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Abstract 
 

Aim: To propose an updated algorithm with an extra step added to the Newton-type algorithm used in 
robust rank based non-parametric regression for minimizing the dispersion function associated with 
Wilcoxon scores in order to account for the effect of covariates.  
Methodology: The proposed accelerated failure time approach is aimed at incorporating right random 
censoring in survival data sets for low to moderate levels of censoring. The existing Newton algorithm is 
modified to account for the effect of one or more covariates. This is done by first applying Mantel scores 
to residuals obtained from a regression model, and second by minimizing the dispersion function of these 
scored residuals. Diagnostic check of the model fit is performed by observing the distribution of the 
residuals and suitable Bent scores are considered in the case of skewed residuals. To demonstrate the 
efficacy of this method, a simulation study is conducted to compare the power of this method under three 
different scenarios: non-proportional hazard, proportional and constant hazard, and proportional but non-
constant hazard.  
Results: In most situations, this method yielded reasonable estimates of power for detecting an 
association of the covariate with the response as compared to popular parametric and semi-parametric 
approaches. The estimates of the regression coefficient obtained from this method were evaluated and 
were found to have low bias, low mean square error, and adequate coverage. In a real-life example 
pertaining to pancreatic cancer study, the proposed method performed admirably well and provided a 
more realistic interpretation about the effect of covariates (age and Karnofsky score) compared to a 
standard parametric (lognormal) model.  
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Conclusion: In situations where there is no clear best parametric fit for time-to-event data with moderate 
level of censoring, the proposed method provides a robust alternative to obtain regression coefficients 
(both adjusted and unadjusted) with a performance comparable to that of a proportional hazards model. 
 

 
Keywords: Bent scores; mantel scoring; Newton algorithm; rank regression; Wilcoxon scores. 
 

1 Introduction  
 
For interval scaled, non-censored data, Conover and Iman [1] have investigated the properties of regression 
analysis of the ranks of interval data as an alternative to ordinary least squares analyses. These contributions 
of Conover and Iman provided an alternative non-parametric rank-transform approach that allowed for the 
modeling of the impact of multiple continuous and categorical predictors on continuous outcomes. Howard 
and Koch [2] extended this approach to the univariate analysis of exponentially distributed right censored 
(survival) data by considering simple regression analysis of log rank scores, showing the performance of the 
approach to be similar to proportional hazards modeling. Their simulation studies show that in the case 
where there are no ties in the survival times, this approach was only marginally less powerful than tests from 
proportional hazards models, but clearly less powerful than a likelihood ratio test for a fully parametric 
model when the appropriate underlying survival function is employed. When there were tied survival times, 
this approach proved marginally more powerful than tests from Cox’s semi-parametric proportional hazards 
procedure. While their approach is generally reliable for the testing of associations with survival outcomes, it 
has the substantial shortcoming of not providing a clinically interpretable parameter quantifying the 
magnitude of the association between predictors and outcomes, such as the hazard ratio provides for 
proportional hazards analysis. This shortcoming arises due to the fact that when the response variable is 
replaced by its logrank score, it is not possible to estimate the true value of the regression coefficient in the 
original metric. Hence commonly used measures of assessing performance of the method such as bias, mean 
square error, and coverage cannot be deployed. Also, Howard and Koch [2] did not evaluate the performance 
of logrank scores when survival data comes from different distributions such as the loglogistic or the 
lognormal distribution and is hence not generalizable. 
 
Many authors such as Hougaard [3] have commented on the restrictions owing to lack of suitable estimation 
routines in the non-parametric case for an accelerated failure time model. Several semiparametric estimators 
accommodating censoring in survival data were proposed such as the modified least squares estimator by 
Buckley and James [4] and rank-based estimators based on the weighted log-rank statistics by Prentice [5]. 
The theoretical properties of these estimators were rigorously studied by Tsiatis [6], Ritov [7], Lai and Ying 
[8] and [9], and Ying [10] among others. Jin, Lin, Wei, and Ying [11] has discussed the reasons why despite 
theoretical developments, semiparametric approaches are rarely used in real life applications owing to the 
lack of efficient and reliable computational methods. They discuss how the inference procedure developed 
by Wei, Ying, and Lin [12] based on the minimum dispersion statistic is difficult and cannot be solved by 
conventional optimization algorithms. To overcome the limitations of the computational method developed 
by Lin and Greyer [13] in failing to always find a true minimum for the dispersion statistic, Jin et al. [11] 
have developed a linear programming method to minimize a convex objective function for the rank estimator 
based on Gehan [14] type weight function without having to indulge in nonparametric density estimation.                                                                                                                                                          
 
Advances in robust rank-based procedures have spawned a detailed methodology for analyzing linear and 
nonlinear models in a regression setting. This methodology applies the appropriate scoring function (such as 
the Wilcoxon scoring function) on the residuals arising out of a log-linear model rather than the response 
variable thereby allowing the estimation of the regression coefficient. This methodology has also been 
extended to diverse areas such as time-series analyses, random effects models, and censor-free survival data; 
however, reliable and easy-to-use developments to extend the approaches to the analysis of right-censored 
(survival) data have not been investigated using this approach. In the context of the survival data analyses, 
by estimating the regression coefficient, this method therefore, has the potential to allow the practitioner to 
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derive meaningful measures of the magnitude of the association such as the increase in median survival time 
(of treatment over placebo). 
 
