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Abstract: Future wireless networks will require advance physical-layer techniques to meet the
requirements of Internet of Everything (IoE) applications and massive communication systems. To
this end, a massive MIMO (m-MIMO) system is to date considered one of the key technologies for
future wireless networks. This is due to the capability of m-MIMO to bring a significant improvement
in the spectral efficiency and energy efficiency. However, designing an efficient downlink (DL)
training sequence for fast channel state information (CSI) estimation, i.e., with limited coherence
time, in a frequency division duplex (FDD) m-MIMO system when users exhibit different correlation
patterns, i.e., span distinct channel covariance matrices, is to date very challenging. Although
advanced iterative algorithms have been developed to address this challenge, they exhibit slow
convergence speed and thus deliver high latency and computational complexity. To overcome this
challenge, we propose a computationally efficient conjugate gradient-descent (CGD) algorithm based
on the Riemannian manifold in order to optimize the DL training sequence at base station (BS), while
improving the convergence rate to provide a fast CSI estimation for an FDD m-MIMO system. To this
end, the sum rate and the computational complexity performances of the proposed training solution
are compared with the state-of-the-art iterative algorithms. The results show that the proposed
training solution maximizes the achievable sum rate performance, while delivering a lower overall
computational complexity owing to a faster convergence rate in comparison to the state-of-the-art
iterative algorithms.

Keywords: massive MIMO systems; CSI estimation; limited coherence time; sum rate maximiza-
tion; spatial correlation; training sequence design; FDD; TDD; optimization on manifolds; iterative
algorithm; gradient algorithm

1. Introduction

The rapid growth in the number of smart devices and the emergence of the Internet of
Everything (IoE) applications, which require an ultra-reliable and low-latency communi-
cation, will result in a substantial burden on the current wireless networks [1]. As such,
the data rate that could be supplied by current wireless networks will be unlikely to sustain
the enormous ongoing data traffic explosion. In addition, the latest statistics revealed that
by 2023 nearly two-thirds of the global population will have Internet access with around
5.3 billion Internet users (66 percent of the global population), and by 2025 more than 80 bil-
lion devices will require communication connectivity [2]. Therefore, this will create the
requirements for massive communication systems and networks. These requirements and
demands for data traffic have motivated research into continuing to advance the existing
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networks in addition to the innovation of new physical-layer techniques for the future
generation of cellular systems. Massive MIMO (m-MIMO) is introduced as a key physical
layer technique for the next generation wireless networks that is required to support the
huge increasing demand for data traffic [3–5], whilst improving the energy efficiency [6].
In particular, the m-MIMO system is considered a potential solution for fifth generation
(5G) wireless communications and beyond [7]. However, from an information theoretic
point of view, the performance of the m-MIMO system depends on the accuracy and
availability of the channel state information (CSI) estimation. Obtaining the CSI at the BS
depends on the duplexing operation mode, i.e., either frequency division duplex (FDD) or
time division duplex (TDD) mode. Despite the promising results of TDD operation with
m-MIMO when it comes to the CSI estimation, the vast majority of the currently deployed
cellular networks operates in FDD mode. For example, over 85% of the current commercial
long term evolution (LTE) wireless mobile networks operate in FDD mode [8]. Therefore,
this paper focuses on FDD systems, as the CSI can only be obtained by a dedicated training
sequence in the downlink (DL). In particular, to obtain the CSI in FDD systems, the BS
needs to optimize the DL training sequence and transmit it to the users [9,10]. However,
the expansion of a number of antenna elements at the BS in the m-MIMO system makes the
DL training sequence optimization for fast CSI estimation, i.e., with limited coherence time,
in FDD systems very challenging.

To overcome the CSI estimation challenge in FDD m-MIMO systems, several studies
have investigated the optimization of DL training sequences by considering the scenario
where the users exhibit common spatial correlation at the BS under different system
model assumptions; namely, refs. [11–18] exploit correlations in the spatial domain and
correlations both in the time and spatial domains, respectively. However, in practice,
users could exhibit distinct spatial correlation patterns, which arise due to independent
propagation conditions and scattering geometries; hence, the optimization framework of
the training sequences developed in [11–18] does not hold in general multiuser scenarios
with K distinct spatial correlations. Another line of research has focused on the channel
estimation by using compressed sensing (CS) based techniques [19–24]. However, due
to the unknown sparse nature of the channels, CS based approaches cannot be applied
in practice to predict the DL achievable sum rate of an FDD m-MIMO system. Another
development for CSI estimation is to use a hybrid two-stage precoding approaches, see
e.g., [25–28]. However, the aforementioned research works do not address the single-stage
precoding scenario with K independent user covariance matrices.

