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ABSTRACT 
 

This is the first in a series of papers on Dirichlet-type approximation in the setting of Cauchy 
sequences in normed divisible groups. In particular, we demonstrate that the concept of 
approximation exponents are extendable to elements belonging to the completion of a normed 
uniquely divisible group and other such groups that enjoy a form of divisibility. To give a measure 
of how “best” the approximation can be, we introduce group theoretic functions (dubbed proximity 
functions), which generalise the notion of the order of elements in a group. A proximity function � 
on a group with identity e is defined by three axioms: (i) �(� ≠ �) = �(���) > 0, (ii) �(�ℎ��) ≤
��(�)�(ℎ) and (iii) �(�ℎ��) ≤ ��(�) if �(�) = �(ℎ), where � > 0 is an absolute constant. The main 
result in this paper is to show that given a proximity function that is in a certain sense 
discontinuous at the identity, then Cauchy sequences in a uniquely divisible group G do not 
converge inside G; in the sequels, we consider the case of convergence inside the completion of 
G but not inside G. 
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1. INTRODUCTION  
 
The study of group theory naturally leads to 
problem of finding elements of a group that 
belongs to cyclic subgroups of the group. It is 
easy to see that there are groups for which some 
elements do not belong to any cyclic subgroup 
other than those generated by the elements; for 
instance, a prime number does not belong to any 
cyclic subgroup of the multiplicative group of 
rational numbers other than that generated by 
the prime itself. To study the groups for which 
every element belongs a cyclic group generated 
by some other element, the notion of divisible 
groups are important. To be precise, a divisible 
group is a group (�,∙) such that for every � ∈ �  
and natural number n there is an ℎ ∈ � such that 
� = ℎ� ≔ ℎ ∙ℎ���—we shall informally say that G 
has n-th roots for all n. Classically, divisible 
groups appeared in the theory of Abelian groups; 
in particular, every Abelian group can be 
naturally embedded in an Abelian divisible group 
and an Abelian group is divisible if and only if it is 
an injective object in the category of Abelian 
groups (Griffith [1], Feigelstock [2], Lang [3], 
Matlis [4]); moreover in the Abelian, or generally 
locally nilpotent, torsion-free case (Mal’cev [5]), 
every divisible group is a uniquely divisible 
group: That is, �� = ℎ� implies � = ℎ (see also 
Gluskov [6]). In any case, non-trivial Abelian 
divisible groups are not finitely generated, which 
is easily demonstrable via the Fundamental 
Theorem of Finitely-generated Abelian groups, 
and uniquely divisible groups are necessarily 
torsion free. A foremost example is the group of 
rational numbers ℚ  under addition. In another but 
similar vein, given a prime number p, a p-
divisible group (sometimes called a Barsotti-Tate 
group (Barsotti [7], Tate [8])) is a group with p-th 
roots. We extend this further to a subset �  of the 
prime numbers by defining� -divisible groups as 
groups with p-th roots for all p in �  (this is not 
standard, for instance Baumslag [9] calls these 
�� -groups); when �  is the whole of the primes, 
then we get the divisible groups. The archetypal 
examples are the additive subgroups of ℚ  given 
by ℚ {� }= {� ∈ ℚ :�|D(�) ⇒ � ∈ � } where D(�) 
is the denominator of q. We say a group is 
uniquely � -divisible if it is a � -divisible group 
with unique roots. As a further example, if �  is all 
of the prime numbers, then a vector space over a 
field of characteristic k is a well-defined uniquely 
� \{�}-divisible group (where � \{�} means �  
excluding k); this latter example shows that 
uniquely � -divisible groups can be cyclic groups, 
torsion groups or finitely generated groups, in 

contradistinction to uniquely divisible Abelian 
groups (the finite fields, being or prime 
characteristics, are such examples). 
 

2. EXPOSITION ON NOTATION AND 
STATEMENT OF RESULTS 

 

Now given a � -divisible group(�,∙), 
henceforward the notation ��, where � ∈ ℚ {� } 
and � ∈ � , shall denote (one of possibly many 
elements) ℎ ∈ �  such that �� = ℎ�  where 
� = �/� with gcd(�,�) = 1; in particular, 
��represents a unique element in G if G is a 
uniquely � -divisible group. Now if we denote by 
|∙|:ℚ {� }→ ℝ  an absolute value function from 
ℚ {� } to the real numbers ℝ , then Ostrowski [10] 
showed that |∙| is, up to equivalence, the usual 
absolute value |∙|∞ on the real numbers or the 
usual absolute value |∙|� on the p-adic numbers 

for a prime p. When |∙|≔ |∙|∞, we have the 
following classical elementary but important 
result: 
 

Theorem 2.1: Let� ∈ ℝ . Then for some � > 1 
there is an infinite sequence {��}���

∞ ∈ ℚ  so 
that� ∈ ℝ\ℚ  if and only if0 < |� − ��|=

���ord(����� ℤ)�
��
�. 