By replacing the Euclidean (L2) norm by a rank-based norm, and by minimizing the dispersion function 
associated with this norm, it is possible to get robust non-parametric estimates of the regression parameters 
(Hettsmanperger and McKean [15]). Various diagnostic procedures that examine the quality of fit                              
of these models and inference procedures to compute confidence intervals for parameters and their                 
contrasts have also been developed (Hettsmanperger & McKean [15]). With non-censored data, these 
procedures outperform the traditional least squares methods when there are many outliers and influential 
points in the data set. The performance of these rank-based approaches is optimized when the underlying 
error density is known as it is possible to compute the optimal scoring function (McKean and Sievers [16]). 
These methods can therefore be extended to survival data and optimal scoring functions for many popular 
distributions used in analyses of time to failure data including exponential, Weibull, loglogistic and 
lognormal have been calculated. In order to counter the influence of outliers from affecting the model fit, 
various weighted versions of the rank-based model fit have been proposed (McKean, Terpstra, and Kloke 
[17]).  
 
Herein, we show how a fully non-parametric approach can be employed to estimate regression coefficients, 
and assess the impact of the approach across varying censoring rates from relatively low censoring rate as 
would be observed in an oncology study to a higher censoring rate as observed in cardiovascular outcome 
studies. Our analyses are focused on right censored survival data expressed as a log-linear model and the 
performance is assessed via a simulation study. 
 
In Section 2.1, we discuss in brief the general theory associated with the rank based procedures. 
Hettsmanperger and McKean [15] outline the Newton Raphson algorithm used to obtain the optimal 
regression parameter estimates. The R code for implementing this algorithm is due to Terpstra and McKean 
[18]. In Section 2.2, we discuss our motivation for extending these methods to account for right random 
censoring in survival data. In Section 2.3, for the case where Wilcoxon scores are used as the scoring 
function (optimal for the logistic error density), we propose the addition of an extra step to this algorithm 
that incorporates the right random censoring mechanism inherent in survival data so as to reassign the 
Wilcoxon scores without violating the assumptions required by theory. This approach makes use of the fact 
that responses that have been censored carry partial information to the effect that an event has not occurred 
till the time of censoring but is likely to occur at some time in the future. In Section 2.4 we discuss the Bent 
score function as a diagnostic checking aid (and as an alternative) to the Wilcoxon fit of residuals in the case 
where the residuals are positively skewed. In Section 3.1 and 3.2, we simulated data from different scenarios 
reflecting different levels of censoring and different error densities. In Section 3.3, we present results 
obtained from applying the proposed method to a real-life data from a cohort of patients suffering from 
pancreatic cancer. The results obtained from our method are compared with those obtained from the 
traditional approaches that are otherwise used to analyze this data. Concluding remarks are presented in 
Section 4. 
 

2 Materials and Methods 
  
2.1 Rank-based methods for linear models  
 
In this section we give a brief discussion of the theory associated with developing linear models in the 
context of nonparametric regression that can be used to draw inference. 
 
Let Y denote a n x 1 vector of responses that follows the linear model: 
 

  Xβ1Y                                                                          (1) 
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where 1  denotes a n x 1 vector of ones,  is an unknown scalar intercept, X is a n x p matrix of predictors 
(continuous or categorical), β  is a p x 1 vector of unknown constant regression coefficients, and   is the n 

x 1 vector of random errors. Let   be the column space of full rank design matrix X so that the dimension 
of   is p. The rank-based estimate of β  is given by: 

 

)}(Argmin{||||Argminˆ βXβYβ  D                                                                                     (2) 

 

Here, Argmin is the value of β  that minimizes ||||)( XβYβ D  and ||||   is the pseudo-norm used in the 

rank-based procedures that has replaced the Euclidean norm of the traditional least squares methods and is 
given by: 
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where the scores are generated as )}1/({)(  niia   for a non-decreasing square-integrable function )(u

defined on the interval (0,1) and standardized such that   0)( duu ,   1)(
2

duu , and )( ivR is the rank 

of iv among 1v , 2v , 3v ,…, nv . Using this norm, various scoring functions can be generated such as the 

sign-pseudo norm of the form )2/1sgn()(  uu  and the Wilcoxon pseudo-norm of the form 

)2/1(12)(  uu . Thus in terms of these pseudo-norms, )(βD is a convex function of β  and )ˆ(  βD

is the minimized distance between Y and  . As the scores are standardized (they sum to zero) and the ranks 
are invariant to a constant shift, the intercept cannot be estimated using the norm and is usually estimated as 

the median of the residuals YYe ˆˆ  in the following way: 
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They then applied this result to develop asymptotic test of hypothesis and other inferential procedures. A 
formal Newton-type algorithm to compute the estimates of the regression parameters by minimizing the 
dispersion function given in equation (3) has been proposed by Kapenga, McKean, and Vidmar [19] who 
have programmed the algorithm in the Fortran routine rglm (see Appendix A). 
 

2.2 Scoring scheme in the proposed algorithm 
 
In this section we discuss modifications to this algorithm to accommodate survival data with right random 
censored observations. It is very important to note that the algorithm in Appendix A applies the Wilcoxon 
scores on the residuals and not directly on the observations which constitute the survival data. The proposed 
approach extends results (discussed below) obtained by Mantel [20] that were originally applied directly to 
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survival data, by applying the scoring function to the residuals while retaining the assumptions required by 
the algorithm discussed in Appendix A. 
 