To address the challenge of having distinct correlated channels and to find a more
realistic solution with single-stage precoding scheme, several studies have investigated
the design of training sequences by utilizing different iterative algorithms. For example,
in [29] the DL training sequences are optimized iteratively based on the average sum rate
loss due to CSI estimation with zero forcing (ZF) precoding. In refs. [30,31] the DL training
sequences are optimized iteratively as a solution to a sum conditional mutual information
(SCMI) maximization problem and a sum mean square error (SMSE) minimization problem,
respectively. While the investigations in refs. [30,31] have optimized the DL training
sequences iteratively, the algorithms used in the optimization exhibit slow convergence
speed, and thus, deliver high latency and computational complexity. However, in real-time
systems, the CSI estimation must be obtained more frequently with an acceptable latency
from channel estimation to precoding, especially when the channel exhibits a shorter
coherence time. Therefore, there is an essential requirement for developing a new efficient
iterative algorithm for the FDD m-MIMO systems that optimizes the DL training sequence,
i.e., maximizes the sum rate, while at the same time exhibits the fast convergence rate so
as to obtain the CSI estimation more quickly over a limited coherence time. Note that the
design principles in refs. [30,31] are more general compared with [29] since they do not
enforce a specific precoding structure and do not consider a heuristic approximate upper
bound of the sum rate loss for CSI estimation. This makes the approaches in refs. [30,31]
more rigorous than the approach in [29] for DL sequences optimization.
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This paper addresses the challenge of CSI DL channel estimation in the FDD m-MIMO
systems with limited coherence time considering the users have different correlations. We
propose a conjugate gradient descent (CGD) optimization algorithm over the Riemannian
manifold for optimizing the DL training sequences. The proposed algorithm is essentially
required to speed up the convergence rate by lessening the required number of iterations
for achieving fast CSI estimation and hence reduces the overall computational complexity.
This proposed algorithm is also very useful for massive communication systems and net-
works. In this paper, a random matrix theory (RMT) method [32,33] is used to validate our
Monte-Carlo simulations. This allows the achievement of a straightforward methodology
without resorting to a computationally demanding exhaustive search. In addition, the com-
putational complexity analyses of the proposed CGD algorithm and the state-of-the-art
SCMI [30] and SMSE [31] iterative algorithms are provided. Comparisons are presented for
the sum rate and overall complexity performances between the proposed CGD algorithm
and existing SCMI [30] and SMSE [31] iterative algorithms for DL sequence optimization in
both eigenbeamforming (BF) and the regularized ZF (RZF) precoding. The aforementioned
algorithms are considered the best known state-of-the-art iterative algorithms. The results
demonstrate that the RZF precoder under correlated channels achieves a significant gain
in the DL sum rate in comparison to the BF precoder. The results show that the proposed
CGD algorithm achieves more or less the same rate performances as the state-of-the-art
iterative algorithms for training designs, while reducing the computational complexity in
both BF and RZF precoding. This computational complexity reduction is due to the use of
matrix exponential search over the Riemannian manifold, which results in an optimized
DL training sequence for fast CSI estimation in the FDD m-MIMO systems. These findings
create a pathway for realizing FDD m-MIMO with massive communication systems. Fi-
nally, the results demonstrate that the analytical solution using the RMT method tightly
agrees with the simulation, which underpins the contributions of this paper.

The present paper is organized as follows: in Section 2, the system model is described.
In Section 3, the training sequence design in an FDD m-MIMO system is investigated.
In Section 4, the CGD iterative algorithm is developed. In Section 5, the expressions
that accurately approximate the SINR and the DL achievable sum rate are introduced.
In Section 6, the results are presented and discussed. Finally, in Section 7, the conclusions
are drawn.

Notation: In this paper, an upper boldface symbol denotes a matrix whereas a lower
boldface symbol denotes a vector. The term E[·] refers to the expectation operator. The op-
erators trace, transpose, Hermitian transpose, inverse and absolute value are denoted by
tr(·), (·)T, (·)H, (·)−1, and |·|, respectively.

2. System Model Description

This paper considers a single-cell wireless communications system, where the BS is
equipped with an N transmit antenna that serves K single antenna users. We consider a
non-line-of-sight (NLOS) Rayleigh fading channels over a single-frequency band with an
overall coherence time denoted by T ∈ Z+ and enumerated in symbols per transmission
block. Figure 1 demonstrates a BS with m-MIMO system and illustrates the DL and UL
transmissions within each coherence block length. The received signal during the data
transmission phase at the k-th user is given as:

yk =
√

ρd λ hH
k Vs + zk (1)

where ρd denotes the per-user signal-to-noise-ratio (SNR) during the data transmission
phase and λ refers to the normalization constant, which is defined as λ = K/E[tr(VVH)],
and V = [v1, . . . , vK] ∈ CN×K is the precoding matrix. The term s = [s1, . . . , sK]

T ∈ CK

is independently and identically distributed (IID) with a zero mean circularly symmetric
complex Gaussian (CSCG) vector of data symbols, which satisfies E[ssH] = IK, and zk
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denotes the additive noise, which is modeled as a zero mean unit variance CSCG random
variable. The DL instantaneous channel vector is given by hk = R1/2

k h̃k, where the elements
of h̃k ∈ CN are IID with zero mean and unit variance and k-th user’s correlation matrix,
Rk satisfies Rk = E

[
hkhH

k
]
∈ CN×N . It is worth noting that Rk depends on large-scale

statistics, i.e., angles of arrival and departure or spatial/temporal correlation, which are
considered to be frequency-invariant, and thus, can be efficiently obtained in the FDD or
TDD systems [34]. To this end, the received signal-to-interference-plus-noise ratio (SINR),
denoted γk, is given as:

Coherence

 bandwidth

 
DL Pilot Sequence DL Data transmission

Frequency

Time

Coherence time 

Base station

Users

DL precoding data

Figure 1. A base station with N m-MIMO that serves K users in FDD mode.

γk =
λ | E[hH

k vk] |
2

1
ρd

+ λE
[
|hH

k vk −E[hH
k vk] |2

]
+ λ ∑K

l 6=k E
[
|hH

k vl |2
] (2)

Accordingly, the DL achievable sum rate, C, for an FDD m-MIMO system under
consideration can be expressed as:

C =

(
1− Ttr

T

) K

∑
k=1

log2
(
1 + γk

)
[bit/s/Hz] (3)

where parameter Ttr represents the training sequence length used during the training-phase.
This paper uses Ttr that maximizes the achievable sum rate. The received SINR term in (2)
depends on the channel statistics, the channel estimates, and the linear precoding technique
used at the BS. We consider two commonly prevailing types of linear precoders, named
the BF and the RZF, as defined in [33]. The expectation (i.e., the averaging process) in (2) is
taken with respect to different channel realizations, which are obtained separately by means
of Monte Carlo simulation. As the purpose of the present paper is to concentrate on the DL
training sequence design, the UL feedback time and associated error rate are assumed to be
zero. Efficient feedback schemes can be considered in the future, see, e.g., [35–38]. Besides,
advanced signal processing techniques can also be considered for feedback, see e.g., [39,40].
A large system limit based on random matrix theory methods is used to provide asymptotic
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expressions that accurately approximate the SINR and achievable sum rate for the BF and
RZF precoders.

