N =(N,-1)x(N,-1) isthe number of inner points. Denote
_J-n

= jmod (N, -1),
p=jmod(N;-1), g N1

+1, (42)

then the coordinate of the jth node is (xp, Yq )
It is easy to know when |m—q|>2 or p<n-2, (a D2y, XDS‘/ZI//J- ) =0. For the other cases, we present
the results here. Please see the appendix for the expatiation.
Casel: p=n-1, g=m-1 or m+1,ie j=i—(N,-1)-1 Oor j=i+(N,-1)-1
al2? ) |2|117a 3-a

D%y, D%y )=
(a x Virxp l//] 12F(4—0!)

Case2: p=n, g=m-1 or m+1,ie j=i—(N,-1) OF j=i+(N,-1)

"
(an l//uxDb l//J)

_m(fﬂz _4.237(1)

Case3: p=n+l, g=m-1 or m+1,ie. j=i—(N,-1)+1 Or j=i+(N,—1)+1

l-a
I2 Il

af af —
(an v, D; Zl//j)—m

(6% —4.47+6.2°)

Case4: p=n+2+k(k=01-), g=m-1 or m+1,i.e. j=i—(N,-1)+2+k or
j=i+(N,—1)+2+k

LI 3- 3- 3- 3- 3
al al _ a a a a o
(2D, D zl//j)—m[(8+2k) 4 (6+2K)" 46 (4+2k)" —4-(2+ 2k) " +(2k)" |
Case5: p=n-1q=m,ie. j=i-1
( Da/2 Da/2 )_ IZIJ:,Lia 3-a
als Wik y/j _31_,(4_a)
Case6: p=n,g=m,ie j=i
I Ilfa
al af _ —a o
(an i, .D; 2!//;-)——3”2;_“)(43 —4.2° )

Case7: p=n+lg=m,ie j=i+l

(a Df/zl//i' X le/zl//i ) = SFI(ZE__aa) (6370{ _4.437(1 +6- 2370{)

Case8: p=n+2+k(k=01-),gq=m,i.e. j=i+2+K
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a2 a2, Vo LE
(an l//ixDb (//j)

_m[(8+2k)3—a _4.(6+2k)3—a +6_(4+2k)37a _4'(2+2k)37“ +(2k)3*“}

Finally, we consider the problem of calculating the stiffness matrix A via the inner product obtained. Form
Equation (29) we can see that A can be decomposed into four parts A, A,, A;, A, . With ignoring the coefficient
a

—  —  wedenote
2cos(am/2)

A0 §)=(D v D), A ) =(D5 i . Dy ),
A (i §)= (oD%, DF 2y ), AL 1) =(, D8 DYy ),
then itis obvious that A (i, j)=A,(j.i), A(i,j)=A,(j.i), namely A =A", A =A.

In fact, for y; and y,, if we start numbering these nodes along the direction of y axis and rename the two
basis functions to v, and Vi then we have

i, =(N,-1)(n-1)+m, iy =(N,-1)(p-1)+q (43)
where m,n, p,q are defined in (41) and (42).
L. « « « “ hol, . u
AS (I’ J) = (c Dylzl//i’ de lzl//j ) = (c Dylzl//iy’ de lzl//jy)leNz(an lzl//iy’ X Db /zl/ljy) (44)

which means A, (i, j) can be derived from case 1 to case 8 we have presented above with exchanging |, and
I,, N, and N,.Andif N,=N,,l =1,, Equation (44) will reduce to

A1) = (D2, D, )= A(iy ) 49)

6. Numerical Experiments

Example 1. Consider the following problem:

0 o“u  0“u .
—u=a —+—— |+ f,in Q; =(0,T]xQ
a [5le oyl ]

yt)

w0 =0
0)=500(0.25-x?)" (0.25-y?)", on = (~0.5,0.5)x(~0.5,0.5)

u(x,
(

ui( X,

y
y

Which has exact solution u(x, y,t)=500e" (1- xz)2 (1-y? )2 , and

1000e (0.25— y?)° 2a X
f(x y.t)=-500e™ (0.25—x°) (0.25-y*)' + (025-*) [ (08+x)" +(05-x)
cos(am/2) r(3-a)

(0.5+ X)H +(0.5- X)H (0.5+ x)4_’1 +(05- x)A'“
T e T 5a) ]

1000 (0.25-x2) [ (0.5+ ) +(05-y)**
cos(am/2) r(3-a)

(0.5+ y)sf" +(05- y)“ (0.5+ y)H +(05- y)H
N R ) }

Obviously, u(t)eH;?(Q)NH?(Q). We take «=16 and 1.9 respectively, then present corresponding
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experimental error and convergence rate in L, normin Table 1 with 7=0.01, a=5, T =0.5. To display the
numerical solution and error visually, we present the surfaces of u! and ul-u at t=T =0.5 in Figure 2
and Figure 3with h =h, =1/64.