From equation (A.1) in Appendix A, it can be seen that the scoring function )}ˆ({ ea R  is a vector whose ith 

component is )}ˆ({ ieRa . Using the formula for )(uf  defined in the preceding section, Hetsmanperger and 

McKean [15] showed that for errors which follow a logistic distribution, 

)21(12)()}1()({)}({  uuneReRa   is the optimal scoring function and is called the Wilcoxon 

scoring function. Let X(1), X(2), X(3),…,X(n)  be the ordered statistics from a uniform distribution. If all the 
observations j = 1,2,3,…n are uncensored, it follows that E{X(j)} = j/(n+1) (see for instance (Casella and 

Berger, 2002). Furthermore, it can be shown that  


n

j
jXn

1
)( 2/1)E(/1( )  and }{ 12/1)(EVar )( jX . Thus, 

the Wilcoxon scoring function )21(12)(  uu applied over the ranked residuals represents the 

standardized expected values of the ordered statistics from a Uniform (0, 1) distribution. This scoring 
function satisfies the assumptions discussed in section 2.1 above.  However, it should be noted that no 
adjustment is made to account for censored observations in the sense that the scoring function does not 
distinguish between an event and a censored observation. 
 

Mantel [20] has obtained the expected values of the Uniform (0, 1) order statistics in the presence of 
arbitrary right censoring for survival data. Our proposed modification to the algorithm applies Mantel’s 
method to reflect change in scores for the ranked residuals that are associated with censored observations. As 
an illustration, consider the following hypothetical survival data sorted in ascending order where ‘E’ 
indicates an uncensored (event) observation and ‘C’ indicates a right censored observation: T(�) = 1(E),

T(�) = 2(E),T(�) = 4(C),T(�) = 6(C),T(�) = 7(C),T(�) = 8(E),T(�) = 10(E),T(�) = 12(E),T(�) =

15(E),T(��) = 18(E). In this dataset of 10 observations sorted in ascending order, the first 2 observations 

are uncensored followed by 3 censored observations and then followed by 5 uncensored observations. For 
this particular ordering of events and censored observations, applying Mantel’s method we get: 
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where i = 2 (first two uncensored observations), k = 3 (next three censored observations), n – i – k = 5.   
 

Since the first 2 observations are uncensored, they are assigned the scores of 1/11 and 2/11 respectively. The 
next three events are censored observations and are each assigned a score of 6.5/11 which is the average over 
the interval 2 through 11 divided by n+1. The remaining 5 observations which are uncensored are spread 
over kin 1  = 6 intervals so that the average width into which they would divide the remaining space 

is 5.1)1/()}(1{ )(  kinXRn i . Thus, 

 

for  j = 6, 11/5.311/}2)5.1(1{)(E )( jX ;         for  j = 7, 11/511/}2)5.1(2{)(E )( jX ; 

for  j = 8, 11/5.611/}2)5.1(3{)(E )( jX ;        for  j = 9, 11/811/}2)5.1(3{)(E )( jX ; 

for  j = 10, 11/5.911/}2)5.1(4{)(E )( jX ; 
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The censoring mechanism dictates the allocation of scores to the observations depending on whether they are 
uncensored or censored values and depending on their order of their occurrence in the data set. It is 

important to note that with the allocation of these scores,  


n

j
jXn

1
)( 2/1)E(/1( )  still holds. Further 

adjustments can be made for tied events. Thus for a consecutive sequence of m ties j,  j+1, j+2,…, j+(m-1), 
the expected values for each X(j) is averaged across the m ties. For tied censored observations, however, no 
adjustment is necessary reflecting the fact that the empirical distribution does not have any probability 
between successive uncensored observations and has all its remaining mass at or beyond the later 
uncensored observation (Mantel [20]). Thus consecutive tied censored observations share the same score 
(6.5 for the three tied censored observations j = 3, 4, 5). 
  

Here, it should be noted that equation (3) calls for )}1/({)(  niia   to be a non-decreasing set of scores, 

not all equal (Jaeckel [21]). However, the Mantel scoring scheme has assigned scores of 1/11, 2/11, 6.5/11, 
6.5/11, 6.5/11, 3.5/11, 5/11, 6.5/11, 8/11 and 9.5/11 respectively to the observations T(�) = 1(E),T(�) =

2(E),T(�) = 4(C),T(�) = 6(C),T(�) = 7(C),T(�) = 8(E),T(�) = 10(E),T(�) = 12(E),T(�) = 15(E),

T(��) = 18(E) that would make the convexity property of )(βD not always hold in general (Jaeckel [21]). 

To overcome this problem, the censored observations T(�) = 4(C), T(�) = 6(C), T(�) = 7(C),		  which 

resulted in a score of 6.5/11 need to be assigned new pseudo values. This is based on the assumption that a 
censored observation is a partially observed value and its true unobserved value is likely more than its 
observed (censored) value. Thus we need to find two consecutive event observations with respective scores 
��   and ��  such that the conditions 6.5/11 ≥ ��  and 6.5/11 < ��  are met. In this data set, we find that 
T(�) = 12(E) and T(�) = 15(E),		 two such event observations with respective scores ��= 6.5/11 and ��= 

8/11. Therefore, the pseudo values for the three censored observations are generated as the average of 12 and 
15 leading to a pseudo-value of 13.5. That is, we have now generated the scores as 1/11, 2/11, 3.5/11, 5/11, 
6.5/11, 6.5/11, 6.5/11, 6.5/11, 8/11 and 9.5/11 respectively for the observations T(�) = 1(E),T(�) = 2(E),

T(�) = 8(E),T(�) = 10(E),T(�) = 12(E),T(�) = 13.5 (pseudo-value), T(�) = 13.5 (pseudo-value), T(�) =

13.5 (pseudo-value),T(�) = 15(�),T(��) = 18(�). This results in a value of [1(1) + 2(2) + 8(3.5) + 10(5) + 

12(6.5) + 13.5(6.5) + 13.5(6.5) + 13.5(6.5) + 15(8) + 18(9.5)]/11 = 65.023 for )(βD and ensures its 

convexity owing to the observations and their corresponding scores ordered in the same direction in the sum 
of equation (3).  
 