3. CSI Estimation Using DL Training Sequences

To gain further insight into the problem of DL CSI estimation, this section investigates
the training sequence design in an FDD m-MIMO system. To estimate the DL channel,
the BS transmits a predetermined training sequence of length Ttr during the training-phase.
The DL pilot sequences, collected by each user and returned to the BS, provide instanta-
neous channel realizations at the BS, which in turn implement regular BF or RZF precoding
based on channel estimates. As such, the training sequences for channel estimation [41] are
updated according to the dynamics of each Rk, which in turn is updated at every coherence
time interval. To this end, the received signal during training-phase, yk ∈ CTtr , at the k-th
user is given by:

yk =
√

ρtrS
H
tr hk + zk (4)

where Str ∈ CN×Ttr is the training matrix. The receiver noise zk ∈ CTtr exhibits a CSCG
distribution CN

(
0, ITtr

)
.

Extensive research has been carried out to address the challenge of CSI estimation,
see e.g., [11–18]. In these investigations, a special scenario when the users exhibit common
spatial correlation at the BS is considered. However, a more general scenario when the
users exhibit distinct spatial correlation at the BS is needed. Besides, compressed sensing
based approaches for CSI estimation have been used in [19–24]. In these works, the sparsity
structure on the virtual angular domain is used to reduce the training length required for
the CSI estimation. However, the compressed sensing based approaches cannot be applied
in practice due to the unknown sparsity nature of the channels that cannot be predicted
in these approaches. Another area of research on CSI estimation is to exploit the hybrid
two-stage precoding based approaches, see e.g., [25–28]. In particular, the hybrid based
approaches exploit correlation in the spatial domain, where the users within each group
exhibit the same spatial correlation, and a linear superposition of each group correlation
matrix is utilized to perform the first of two stages of precoding, thus forming a beam
for each group. However, sophisticated scheduling and clustering algorithms of the user
groups, and of the users inside each group, are required in these hybrid approaches. Hence,
these works cannot be applied to predict the achievable sum rate performance in a more
general single-stage scenario with K independent user covariance matrices. To address
the challenge of CSI estimation in the more general single-stage precoding scenario when
the users exhibit distinct correlated channels, several studies have been carried out, see,
e.g., [30,31,42,43]. Specifically, the training sequences in [30,31,42,43] are designed by
exploiting different iterative algorithms as a solution to an SCMI maximization criterion and
an SMSE minimization criterion, respectively. However, the limited coherence time interval
in practice implies that the CSI estimation should be determined more frequently, and thus,
iterative-based solutions for the DL training sequence design may be infeasible. In addition,
the algorithms used in the aforementioned optimizations exhibit slow convergence speed,
and thus, deliver high latency and computational complexity. Hence, there is a crucial need
to develop a lower complexity iterative algorithm solution for the FDD m-MIMO systems,
which has the ability to optimize the DL training sequence, i.e., maximizes the achievable
sum rate, while at the same time exhibits a fast convergence rate so that obtaining a fast
CSI estimation when a limited coherence time is considered.

This paper proposes a computationally efficient CGD iterative algorithm, described in
detail in Section 4, to optimize Str for pre-selected training length Ttr, and training power
ρtr. The proposed algorithm aims to achieve a robust sum rate performance when the users
exhibit different correlations while at the same time reducing the computational complexity.
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Let f (Str) ∈ R denote the sum MSE of the channel estimate cost function, which needs to
be minimized with respect to the DL training matrix Str, as

f (Str) =
K

∑
k=1

tr(Rk)−
K

∑
k=1

tr(Φk) (5)

where Φk = RkStr
(
SH

tr RkStr +
1

ρtr
ITtr

)−1SH
tr Rk, which denotes the k-th user’s covariance

matrix with minimum mean square error (MMSE) channel estimation. To this end, the for-
mulation of the CSI estimation optimization problem is provided. Minimizing the sum
MSE over the training sequence Str for a given training-phase duration Ttr in the FDD
m-MIMO system equates to the optimization problem defined in (6).

minimize
Str

f (Str)

subject to SH
tr Str = ITtr

(6)

The sum MSE cost function, which corresponds to a function of the subspace that is
spanned by the pilot matrix Str, is invariant to the unitary rotation, i.e., f (StrU) = f (Str).

This property allows the CGD algorithm over the Riemannian manifold to be effec-
tively used to solve the optimization problem in (6). To apply the CGD optimization
algorithm on a Riemannian manifold, the partial derivative of the sum MSE cost func-
tion in (5) needs to be determined with respect to Str. To this end, the partial derivative
Γ ∈ CN×Ttr is given by [31]:

Γ = 2
K

∑
k=1

(
−R2

kStr

(
SH

tr RkStr +
1

ρtr
ITtr

)−1
+ RkStr×(

SH
tr RkStr +

1
ρtr

ITtr

)−1
SH

tr R2
kStr

(
SH

tr RkStr +
1

ρtr
ITtr

)−1
) (7)

where the right hand side in (7) is obtained by differentiating the cost function in (6) with
respect to pilot matrix, (i.e., ∂ f (Str)/∂S∗tr).