Remark: The trial function in all of the numerical experiments is bilinear function.

We can see that the results support our error estimate and ensure the numerical approximation is effective. In
the following, we take fixed initial value and source term independent of « to try to describe the character of
the solution with the change of « .

Example 2. Consider the following problem

Table 1. Experimental error and convergence rate in L, norm.

h=h,

1/16
1/32

1/64

Ju-ur] o, (@ =16)
1.783209495x10°°
4,854890964 x10°
1.270768629x10°

3.237092091x10™

Cvge. rate

1.88

Ju=u],, («=1.9) Cvge. rate
1.189074481x10°

3.268507092x10°° 1.86
8.732931724x10°° 1.90
2.271818797x10™* 1.94

=0.5

att

Numerical Solution

=0.5

at t

Numerical Solution

Figure 3. Numerical solution (left) and error (right) for & = 1:9 at t = 0.5.
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0 o“u o“u
—u=a +
o EGIXF oy’

U(X,y,t)|0 =0

}+f,in Q =(0T]xQ

u(x,y,0)=0,0n Q=(-0.5,0.5)x(-0.5,0.5)

Let f :10005(nx)cos(ny)[cos(t)+Zan2 sin(t)] and we know if o« =2 the equation reduces to classical
diffusion equation which has exact solution u =10sin(t)cos(nx)cos(my). Now, we take a=1, T =0.5,
7=0.01, h=1/32 and «=1.1,1.4,1.7,1.99 respectively to show the character of the system in Figure 4
and Figure 5. From the numerical experiments we conclude that the bigger « is, the smaller u(x,y,T) is.

l.e., the process of diffusion becomes faster on the whole.

Example 3. In order to compare the difference between fractional diffusion and classical diffusion, consider

the following equation with homogeneous boundary condition:

0 1{ 0% o%u :
—U=— + , In ZO,1><Q
a lo(aw aM“J %=

u(x ¥,t)| =0, Q=(-05,05)x(-0.5,0.5)

' /// 'l'm‘\ N
_/’ l '000““\\\\\ AN
X i ““\‘\ ‘\\\\\\‘} N
"o%‘o%t:‘\\\\\\\\ \

u, (xy,0.5)
(2]

uh(x,y,OAS)
(2]

y -05 -05 M

Figure 4. Numerical solution for & = 1:1 (left) and a = 1:4 (right).
7
6

10

uh(x,y‘O.S)
(=2}

uh(x,y,0.5)

‘\‘\‘{\\\k\\ '
RN

‘ ‘\“\\\\\\\t\\\

0 ‘::“\\\

y -05 -05

Figure 5. Numerical solution for o = 1:7 (left) and o = 1:99 (right).
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where u represents concentration and the diffusion coefficient is % The initial value of u satisfies

250, if 0.5x+|y|<0.1
0, otherwise

u(x,y,O):{

which means the initial concentration concentrates in a rhombus. We take o =14 and « =2 in the above
equation respectively, then plot isolines at t=0.01,t=0.05t=0.15t=0.35t=0.65 and t=1 in the fol-
lowing images of Figure 6 (@ =1.4 on the left side and o« =2 on the right side).
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[wos] |

: /ﬁ% j o /z//ﬂ \

01

-0.5 L -05 !
-0.5 0 05 =05 0 0.5

Figure 6. Contour maps of o = 1:4 (left) and a = 2 (right) at specified time.
We note that the initial condition in the fractional system affect wider area than integer order in a short period

of time by comparing the first two contour maps. Moreover, the diffusion under the influence of initial condition
last longer in the fractional system. So at t=0.35, the diffusion in classical system is almost uniform in every

()
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direction but this state needs more time to reach in the fractional system (see the left map at t =1).