Every data set will thus have a unique scoring scheme based on the order in which events and censorings 
occur in the dataset. After the initial Mantel scoring, pseudo values will have to be generated for all the 
censored observations with their magnitude depending on first finding ��and ��, and then averaging out the 
magnitude of the observations corresponding to ��and ��. In cases where the largest observation in a dataset 
is an event and the Mantel score for any censored observation exceeds this largest event observation, the 
pseudo value for this censored observation will be the same as this largest event observation. When the 
largest observation in a dataset is a censoring, its Mantel score will always be more than that of the largest 
event observation and so there is no cause for concern. 
 

2.3 Steps of the proposed modified algorithm 
 
In this section we enumerate the steps in our updated algorithm.  
 

Step (i) Obtain an initial estimate of the regression coefficients,
)0(

β̂ (say, the least squares estimate) and 

calculate the initial residuals as
)0)0( ˆˆ βXYe  . Rank these residuals in ascending order. Using the 

censoring mechanism inherent in the data set, reassign the ranks using the scores described in equation (6). 
By design, the average of these new ranks is 1/2. Calculate the standard deviation of these new ranks and 
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denoted it by . Apply the scoring function  /}5.0)(E{)}(E{)( )()(  jjadjadj eeja . Let
)0(ˆ

adj denote 

the initial estimate of adj  based on these residuals. This is obtained by solving: 
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where  is the bandwidth used to obtain stable estimates of adj . For moderate sample sizes, where the 

ratio of n to the number of parameters p exceeds 5,  = 0.8 yields stable estimates. For more details about 
the theory associated with equation (7), refer to the text by Hettsmanperger and McKean [15]. 
 

Calculate the dispersion function 
)0(

adjD  using equation (3) evaluated at 
)0(

ê . Note that the assumptions of 

  0)( duuadj  and   1)(
2

duuadj  are true (see Appendix B for proof) and )}(E{)( )( jadjadj Xja   is a 

non-decreasing function. 
 
Step (ii) Using the projection matrix � = �(���)���� onto the column space of X , obtain the residuals at 
the 1st iteration of the algorithm using the relation: 
 

)}{ˆ )0()0()1(
ˆ(ˆˆ eHaee Radjadjadj  

                     

 

                                                                        

(8) 

 

where )}ˆ({ ea Radj  denotes the vector whose ith component is )}ˆ({
)0(

iadj eRa . 

 
Step (iii) and (iv) are the same as in the existing algorithm displayed in Appendix A except that we use the 

notation 
)(k

adjD and adĵ  in place of 
)(k

D and ̂ . We retain the notation β̂  and ŝ for the estimates of 

the regression coefficients. 

 
2.4 Bent scores 
 
McKean, Vidmar, and Sievers [22] have demonstrated that a gain in power in rank based analysis based on 
Bent scores can be obtained by choosing the specific scoring function appropriate for data. In particular, they 
have used the B75 scoring for residuals that are positively skewed in a random drug screening experiment 
(upper quartile of the residuals are assigned a constant score while the remainder of the residuals are a linear 
function of their ranks). These scores are estimated diagnostically after the initial Wilcoxon fit to the data 
produced highly skewed residuals. By diagnostically it is meant that the histogram of the residuals obtained 
from the Wilcoxon fit is used to estimate a reasonable Bent score. The real purpose behind this procedure of 
retrospectively using the residuals to estimate the scoring function is to investigate what types of scores are 
appropriate for the data at hand and must be used with caution in the case of small sample experiments 
(McKean, Vidmar, and Sievers [22]). 
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In this work, we also investigate the impact of moderate censoring (up to 50-60%) on these scores for the 
censored observations as compared to the uncensored observations. If more observations are censored, the 
residuals generated by a Wilcoxon fit are likely to be positively skewed. By using a Bent score function 
(such as the B75 score function), we are down-weighing the upper quartile tail of the residuals. The Bent 
scores are composed of two linear pieces; a linearly increasing piece followed by a flat piece as follows: 
 

�����(�)= �
								

�

�(���)
� − 1															��		0 < � < �

																	
�

���
																								��		�	 ≤ � < 1

�               

                                                

    (9) 

 

Here d denotes the proportion of the flat piece. For more information on how to generate scores, refer to 

Policello and Hettsmanperger [21]. The actual scores are standardized as in   0)( duubent  and

 1)(
2

duubent . In our simulation study we have considered d = 0.25 (B75 scores) as an adjustment to 

the Wilcoxon fit reflecting the extent to which skewness occurs in the distribution of the residuals. 
 

3 Results and Discussion 
 
3.1 Simulating the data 
 
Simulation is conducted for the following three scenarios: 
 

(i). The survival times come from a loglogistic distribution with non-proportional and non-constant 
hazards for the covariate of interest. 

(ii). The survival times come from an exponential distribution with constant and proportional hazards 
for the covariate of interest.  

(iii). The baseline error density is loglogistic but the hazards are proportional for the covariate of interest 
(discussed in brief only). 