4. Training Sequence Optimization Based on CGD Algorithm over the
Riemannian Manifold

Optimization on manifolds means finding an optimum solution of a desired function
using a smooth finite-dimensional Riemannian manifold. The Riemannian gradient is
simply the orthogonal projection of the classical gradient. Conceptually, the key point is to
perform as unconstrained nonlinear optimization. Exploiting the Riemannian makes it easy
to deal with various types of constraints, which arise in low rank matrices. In particular,
optimization on manifolds is a powerful scheme to address the nonlinear optimization
problems such as the problem of finding the training sequence matrix that maximizes the
achievable sum rate of the FDD massive MIMO systems, which is considered in this present
paper. In wireless communication systems and array signal processing, several studies
have considered various optimization problems under a unitary matrix constraint [44–47].
Consequently, advanced gradient-based iterative algorithms have been developed to find
efficient solutions with fast convergence rate to such optimization problems [48–51]. Some
of those efficient solutions have been obtained using a geometrical approach based on
the smooth parameter space known as the Riemannian manifold. The potential of the
Riemannian manifold has motivated the author of this paper to explore the application
of such a geometrical approach for optimising the training sequence in an FDD massive
MIMO system when the users exhibit distinct spatial correlations. In this section, the CGD
iterative algorithm based on the Riemannian manifold is explored to optimize the DL
pilot matrix Str iteratively across multiple users with independent channel covariance
matrices. In optimizing (6) for Str, the CGD method uses the almost periodic property
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of the matrix exponential search [52,53] over the Riemannian manifold to increase the
algorithm convergence speed by lessening the required number of iterations. In particular,
the introduction of matrix exponential on the Riemannian manifold aids the proposed
CGD algorithm to operate over a smaller dimensional search space and thus provide a fast
convergence behaviour. In addition, the existence of matrix exponential parametrization
in the proposed CGD method is a sufficient condition to satisfy the semi-unitary matrices
SH

tr Str = ITtr . Further details on the matrix exponential property on the Riemannian mani-
fold can be found in [52–54]. This algorithm can also be used to increase the capacity with
interference channel [55]. Algorithm 1 summarizes the proposed CGD iterative algorithm.
The following steps explain Algorithm 1 in further detail.

Algorithm 1 Iterative CGD optimization algorithm.

1: Initialization: t = 0 and µ = 1, St = I ∈ CN×Ttr

2: Determine the gradient using (8), and set Gt = Dt.
3: If 〈Dt , Dt〉 < ε, then break.
4: Determine the matrix exponential: Pt = exp(−µDt).
5: If f (St)− f (Pt St) ≥ µ 〈Dt, Dt〉, double Pt, µ := 2µ.
6: If f (St)− f (Pt St) < 0.5µ〈Dt, Dt〉, halve Pt, µ := 0.5µ.
7: Update St+1 := Pt St.
8: Update Gt+1 = Dt+1 + υtGt, t := t + 1, and go to step 2.

Step 1—Initial step: The proposed iterative gradient algorithm starts by selecting an
initial training sequence matrix Str ∈ CN×Ttr . For the sake of notational simplicity, in the
algorithm, the training sequence matrix notation St is used instead, where the subscript t
corresponds to the number of iterations.
Step 2—Gradient evaluation and projection on the Riemannian parameter space: In this
step, the gradient of the sum MSE cost function defined in (5) is determined, and the
projection on the Riemannian manifold is computed to find the descent direction and set
Gt = Dt.

Dt = Γt SH
t − St ΓH

t (8)

where Dt is the descent direction for iteration t and Γt corresponds to the Euclidean gradient
with respect to the training sequence matrix as given in (7).
Step 3—Stopping criteria: Check the gradient on the Riemannian parameter space (i.e., Dt)
whether it reaches convergence or not according to:

〈Dt, Dt〉 =
1
2

Re
{

tr
(
DH

t Dt
)}

(9)

where Re stands for the real value and ε in step 3 of Algorithm 1 denotes the error tolerance.
If the steepest direction is sufficiently small, which implies a close to local minimum value
of the cost function the algorithm stops.
Step 4—Matrix exponential computation: Determine the local parametrisation based on
the matrix exponential on the Riemannian manifold, i.e., Pt = exp(−µDt), where µ corre-
sponds to the step size that controls the steepest direction. The complex matrix exponential
is determined by the convergent power series [52,53], where a Matlab function expm is used
for this purpose.
Steps 5 and 6—Step size evaluation: The step size µ is required to be tuned in order to
ensure an appropriate steepest direction movement towards the training solution. In
particular, in steps 5 and 6, the sum MSE cost function of different sequences are evaluated
based on different possibilities of µ. If µ is too small and the condition of the cost function
is not met, then µ is doubled, as given in step 5. If µ is too large and the condition of the
cost function is not met, then µ is halved, as provided in step 6.
Step 7—Updating the training sequence and the gradient direction: In this step, the pilot
matrix and the gradient direction are updated according to the obtained matrix exponen-
tial Pt. Due to the unitary invariant rotation of the cost function, the obtained training
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sequence has unitary columns.
Step 8—The new conjugate gradient direction is obtained by updating Gt+1 = Dt+1 + υtGt,
where Dt+1 is determined by substituting the obtained sequence matrix into (8), and the
parameter υt is given as [53]:

υt =
〈Dt+1 −Dt, Dt+1〉

〈Dt, Dt〉
(10)

where υt denotes the Polak–Ribièrre formula, as defined in [53]. If the stopping criteria is
met, the algorithm is executed and the sequence is optimized. In contrast, if the stopping
criteria is not met, a new iteration (t + 1) is started.