7. Conclusion

Many different numerical methods for fractional convection-diffusion equation have been discussed by researchers
in recent 10 years. In this paper, we discussed one kind of space-fractional diffusion equation which could be
derived through replacing the second order derivative of x and y by corresponding Riesz fractional derivative in
the classical diffusion equation. A numerical approximation for the equation was presented by using C-N tech-
nique in time direction and Galerkin finite method in space. Furthermore, a detailed stability and convergence
analysis was carried out for the fully discrete system. Then, some numerical examples were given and the dif-
ferences between fractional and classical diffusion were presented. It is known that the stiffness matrix of frac-
tional differential equation is rather complex, so to make the approach applicatory. We give the implementation
of computational aspect. However, because of the non-local property of fractional derivative, the stiffness matrix
is not sparse (almost dense) which challenges the computational resources.
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Appendix

Here, we give the computational details of case 5 to case 8. It is analogous for case 1 to case 4. To begin with,
we introduce one formula which is used frequently in the procedure of computing the inner product and can be
derived directly from the definition of beta function by integral transformation:

j;(n—x)r(x—g)sd B(r+1,s+1)(n-&)"",
where B(.,-) isthe beta functionand r,s>-1.

In the following analysis, we always denote K =supp(, D;"%y; -, D’y ).

Case5: p=n-1g=m,ie. j=i-1
Itis obvious that K =K, UK, . With noticing that y; and y, are both symmetrical about the straight lines
y =1y, , we have

2 2
1 m (4, Y= Yo
D%/2 . D%y V=2 — =~ 14220 | ¢
(a % Vi x b WJ) (4|r(2 (Z/Z)J J-yml[ + ] y

1,

« J‘Xxnri1 ( X — Xn_l )1—a/2 (Xn )l a2 dX

zz[mj 8),-B(2-a/2,2-a/2) (2, "

I Il—a

T 3(4-a)

3-a

Case6: p=n,g=m,ie j=i
Inthiscas K=K, UK,UK,;UK,. Consider the inner product in K.

J,, D, Dy dx
la

2

_ m jyy:.l[l““yL Yony (et (6 -0 20,5 o
) m zglz{j::l[(xm_x)(x_ g x=2[" [(%,~x)(x~x )]l—a/zdx}
- m 2glz[%B(Z—Q/Z,Z—a/Z)(Ml)s“—28(2_0!/2,2_(1/2)(”1)3a}

Because the two basis functions are symmetrical about the straight lines x=x, and y=y_, so we can
derive that

Jio Dy DYy ydx = 4] DYy D)y dx
:L(43—a _4 2370{)
Ar(4-a)

Case7: p=n+lg=m,ie. j=i+1
It is easy t0 see K =X, X,.2]X[Ymi: Yma ]+ With noticing that the y;,y; are both symmetrical about the
straight lines y =y, , then we can get
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2 2
a, a 1 Ym y_y:l
D“%y, D%y dx=2-| ———— | - 1 ¢l d
JKa X (//IX b WJ X (4IIF(2_0(/2)J J.leﬂ + |2 j y
'{an |:( X, — X)l—a/Z _ 2(Xn+1 _ X)l—a/Z n (Xn _ X)lfa/zJ(X X, )1—(1/2 dx
1 Ot =0 = 20000 J () 200, ) o
X=X

0
%'[;)] B(2-a/2,2-a/2) (6) " ~4-(a)"" +6:(24)"" |

4r(2-a/2

I Il—a

L )1705/2 B 2(X “x, )1711/2 + (X - )1705/2 ] dX}

- 3F(4—a)(6

Case8: p=n+l+k,g=m,ie j=i+1l+k
First, we consider the case of k =0. Inthiscase K =[x, X..s]%[Ym1: Ymu] -

2 2 1 " o y-vi)
D%y, DMy dx=2-| ———— | [ " |1 o1 d
[, D" Dy s (4|1F(2—a/2)J jyml( L J y
'{Ixxnl[(xn+3 )1—a/2_2( X, — )Jra/z+(Xn+1_X)l_a/2:|(x_xn71)l_a/2 dx
+an+1|: - 1- a/z—Z(sz—X)l_a/z +(Xn+1—X)l_a/z][(x—xnfl)l_a/z—2(X—Xn )1—a/szX
+JXn+2|: . 1- 01/2_2()(n+2 —X)l_a/z}[(X—Xn,l)l_a/z —2(X—Xn )1—11/2 +(X_Xn+l)1-a/2de

+J‘Xn+3 e 1 al2 |:(X_Xn_l)lfa/2 —2(X—Xn )1705/2 +(X_Xn+1)lfa/2:|dx}

—4.4746-2%)

_16, {W] B(2-/2,2-/2)| (8,) " —4:(61,)" +6-(4L,)" ~4-(2L)"" |

1-a
— |2|1 (83—11 _4.63—0: +6.43—a _4.23—(1)
3r(4-a)
By induction, we can conclude that for k=1,2,---,
LI 3a 3a 3-a
al? a2 2l _A.
(D", Dy, ) = T o) a)[(8+2k) 4-(6+2Kk)" " +6:(4+2K)"" —4-(2+2K)"" +(2k)"" |.
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