 

The first scenario results in an accelerated failure time (AFT) model where we consider a covariate 
potentially influencing the survival time. In the log-linear scale, therefore, the error density follows a logistic 
distribution for which we use a Wilcoxon scoring function that is optimal for this distribution (in the 
uncensored case). Additionally, we make use of a Bent scoring function in the case of positively skewed 
residuals (when applicable) resulting from the initial Wilcoxon fit. In the scenario where the error 
distribution arises from an exponential distribution, both the parametric AFT as well as the Cox proportional 
hazards (PH) model are applicable. In the uncensored case, the Wilcoxon scores have an asymptotic relative 
efficiency of 75% when applied to exponentially distributed data (Hettsmanperger and McKean [15]). 
However, performance with censoring has not been evaluated and we assess performance in the case of 30% 
censoring. In the third scenario, we have the situation that the Cox PH model yielding proportional hazards 
for the covariate is most appropriate, though the baseline hazards are generated from the loglogistic 
distribution. Thus for this case an AFT model may not be the appropriate choice and incorrectly applying it 
will reduce the power. Still, we briefly assess the performance of using Wilcoxon scoring function when 
there is 50% censoring in the data just to get an idea of how much power is lost when a mis-specified 
method is used. 
 

For the first scenario mentioned in Section 1, we simulated data by generating 1 000 independent data sets of 
sample size N=100 observations from a loglogistic distribution in the following way. First, the number of 
simulations M was calculated using the formula given in Burton, Altman, Royston, and Holder [23] which 
is: 
 

2

21








 




Z
M                                                                                                                           (10)        
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where  was kept at 5 per cent level of accuracy of the true regression coefficient b. The value of   
(standard deviation of the regression coefficient b) was obtained from 50 pilot runs of the simulation. For 
various values of coefficients b ranging from -2 to 2, M varied from 700-900. So we set M=1 000 as the 
number of simulations. Performance evaluation measures such as bias of the estimate of the regression 
coefficient, mean square error of the estimate of the regression coefficient and coverage percentage of the 
estimate are evaluated by varying the strength of association of the covariate with the survival times, namely 
b = (-1, -0.75, 0.75). The detailed steps used in simulating the data are provided in the Supplementary 
material.  
 

We have used R for writing the code. After verifying that our code, for uncensored data, yielded results same 
as obtained by using the R package Rfit written by Kloke and McKean [24], we modify it to incorporate 
censoring using our proposed algorithm in order to conduct the simulations. 
 

3.2 Simulation results 
 
Table 1 displays the type I errors for these simulations. These results show that for our proposed method, the 
type I errors are inflated when there is more than 50% censoring in the data in the case of a loglogistic 
(LLG) error distribution though applying Bent scores alleviates them to a considerable extent (around 60%). 
Also, Wilcoxon scores yield inflated type I error rates when the underlying distribution is exponential 
(EXPL) for more than 30% censoring. 
 

Table 1. Percentage type I error rates for N=100, number of replications=10,000 
 

Censor 
% 

Bent75 
Scores 

Wilcoxon 
Scores 

Cox PH 
 

Parametric 
AFT model 

Logrank 
on response 

LLG 
errors 

LLG  
errors 

EXPL 
errors 

LLG 
errors 

EXPL  
errors 

LLG 
errors 

EXPL  
errors 

LLG 
errors 

EXPL  
errors 

0 - 
1.41 
2.82+ 
4.20+ 

4.45 4.27 5.38 4.93 5.08 4.89 5.16 5.00 
30  4.64+ 5.68+ 5.25 5.27 5.44 4.15 5.04 5.05 
50 6.57+ 12.60$ 5.03 4.79 5.64 3.34 4.95 5.07 
60 11.01$ 18.88$ 5.00 4.79 5.89 3.37 4.85 5.02 

+ Power simulations are conducted for these scenarios and then compared to the standard approaches 
$ Situations with highly inflated alpha are not considered in the simulations 

  

Only those cases in which the empirical type I error rates are close to the nominal alpha of 5% are 
considered for generating graphs for comparing the power of the proposed method with the traditional 
approaches. Power graphs for the first scenario (loglogistic distribution with non-proportional hazard) are 
displayed in Fig. 1(a) through Fig. 1(c) for three different levels of censoring (30%, 50%, and 60%). The 
power graph for the second scenario (exponential distribution with proportional and constant hazard with 
30% censoring) is displayed in Fig. 1(d). Analogously, Table 2 displays the numerical values for the power 
calculations shown in Fig. 1(a) through (c). Table 3 displays the simulations representing the second (Fig. 1 
(d)) and third scenarios (discussed briefly). In these tables, the abbreviations used are: BS = Bent scores, WS 
= Wilcoxon scores, AF = parametric AFT model, PH = Cox proportional hazards model, LR = logrank 
scores. 
 

From Fig. 1 and the tables, for the first scenario which represents non-proportional hazards, Wilcoxon scores 
provide power somewhat less than what is obtained from a parametric fit of an AFT (using the loglogistic 
distribution) model for 30% and 50% censoring in data. However, they do provide power slightly more than 
the (incorrectly applied) PH and LR methods. In case of 50% censoring, the B75 scores yield considerably 
less power than the Wilcoxon scores. For 60% censoring, the Wilcoxon scores cannot be used as the type I 
error is inflated and using the conservative B75 scores maybe the only alternative. As expected, an 
incorrectly specified Cox PH model performs less powerfully than our proposed method (in the case of 30-
50% censoring) as does the GLM using logrank scores on the response whereas the parametric AFT model 
performs best.  
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Table 2. Power for N=100; # of replications=1000; distribution=loglogistic (Fig. 1(a) – (c)) 
 