We provide the flops calculation (obtained by counting the number of multiplica-
tions and additions per iteration) for the proposed CSD algorithm and the existing SCMI
and SMSE algorithms. Table 1 summarises the complexity analysis in flops [56] per iteration
for the three training designs considered. Parameters (tdg, thg) and (td, th) represent the
number of iterations required for doubling and halving the step size in the proposed CGD
method and the SMSE iterative algorithm, respectively. In this paper, the gradient descent
based approach is applied, which can be defined as a first-order iterative optimization solu-
tion. This approach is useful for finding a local minimum of the MSE differentiable function
with respect to the pilot matrix. In particular, the proposed solution exploits the doubling or
halving of the gradient direction to direct steps proportional to the negative of the gradient
in order to find the local minimum of the MSE function using a gradient descent based
approach. The subscript dg denotes doubling the step size in the proposed CGD method,
whereas subscript hg refers to halving the step size in the proposed CGD, where the letter
g stands for the gradient. The variable X is given as X =

(
5T3

tr + 2T2
tr(7N − 1)

)
for SMSE

and the variable B is given as B =
(
5T3

tr + 16N2Ttr + 14NT2
tr− 2T2

tr− 10NTtr
)

for CGD. The
flops calculations show that all three gradient algorithms grow with the number of training
sequences asO

(
T3

tr
)
, with the number of antennas asO

(
N2), and with the number of users

as O
(
K
)
.

Table 1. Computational complexity analysis.

Algorithms Complexity in Flops per Iteration

SCMI [30] T3
trK + T2

tr
(

N(4K− 2)− 1)
)
+ 4N2Ttr(K− 1) + NTtr(7− 3K)− 1

SMSE [31] NTtr
(
2K(8N − 5) + 23N(td + th) + 80N + 13

)
− 1 + (K− 1)X

Proposed CGD NTtr + 1/3N2(Ttr(3tdg + 4thg + 44)− 3
)
− 1 + (K− 1)B

• The complexity of calculating the gradient in step 2 of Algorithm 1, so that the term

∑K
k=1 R2

kStr
(
SH

tr RkStr + ITtr

)−1
+RkStr×

(
SH

tr RkStr + ITtr

)−1SH
tr R2

kStr
(
SH

tr RkStr + ITtr

)−1

requires (K− 1)
(
5T3

tr + 16N2Ttr + 14NT2
tr − 2T2

tr − 10NTtr
)

flops.
• Calculating the matrix exponential requires 2(2/3)N2Ttr flops [52,53].
• Checking the gradient convergence in step 3 using the squared Frobenius norm of an

N × Ttr matrix requires 2NTtr − 1 flops [56].
• Calculating the term step size adaptation in step 5 and step 6 of Algorithm 1 requires(

2(2/3)N2Ttr + (td + 3)N2Ttr + th(2(2/3)N2Ttr) + 3N2Ttr
)

flops [52].
• Multiplying an N × N matrix with an N × Ttr matrix, entails 2N2Ttr − NTtr flops.
• Multiplying a Ttr × N matrix with an N × Ttr matrix, entails 2NT2

tr − T2
tr flops.

• Multiplying a Ttr × N matrix with an N × N matrix, entails 2N2Ttr − NTtr flops.
• Multiplying a Ttr × Ttr matrix with a Ttr × Ttr matrix requires 2T3

tr − T2
tr flops.

• Multiplying an N × N matrix with an N × N matrix, entails 2N3 − N2 flops.
• Multiplying an N × Ttr matrix with a Ttr × Ttr matrix, entails 2NT2

tr − NTtr flops.
• Multiplying an N × Ttr matrix with a Ttr × N matrix, entails 2N2Ttr − N2 flops.
• The scalar matrix multiplication with an N × Ttr matrix needs NTtr flops.
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• Adding an N × Ttr matrix to an N × Ttr matrix requires NTtr flops.
• Inverting of a Ttr × Ttr matrix requires T3

tr flops.

5. Achievable Sum Rate Analysis Using RMT Method

This section provides the expressions that accurately approximate the SINR and DL
achievable sum rate based on the asymptotic RMT approach in [32,33]. In particular,
asymptotically tight approximations of γk for the BF and RZF precoders are obtained when
N and K grow without bounds while the ratio K/N > 0 is kept constant. To this end,
the asymptotic expression for BF precoding is given as:

γBF
k =

ξ̄
(
tr(Φk)

)2

1
ρd

+ ∑K
i=1 ξ̄ tr(RkΦi)

(11)

where ξ̄ =
( 1

K ∑K
k=1 tr(Φk)

)−1. The SINR approximation for the RZF precoder is given as:

γRZF
k =

N ξ̄ δ2
k

(1+δk)2

ρdK + ξ̄ ∑K
i=1

(
1+δk
1+δi

)2
µ̄k,i

(12)

where the term ξ̄ ∈ R is determined later in (20). Defining a recursion on integer t, where
t = 1, 2, . . . ,

δ
(t)
k =

1
N

tr

(
Φk

(
1
N

K

∑
i=1

Φi

1 + δ
(t−1)
i

+ ζIN

)−1)
(13)

with an initial value δ
(0)
k = 1/ζ for all k with ζ = 1/ρd, the variable δk ∈ R is found

numerically by the standard fixed-point algorithm as

δk = lim
t→∞

δ
(t)
k (14)

After the solution of the fixed-point equations in (13) and (14) is numerically obtained,
it is substituted into:

T =

(
ζIN +

1
N

K

∑
k=1

Φk
1 + δk

)−1

(15)

to obtain random matrix T ∈ CN×N . Auxiliary matrix T̄ ∈ CN×N is given by

T̄ = T

(
IN +

1
N

K

∑
k=1

Φk δ̄k
(1 + δk)2

)
T (16)

and δ̄
∆
= [δ̄1 . . . δ̄K]

T is given as:
δ̄ =

(
IK − J

)−1v̄ (17)

where J ∈ CK×K and v̄ ∈ CK are obtained from the expressions given in (18) and (19).