Reg 

Coef 

Power 

30 % censoring 50 % censoring 60 % censoring 

WS AF PH LR BS75 WS AF PH LR BS75 AF PH LR 

0.00 4.5 

16.8 

55.6 

87.8 

98.8 

100.0 

5.4 5.3 5.0 2.8 5.0 5.7 5.0 4.9 4.2 5.9 5.0 4.9 

0.20 23.8 16.1 17.1 8.6 16.5 20.4 15.9 14.4 9.8 17.3 12.8 13.5 

0.40 64.3 52.3 53.4 34.6 51.4 55.0 43.4 43.5 31.2 49.5 37.9 36.3 

0.60 91.7 84.1 83.8 66.4 84.0 85.5 75.6 73.6 65.6 78.8 68.2 66.5 

0.80 99.0 97.2 96.9 88.0 96.4 97.0 92.0 91.5 85.6 95.1 87.2 85.7 

1.00 100.0 99.5 99.6 98.8 99.6 100.0 98.3 98.4 96.9 98.8 97.1 95.7 
 
For the second scenario which represents constant and proportional hazards arising out of an exponential 
distribution, the Wilcoxon scores perform relatively well compared to the parametric model, the Cox PH 
model, and the GLM using logrank scores (as demonstrated by Howard and Koch [2]) on the response for 
30% censoring in data. Again this is expected because an exponential distribution is a special case for which 
both PH and parametric AFT models are appropriate (with the regression coefficients related to each other). 
 

Table 3. Power for N=100; # of replications=1000; Second (Fig. 1(d)) and third simulation scenario 
 

Reg 
Coeff 

Power 
Scenario 2: Exponential Distribution [30 % censoring] Scenario 3: [50 % censoring] 
BS75 WS AF PH LR WS PH LR 

0.00 2.9 5.8 
9.8 
21.8 
40.8 
63.4 
81.6 
90.6 
97.1 
99.3 
100.0 

4.2 5.2 5.1 5.0 
7.4 
18.2 
30.9 
46.6 
62.6 
77.4 
85.6 
92.4 
96.7 

5.0 5.0 
0.25 6.3 8.4 9.9 8.6 7.1 8.0 
0.50 20.4 20.8 22.3 22.8 21.4 20.8 
0.75 34.4 43.0 45.3 44.1 38.5 39.1 
1.00 53.6 68.9 69.9 66.6 60.2 58.5 
1.25 68.0 85.5 85.7 84.5 75.4 77.4 
1.50 84.0 95.8 95.8 93.9 87.0 90.3 
1.75 96.3 98.8 98.2 98.5 94.0 96.7 
2.00 99.1 99.9 99.7 99.4 98.8 98.6 
2.25 99.9 100.0 100.0 99.9 99.7 99.7 

 
For the third scenario which represents proportional hazards for the covariate but has non-constant baseline 
hazards (generated from a baseline loglogistic error density with 50% censoring), the Cox PH and the GLM 
on logrank scores have expectedly much higher power than the (mis-specified) log-linear model Wilcoxon 
scores. The parametric AFT model is not used here as in this case it is well known that in this scenario it will 
not perform well. To further assess the performance of the proposed method, performance evaluation 
measures such as bias of the estimate of the regression coefficient, mean square error of the estimate of the 
regression coefficient and coverage percentage of the estimate were used. In all scenarios, we obtained low 
bias, low mean square error, and adequate coverage (at least 87% in all cases). Table 4 displays the results of 
these performance evaluation measures for the errors arising out of the loglogistic distribution (representing 
the first scenario) for three different values of the shape parameter, namely, s = {0.25, 0.5, 1}. For s = 0.25 
and 0.5, the hazard function first increases and then decreases whereas for s = 1, the hazard is decreasing. 
Such hazards are often encountered in clinical trials related to cancer research where the loglogistic and 
lognormal distribution are used extensively to account for non-monotone hazard functions. In such trials, it 
is important to summarize the improvement in median survival time following a treatment intervention as 
opposed to merely specifying a hazard ratio from using a Cox PH model (Royston, [25]).  



Fig. 1. Power graphs for the first (Loglogistic distribution; 30% 
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Fig. 1. Power graphs for the first (Loglogistic distribution; 30% - 60% censor) and second (Exponential distribution; 30% censor) scenario
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60% censor) and second (Exponential distribution; 30% censor) scenario
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Table 4. Performance evaluation of the proposed method (N=100, replications=1000) 
 

Scenario )ˆ(b  SE )ˆ(b  Bias )ˆ(b  % Bias )ˆ(b  MSE % coverage % power 

50% censored 
True b = -0.75 
s = 0.5 

 
-0.7350 

 
0.0344 

 
0.0150 

 
1.9960 

 
0.0014 

 
91.4 

 
58.4 

50% censored 
True b = 0.75 
s = 0.25 

 
0.7464 

 
0.0225 
 

 
-0.0036 

 
0.4827 

 
0.0005 

 
95.5 

 
95.1 

50% censored 
True b = 0 
s = 0.25 

 
-0.0036 

 
0.0225 

 
-0.0036 

 
* 

 
0.0005 

 
95.5 

 
4.5 

50% censored 
True b = -1 
s = 1 

 
-1.0097 

 
0.0638 

 
-0.0097 

 
0.9658 

 
0.0041 

 
88.1 

 
43.1 

* indicates % bias cannot be calculated as the true value of b = 0 yields a divide by 0 error. AFT 

 

3.3 Pancreatic cancer study example 
 
We will demonstrate our method on a data set consisting of 106 patients who were prospectively identified 
with suspected pancreatic cancer over a 34-month period at the Division of Gastroenterology and 
Hepatology at the University of Birmingham at Alabama for stent placement [26]. The type of stent placed 
(plastic or metal) depended on certain evaluation criteria such as presence or absence of liver metastases, 
whether or not surgery was planned, and the Karnofsky score (K-score) for the patient. The K-score allows 
patients to be classified in terms of their functional impairment thereby allowing doctors to assess the 
prognosis in each patient. It is measured on a continuous scale of 0 to 100 in increments of 10 with 100 
indicating that the patient shows no evidence of diseases and 0 indicating that the patient faces certain death. 
Scores between 0-40 represent various gradations of disability and scores between 50-70 represent 
gradations of self-care ability with assistance. Scores ranging between 80-100 represent gradations of ability 
to conduct normal activity. Generally, patients with a K-score of more than 70 underwent metal stent 
placement while those with a score of 70 or lower underwent plastic stent placement, though there were 
some exceptions. The response measured is the time to death in months. Though other demographic 
variables and comorbidities are recorded as covariates, prior studies in this field suggest that once the 
prognosis is made, these are not important predictors of time to death. Thus, we shall initially consider only 
the K-score as a single continuous predictor of time to death, and later adjust for age as a covariate. This data 
set contains 68 events (64.2% deaths) while 38 observations (35.8%) were censored due to loss to follow-up. 
It is expected that all censored observations will die at some stage of pancreotibiliary malignancy, however, 
due to loss to follow-up there is no option but to treat these observations as censored, thereby carrying 
incomplete information about these patients.  
 
To analyze these data, various parametric AFT models were fit using the exponential, Weibull, loglogistic, 
lognormal, and generalized gamma distributions. Table 5 displays the results of these parametric fits with the 

parameter estimate b̂ representing increase in logarithm of time to death per unit increase in the K-score. It 
can be seen from the log-likelihood and AIC values in this table, that the exponential distribution offers the 
most parsimonious fit to this dataset. As the K-score has gradations in increments of 10, we also evaluated 
the increase in time to death per 10-unit increase in the K-score. For the exponential distribution this value 
was 1.669 (95% CI: 1.438-1.937). We also fit a Cox PH model to this data and this resulted in a hazard ratio 
(HR) of -0.047 9 (standard error = 0.008 2) per unit increase in the K-score. This corresponds to a HR for 
time to death of 0.618 (95% CI: 0.527-0.728) per 10-unit increase in the K-score indicating that patients with 
a higher K-score live longer than those with a lower score. All model fitting assumptions were assessed as 
per the methods available in standard statistical texts.  
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Table 5. Parametric fit for the Pancreatic Cancer data (N=106) with K- score as a continuous 
predictor 

 
Distribution )ˆ(b  SE )ˆ(b  Scale/ 

Shape 
P value LL 

 
AIC 

e
b̂10 [95% CI] 

Loglogistic 0.0606 0.0109 Scale=0.743 <0.001 -134.853 275.707 1.833 [1.480-2.270] 
Lognormal 0.0601 0.0104 Scale=1.283 <0.001 -133.956 273.913 1.824 [1.488-2.236] 
Exponential 0.0512 0.0076 Scale=1 <0.001 -134.554 273.109 1.669 [1.438-1.937] 
Weibull 0.0511 0.0078 Scale=1.005 

Shape=1 
<0.001 -134.553 275.105 1.667 [1.431-1.942] 

Generalized 
Gamma 

0.0566 0.010 2 Scale=1.187 
Shape=0.383 

<0.001 -133.569 275.138 1.761 [1.442-2.151] 

 
Finally, we fit our proposed method that uses full non-parametric regression using Wilcoxon scoring on the 

residuals, to this data set (also shown in Table 6). We obtained b̂ = 0.045 4 (S.E )ˆ(b = 0.007 67, P value < 

0.000 1) as the parameter estimate for every one unit increase in the K-score on the logarithmic scale. This 

corresponds to exp(10 b̂ ) = 1.555 times increase in the time to death per 10-unit increase in K-score (95% 
CI: 1.314-1.839) again indicating significantly higher longevity for patients with high K-scores as compared 
to patients with low K-scores. 
 

Table 6. Parametric and non-parametric fit with two covariates (N = 101) 
 

Covariate specifics Lognormal AFT Proposed method 
(Wilcoxon scores) 

Proposed method 
(Normal scores) 

Intercept b0 -0.7241 -0.7259 1.5771 
SE(b0) 1.1609 0.9539 0.8249 
P value 0.5328 0.4466 0.0559 

Age b1 -0.0258 -0.0155 -0.033 6 
SE(b1) 0.0127 0.0099 0.0098 
P value 0.0419 0.1191 0.00 6 

K-score b2 0.0585 0.0459 0.0308 
SE(b2) 0.0110 0.0085 0.0073 
P value < 0.001 < 0.001 < 0.001 

 
The Wilcoxon fit of the residuals revealed five outliers with high negative values for the residuals. However, 
these correspond to five patients who were lost to follow-up immediately after the day of prognosis and 
hence their survival time was entered in the database as 0.033 months (1 day). All five patients had high 
Karnofsky scores (four had a score of 90 while one had a score of 80) and these observations correspond to 
patients about whom the least information was available. The gastroenterologists wanted to ensure that these 
observations do not influence the interpretation in any way and hence they were removed from the data set. 

The resulting Wilcoxon fit yielded an estimate of b̂ = 0.046 6 (close to the earlier estimate of 0.045 4) with a 
standard error of 0.008 39 (P value < 0.000 1) thereby demonstrating the robustness of the Wilcoxon fit. 
 