[J]k,l =
tr
(
ΦkTΦlT

)(
N(1 + δk)

)2 1 ≤ k, l ≤ K, (18)

[v̄]k =
1
N

tr
(
TΦkT

)
, 1 ≤ k ≤ K. (19)

Parameter ξ̄ ∈ R in (12) is obtained by substituting the matrices T and T̄ into:

ξ̄ =
(
tr(T)− ζtr(T̄)

)−1 (20)
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The auxiliary variable µ̄k,i ∈ R in (12) is obtained from the expressions given in (21)–(23),

µ̄k,i =
1
N

tr
(
RkT′i

)
−

2Re
(
tr
(
ΦkT

)
tr
(
ΦkT′i

))(
1 + δk

)
− tr

(
ΦkT

)2
δ′i(

N(1 + δk)
)2

(21)

T′i = T

(
Φi +

1
N

K

∑
k=1

Φkδ′k
(1 + δk)2

)
T (22)

δ′ =
(
IK − J

)−1v′ (23)

where v′ ∈ CK denotes

[v′]k =
1
N

tr
(
TΦkTΦk

)
, 1 ≤ k ≤ K. (24)

The aforementioned analyses of BF and RZF precoding with the RMT method can be
very useful for validating our work.

6. Results and Discussion

In the first part of this section, we provide comparisons between the sum rates of the
CGD training design and the sequences designed based on the SCMI/SMSE iterative algo-
rithms. In the second part of this section, results that characterise the overall computational
complexity of the proposed CGD training design and the state-of-the-art SCMI/SMSE
designs are presented. For a fair comparison, the same tolerance ε = 0.001 is used for
all the training designs. This comparison is carried out based on the scattering one ring
(OR) channel model [30], which is frequently encountered in the open literature on MIMO
evaluation. The system parameters in the OR model are determined by the angular spread
ω, angles of arrival θk, and antenna spacing D as described in [30]. Table 2 is provided to
summarize the simulation parameters that are used in the performance evaluation.

Table 2. Simulation parameters.

Parameters Symbol Value

Number of BS antennas N 1–500
Number of users K 10
Azimuth standard deviation ω 2.5◦, 25◦

Antenna distance spacing D λ/2, 1
Coherence time T 100 symbols

6.1. Achievable Sum Rate Performance Evaluation

In this subsection, the curves for the BF and RZF precoding are obtained numeri-
cally based on the random matrix theory method as in [10], while simulated curves are
plotted based on Equation (3). The number of incidences of the channel realizations
used in the Monte Carlo simulations is given as 104. The results are presented with
θk = {−57.5◦,−45◦,−41.5◦,−23◦,−7.5◦, 7.5◦, 23.5◦, 41.5◦, 45◦, 57.5◦}, [30,57]. The other
salient system parameters are T = 100 symbols, ρd = 10 dB and K = 10 users. The results
in Figure 2 demonstrate that the proposed CGD training design achieves the best rate
performances. The results in Figure 2 confirm that significant improvement in the rate
performances are obtained for both the BF and RZF precoders when the channels are
strongly correlated, i.e., ω = 2.5◦, D = 1/2.
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Figure 2. Achievable sum rate versus N, comparing different training designs with ω = 2.5◦,
D = 1/2.

Figure 3 examines the achievable sum rate comparing different training sequence
designs under a weak channel correlation, i.e., ω = 25◦, D = 1. Figure 3 shows that,
with weak channel correlation, some loss in the rate performances is obtained for both the
BF and RZF precoders with the SCMI training sequence design, which uses a Lagrangian
multiplier iterative algorithm, in comparison with the SMSE and the proposed CGD
training designs. The degradation in the achievable sum rate performance with the SCMI
training design can be justified as the Lagrangian-based iterative algorithm does not
consider the spatial properties of the parameter space such as a Grassmannian space or
Riemannian manifold in the training sequences optimization. In particular, using the
smooth parameter spaces in the sequences optimization allows for an efficient precoding
design to be achieved, hence maximizing the sum rate performance of the FDD m-MIMO
systems.
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Figure 3. Achievable sum rate versus N, comparing different training designs with ω = 25◦, D = 1.
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6.2. Computational Complexity Evaluation

The results from Figures 4–8 show plots of the overall computational complexity
versus the number of BS antennas N, comparing the proposed CGD training sequence
design with the SMSE and SCMI training designs using the pilot length for BF and RZF
precoding. The number of iterations each algorithm required to converge are provided
in Tables 3–7, which are used to obtain the simulated results from Figures 4–8, respec-
tively. The results are presented based on the scattering OR channel model, when the
system parameters K, N, Tc, SNR, angle of arrivals (AoAs), normalised antenna spacing
D, and angular spread ω are used. The AoAs are distributed in the range [−60◦, 60◦],
i.e., θk = {−57.5◦,−45◦,−41.5◦,−23◦,−7.5◦, 7.5◦, 23.5◦, 41.5◦, 45◦, 57.5◦}, [30,57]. The over-
all computational complexity of the proposed training optimization algorithm and the
state-of-the-art SCMI [30] and SMSE [31] algorithms are obtained based on multiplying the
number of iterations each algorithm needs to converge by the number of flops involved
per iteration.

The results show that the proposed CGD iterative algorithm for the DL training
sequence optimization achieves a faster convergence rate in comparison with the state-of-
the-art iterative algorithms. This is clearly indicated by the number of iterations given in
Tables 3–7. The fast convergence speed provided by the proposed CGD algorithm arises
from the use of matrix exponential search over the Riemannian manifold. Specifically,
the proposed CGD iterative algorithm exhibits fewer iterations to converge due to the
significant advantages of the almost periodic property of the matrix exponential search
over the smooth Riemannian manifold. This signifies the feasibility of the proposed
CGD algorithm to optimize the achievable sum rate of the FDD m-MIMO systems with
limited coherence time in comparison with state-of-the-art iterative algorithms. Although
the proposed CGD provides fast convergence speed, the results demonstrate that as the
number of BS antennas N increases, the SCMI and proposed CGD iterative algorithms
exhibit almost the same overall computational complexity. For example, the results in
Figure 4 show that at N = 350, the proposed CGD iterative algorithm offers a comparable
overall computational complexity to the SCMI algorithm, which implies that the SCMI
iterative algorithm requires fewer flops at this BS array size. Nonetheless, the proposed
CGD iterative algorithm still provides a larger achievable sum rate performance than the
SCMI algorithm under a relatively weak correlated channels, see e.g., Figure 3. In addition,
the SMSE algorithm grows asymptotically at about the same rate at large N, since it exhibits
the same order of complexity O