As part of a follow-up analysis, the gastroenterologists also wanted to assess the effect of K-score on 
mortality after adjusting for age. Table 6 shows the results of these analyses in comparison to the best fit 
parametric (lognormal) AFT model. The lognormal AFT model (second column) suggests that after 
adjusting for age, every ten unit increase in K-score increases the time to death by a factor of 1.795 whereas 
the corresponding value for this factor using the proposed model with Wilcoxon scores, is 1.361. However, 
the lognormal fit also shows age as statistically significant (P value=0.041 9) implying that after adjusting 
for the K-score, every 10-year increase in age decreases the time to death by a factor of 0.773(95% CI: 
0.603-0.991), a result that is found to be somewhat surprising by the gastroenterologists. On the other hand, 
our proposed method with Wilcoxon scoring (third column) does not show age to be statistically significant 
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(P value=0.119 1) after adjusting for K-score. The ten-year estimate is found to be 0.8564 (95% CI: 0.705-
1.041). The fourth column in Table 6 shows how the results would change if the Normal scores 

)()( 1 uu   were used instead of the Wilcoxon scores. If the lognormal distribution were the best fit for 

the data, then an AFT model would have normally distributed errors, and we could expect comparable 
results by adopting the Normal scores. On doing so, we find that the parameter estimates for age and K-score 
are now qualitatively similar to the lognormal model.   
 

4 Conclusion 
 
Rank based non-parametric methods provide a robust alternative to parametric procedures in terms of their 
sensitivity to outliers and positive breakdown values for the estimates. In the uncensored case, it is known 
that the asymptotic efficiency of these methods depends on the optimality of the scoring function used to 
minimize the dispersion function of the residuals. The Wilcoxon scoring function is optimal for errors from a 
logistic distribution and reasonably efficient for errors from a normal distribution in a regression setting and 
hence can be extended to loglogistic and lognormal survival data. The proposed non-parametric method of 
modifying the Newton-type algorithm used to estimate the regression coefficients appears to work well for 
moderate random right censoring (up to 50%) in survival data both in the case of proportional and non-
proportional hazards. The quality of the model can be assessed by performing a diagnostic check of the 
distribution of the residuals arising out of the Wilcoxon fit. For severely skewed residuals, the Bent scoring 
function can be used as an adjustment for higher levels of censoring in the data. In the simulations conducted 
by us, the B75 scores provided less power than the other methods. In practice, however, one may have to 
study the distribution of the residuals in greater detail and incorporate other types of Bent scores for 
modeling particular types of data sets. This procedure is akin to checking the model fits from a Cox PH 
model or from a parametric fit of the model and should be viewed as a diagnostic checking tool.  
 
In the limited scenarios that we have tested, this method has yielded estimates of the regression coefficients 
that have low bias, low mean square error, and adequate coverage. In cases where the proportional hazards 
assumption is not met and there is no clear winner among the popularly used parametric distribution, our 
proposed method may provide a reasonable alternative non-parametric solution that yields robust estimates 
of the regression coefficients. Both continuous and categorical predictors may be used allowing the 
practitioner to draw inferences about the significance of one covariate after adjusting for other covariates in a 
non-parametric way (though in our simulations we have incorporated only continuous predictors), something 
which cannot be done in a simple stratified analysis of the standard Kaplan Meier method. It remains to be 
assessed how this method will perform in the presence of interactions among covariates. This method has 
also been applied to a real-life data set from a Pancreatic cancer study and it proved to be a robust fit to the 
outliers present in that data set. Future work aims to compare the performance of this method with the other 
theoretical nonparametric and semiparametric methods mentioned in Section 1. 
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Appendix 
 
A.  Newton Algorithm by Kapenga et al. [19] 
 

i. Obtain an initial estimate of the regression coefficients, 
)0(

β̂ (say, least squares estimate) and 

calculate the initial residuals as 
)0()0( ˆˆ βXYe  . Let

)0(
ˆ denote the initial estimate of  based on 

these residuals. Calculate the dispersion function 
)0(

D evaluated at 
)0(

ê . 
 

ii. Using the projection matrix 
TT

XXXH
1

)(


 onto the column space of X , obtain the residuals at 

the 1st iteration of the algorithm using the relation: 
 

)}( )0()0()1( ˆ{ˆˆˆ eHaee R   

where )}( )0(ˆ{ ea R  denotes the vector whose ith component is }ˆ{ )(
)0(

iRa e . 

 

iii. Calculate the dispersion function 
)1(

D evaluated at 
)1(

ê . If 
)0()1(

DD  , this step is considered 
successful. If not, a linear search can be made along the direction to find a value that minimizes D . 

In general, the dispersion function at the kth step is denoted by 
)(k

D and a rule to halt the algorithm 

is established by specifying a tolerance D  such that  
 

Dk

kk

D

DD







)1(

)1()(

  

iv. If 
)(k

D obtains the minimum value for the dispersion function, then find 
)()( ˆˆ kk

eYY  . Then the 
optimal estimate of the regression coefficients can be obtained using the relation 
 

)(ˆ1
)(ˆ k

YXXXβ   

 

v. Obtain the final estimate of ̂ and use it to calculate the standard error of β̂ using (5). Obtain ŝ

by finding the median of 
)(ˆ k

e . 
 
 

B.   Meeting Assumptions of Section 2.1 
 
With reference to the proposed method meeting the assumptions in Section 2.1, 
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Similarly, 
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