(
N2) as other algorithms. However, the N2 term for SMSE

has a much higher multiplier, which gives the large gap above the SCMI and the proposed
CGD algorithms. The results provided in this subsection indicate that the relative ratio
between the three iterative algorithms for the training sequence optimization depends on
the number of BS antennas N and the levels of spatial correlation. Noting that the non
smooth curves associated with different iterative algorithms occur because the number of
iterations each algorithm requires to converge are different for different values of N. In
addition, the results show that the performance of the SMSE based approach is decreased
when N is increased as indicated by Figures 6b and 8a. This is attributed to the fact that the
convergence rate of the SMSE algorithm is not propositional to the number of BS antenna
N. These results are linked to Tables 5 and 7, which clearly show that the convergence
rates are not propositional to the number of BS antenna (N). Overall, the results show that
the proposed training algorithm maximizes the achievable sum rate performance, while
delivering a lower overall computational complexity owing to a faster convergence rate in
comparison to the state-of-the-art iterative algorithms. Table 8 presents a comparison of the
fundamental characteristics of the proposed method with the state-of-the-art-methods.
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(a) BF precoding
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(b) RZF precoding

Figure 4. Overall computational complexity versus the number of BS antennas N comparing different
training sequence methods corresponding to the pilot length in BF and RZF precoding in the OR
model with ω = 2.5◦, D = 1/2, T = 100 symbols, ρd = 10 dB and K = 10 users.
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(a) BF precoding
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(b) RZF precoding

Figure 5. Overall computational complexity versus the number of BS antennas N comparing different
training sequence methods corresponding to the pilot length in BF and RZF precoding in the OR
model with ω = 25◦, D = 1, T = 100 symbols, ρd = 10 dB and K = 10 users.
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(a) BF precoding

0 50 100 150 200 250 300 350 400 450 500
Number of BS antennas N

106

108

1010

1012

1014

1016

O
ve

ra
ll 

co
m

pu
ta

tio
na

l c
om

pl
ex

ity

SMSE
SCMI
CGD

(b) RZF precoding

Figure 6. Overall computational complexity versus the number of BS antennas N comparing different
training sequence methods corresponding to the pilot length in BF and RZF precoding in the OR
model with ω = 5◦, D = 1/2, T = 100 symbols, ρd = 5 dB and K = 10 users.

0 50 100 150 200 250 300 350 400 450 500
Number of BS antennas N

106

108

1010

1012

1014

1016

O
ve

ra
ll 

co
m

pu
ta

tio
na

l c
om

pl
ex

ity

SMSE
SCMI
CGD

(a) BF precoding
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(b) RZF precoding

Figure 7. Overall computational complexity versus the number of BS antennas N comparing different
training sequence methods corresponding to the pilot length in BF and RZF precoding in the OR
model with ω = 5◦, D = 1/2, T = 100 symbols, ρd = 10 dB and K = 6 users.
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(a) BF precoding
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Figure 8. Overall computational complexity versus the number of BS antennas N comparing different
training sequence methods corresponding to the pilot length in BF and RZF precoding in the OR
model with ω = 5◦, D = 1/2, T = 100 symbols, ρd = 10 dB and K = 12 users.

Table 3. The number of iterations per each training sequence algorithm required to converge with
respect to the number of BS antennas N for the pilot length in BF and RZF precoding in the OR model
with ω = 2.5◦, D = 1/2, T = 100 symbols, ρd = 10 dB and K = 10 users.

N SCMI SMSE CGD N SCMI SMSE CGD

(a) BF precoding (b) RZF precoding

10 85 120 66 10 151 40 66

50 3151 767 201 50 3151 413 54

100 4593 786 226 100 5660 166 84

150 4210 669 190 150 3376 669 190

200 4120 1276 182 200 4120 1276 182

250 2816 2172 223 250 2816 2172 223

300 2915 1909 315 300 2915 1909 315

350 2655 2341 316 350 2849 1562 316

400 5557 1419 343 400 2851 2261 309

450 5727 3766 420 450 5727 2500 326

500 5245 2637 379 500 4893 2022 336
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Table 4. The number of iterations per each training sequence algorithm required to converge with
respect to the number of BS antennas N for the pilot length in BF and RZF precoding in the OR model
with ω = 25◦, D = 1, T = 100 symbols, ρd = 10 dB and K = 10 users.

N SCMI SMSE CGD N SCMI SMSE CGD

(a) BF precoding (b) RZF precoding

10 316 25 23 10 163 3 3

50 13742 394 129 50 5865 136 64

100 15806 1278 162 100 11823 870 270

150 8449 1606 217 150 10546 1416 238

200 10297 1392 311 200 7824 844 309

250 7069 2298 310 250 7069 2127 267

300 6401 2437 332 300 7568 2833 271

350 7360 1958 313 350 6618 2563 287

400 7897 2294 317 400 6959 2655 273

450 6484 2264 278 450 6448 2483 296

500 9592 2106 358 500 9920 2483 292

Table 5. The number of iterations per each training sequence algorithm required to converge with
respect to the number of BS antennas N for the pilot length in BF and RZF precoding in the OR model
with ω = 5◦, D = 1/2, T = 100 symbols, ρd = 5 dB and K = 10 users.

N SCMI SMSE CGD N SCMI SMSE CGD

(a) BF precoding (b) RZF precoding

10 62 119 100 10 253 56 71

50 2589 866 258 50 2465 337 106

100 3189 602 165 100 2044 602 165

150 2417 836 272 150 1979 836 272

200 3485 822 354 200 3485 1583 268

250 4161 3028 269 250 3711 3028 269

300 4787 3078 342 300 4787 1298 338

350 4455 3110 473 350 4833 884 358

400 5933 2384 544 400 4845 2384 470

450 6808 2800 583 450 6451 1338 494

500 6156 1803 508 500 8930 3277 553
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Table 6. The number of iterations per each training sequence algorithm required to converge with
respect to the number of BS antennas N for the pilot length in BF and RZF precoding in the OR model
with ω = 5◦, D = 1/2, T = 100 symbols, ρd = 10 dB and K = 6 users.

N SCMI SMSE CGD N SCMI SMSE CGD

(a) BF precoding (b) RZF precoding

10 49 55 50 10 209 60 24

50 1763 288 117 50 1763 155 73

100 4545 318 140 100 2177 188 102

150 2689 747 155 150 2281 747 155

200 2391 1091 165 200 2679 853 161

250 5800 1041 200 250 4789 1225 264

300 5831 1355 280 300 4776 1126 263

350 5627 1428 298 350 6494 1580 263

400 7380 1763 303 400 8822 1490 346

450 9942 1739 403 450 9942 1739 403

500 6266 1633 347 500 7171 1917 400

Table 7. The number of iterations per each training sequence algorithm required to converge with
respect to the number of BS antennas N for the pilot length in BF and RZF precoding in the OR model
with ω = 5◦, D = 1/2, T = 100 symbols, ρd = 10 dB and K = 12 users.

N SCMI SMSE CGD N SCMI SMSE CGD

(a) BF precoding (b) RZF precoding

10 74 49 47 10 348 49 26

50 7154 469 163 50 7154 220 88

100 4979 1574 234 100 5385 348 135

150 4882 2149 237 150 4291 836 238

200 4139 3654 385 200 4321 1001 250

250 5099 7357 533 250 3796 3087 329

300 5539 7101 616 300 5686 7113 537

350 5508 6428 785 350 6008 6428 584

400 5409 6772 827 400 5850 7133 761

450 8468 3089 886 450 10823 6915 588

500 9564 2901 974 500 7536 7736 703
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Table 8. Comparison between the methods to compare the fundamental characteristics of the
proposed method with the state-of-the-art-methods.

Algorithms Fundamental Characteristics

SCMI [30]

• Training sequences optimization based on a sum conditional
mutual information (SCMI) maximization problem.

• Uses gradient with Karush-Kuhn-Tucker (KKT) conditions of
the Lagrangian dual problem based approach.

• Requires high number of iterations to converges.
• The complexity is still high in comparison to the proposed

CGD.

SMSE [31]

• Training sequences optimization based on a sum conditional
mutual information (SCMI) maximization problem.

• Uses a Grassmannian manifold based approach.
• Requires a highest number of iterations to converges.
• Delivers a highest overall computational complexity.

Proposed CGD

• Training sequences optimization based on a sum achievable
sum rate maximization problem.

• Uses a Riemannian manifold based approach.
• Requires a lowest number of iterations to converges.
• Delivers a lower overall computational complexity.

7. Conclusions

This paper explained that optimizing the DL training sequences for CSI estimation
in a general scenario with single-stage precoding and K independent channel correlation
matrices is very challenging. To overcome this issue, this paper investigated a geometrical
optimization approach, which utilizes a computationally efficient Riemannian manifold,
with an aim to maximize the achievable sum rate performance, while improving the con-
vergence rate to achieve a fast CSI estimation for an FDD m-MIMO system. To this end,
a new computationally efficient gradient-based iterative algorithm, which uses the matrix
exponential search on the Riemannian manifold, is proposed to optimize the DL training
sequence in an FDD m-MIMO system, while delivering a lower overall computational
complexity owing to a faster convergence rate. The sum rate performance of the proposed
CGD algorithm is also compared with the rates achieved by the best known state-of-the-art
iterative algorithms. Additionally, the computational complexity is analyzed and compared
with the state-of-the-art SCMI and SMSE iterative algorithms. The number of convergence
iterations of the proposed CGD training design is also provided. Consequently, the overall
computational complexity of the proposed CGD training design is compared with the
state-of-the-art iterative algorithms. Importantly, the results demonstrated that, under rel-
atively weakly correlated channels, over a 5 bit/s/Hz improvement in the achievable
sum rate is obtained using the proposed CGD iterative algorithm in comparison to the
SCMI algorithm. This achievement signifies the advantages of the proposed approach for
the training sequence optimization of FDD m-MIMO systems compared with the SCMI
approach. The results indicated that the proposed CGD algorithm is able to achieve the
best sum rate performance owing to a faster convergence rate. This is attributed to the
efficient matrix exponential search on the Riemannian manifold, which allows the algo-
rithm to converge faster with fewer iterations. The results showed that the proposed CGD
algorithm maximized the achieved sum rate of FDD m-MIMO systems with a reduced
overall computational complexity.
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Abbreviations

The following abbreviations are used in this manuscript:

AoA angle of arrivals
BS Base Station
IoE Internet of Everything
m-MIMO Massive MIMO
CSI Channel State Information
CGD Conjugate gradient-descent
SCMI Sum conditional mutual information
SMSE Sum mean square error
FDD Frequency Division Duplex
DL Downlink
UL Uplink
TDD Time division duplex
Massive MIMO m-MIMO
5G Fifth generation
6G Sixth generation
iid Independently and identically distributed
SINR Signal-to-interference-plus-noise ratio
OR One ring
BF Eigenbeamforming
RZF Regularized zero forcing
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