 

Hereℝ\ℚ  is the complement of ℚ  in ℝ—that is, 
the irrational numbers; the notation� = �(�) 
implies |�|≤ ��  for some absolute constant 
� > 0; also,ord(ℎ ∈ � ) denotes the order (or 
period) of an element h in the group H andℤ 
denotes the set of integers (thus, ord(����� ℤ) 
gives denominator of ��). Dirichlet (see [11]) 
proved that in fact with the implied constant 
being � = 1, the theorem holds with � ≥ 2; the 

optimal situation occurs when � = 1/√5 (see 
Hurwitz [12]) still with � ≥ 2. An important remark 
is that the sequence {��}���

∞  in the Theorem 
above is a Cauchy sequence, therefore Theorem 
2.1 equally states that there are no Cauchy 
sequences converging inside ℚwith the given 
estimate. The object of this paper is to extend the 
“if” part of the above theorem to uniquely � -
divisible groups G and their completions via 
norms, with the estimates measured in terms of 
quasi-order functions on G. We address the “only 
if” part in a sequel to this paper. First, we 
introduce our main functions: 
 

Definition 2.2 (Norm on � -Divisible Groups): For 
a set of primes � , let (�,∙) be a � -divisible group 
with identity element e and let |∙|:ℚ {� }→ ℝ  be 
an absolute value function. Then a function 
‖∙‖:� → ℝ  is a norm on G if it satisfies: 
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i. ‖�‖ = 0only if� = � 
ii. ‖�ℎ‖ ≤ ‖�‖ + ‖ℎ‖ 
iii. ‖��‖ = |�|‖�‖, � ∈ ℚ {� } 

 
We denote by (�,∙,‖∙‖)a� -divisible group with a 
norm ‖∙‖.IfG is Abelian, then it is just a normed 
linear space but over the integral domain ℚ {� }. 
Indeed if (�,+ ,‖∙‖) is a normed vector space 
over a field �, then |∙| is the well-defined absolute 
value function induced by the absolute value 
function on � over the vector space. 
 
Definition 2.3 (Proximity Function on Groups): 
Let G be a group with identity e. Then a function 
�:�\{�}→ ℝ  is aproximity function on G if for all 
� ≠ ℎ: 
 

i. �(� ≠ �) = �(���) > 0 
ii. �(�ℎ��) ≤ ��(�)�(ℎ) 
iii. �(�ℎ��) ≤ ��(�) if �(�) = �(ℎ) 

 
where  � > 0 is an absolute constant. If in (ii)             
we have the stronger bound �(�ℎ��) ≤
� max{�(�),�(ℎ)}, then we say � is an ultra-
metric proximity function. Especially, if � is 
integer-valued with � = 1and that (ii) and (iii) 

read �(�ℎ��)|lcm��(�),�(ℎ)� and �(�ℎ��)|�(�) 

if �(�) = �(ℎ) respectively, then we say � is an 
order function. 
 
We shall typify a proximity function by �with the 
constant C understood. Obviously the product of 
two proximity functions is a proximity function; 
and also if � is a proximity function, then so is�� 
for any real number � > 0; thus we say two 
proximity functions ��,�� are equivalent if ��=��

�
 

for some � > 0. 
 
Examples 2.4: 
 
 For Abelian torsion groups G, the function 

�(∙) ≔ ord(∙) is an order function with 
� = 1. 

 For groups with ultra-metric norms‖∙‖, the 

functions �(∙) ≔ ‖∙‖and�(∙) ≔ �‖∙‖, where 
� ≥ 1 is real, are ultra-metric proximity 
functions with � = 1. 

 For groups with bounded norms—
i.e.,‖∙‖ ≤ � , withM fixed—the 

function�(∙) ≔ �‖∙‖��, where � ≥ 1 is real, 
is a proximity function with � = ��. 

 If �  is the additive group of an algebraic 
number field, then the absolute Weil height 
ℎ(∙) ≔ ∏ max{1,|∙|�}������  is a proximity 

function with � = 2. 

We shall be interested in those proximity 
functions� on(�,∙,‖∙‖)such that for some �� > 0 
the function �(∙)��‖∙‖:�\{�}→ ℝ  is, in essence, 
discontinuous at the identity e; precisely, 
 
Definition 2.5 (Proximity Function on� -Divisible 
Groups): Let (�,∙,‖∙‖) be a normed� -divisible 
group with identity e and let � be a proximity 
function on G. Then � issaid to be aclose 
proximity function on G if there exists a�� >
0such that inf{�(��)

�‖��‖}= 0 for a null 
sequence {��}���

∞ ⊂ �\{�}if and only if � < ��; 
otherwise, then � is said to be an open proximity 
function on G. 
 
Remarks: Otherwise stated, inf{�(��)

�‖��‖}> 0 
for all null sequences{��}���

∞ ⊂ �\{�} if and only 
if� ≥ ��. We typify a close proximity function on 
G by (�; �,��)and in that case we shall say that 
the elements in G are in close proximity (orin 
close order) to each other; else, where 
necessary, we shall say the elements are in open 
proximity (resp. in open order)to each other. 
 
Our interest in close proximity functions on 
normed � -divisible groups is the following result, 
which is the main theorem of this paper: 
 

Theorem 2.6: Let (�; �,��) be a close proximity 
function on (�,∙,‖∙‖) and let � ∈ � . Then for every 
� > �� and Cauchy sequence {��}���

∞ ⊂ �\
{�,�}converging to g, there exists N such that 
‖���

��‖ = �(�(��)
��) if and only if � ≤ �, where 

the implied constant is independent of n or g; 
moreover, this is also true for � = �� if�is ultra-
metric and the implied constant is less than 
�

���
inf����{�(���

��)��‖���
��‖}. 

 

In other words, there are only finitely many 
elements of G in close proximity to any element 
in G with respect to the given estimates; or 
equivalently, Cauchy sequences in G do not 
converge inside G with respect to the given 
estimates. 
 

3. ELEMENTARY RESULTS 
 

We establish here some elementary but 
noteworthy properties of normed � -divisible 
groups endowed with close proximity functions. 
We also state some close proximity functions on 
certain � -divisible groups but first, we prove the 
following: 
 
Corollary 3.1: Every normed� -divisible Abelian 
group is a uniquely � -divisible group. 
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Proof: Indeed, for some � ≠ ℎ suppose �� = ℎ� 
where � > 1 is a natural number whose prime 
divisors belong to� . Then ��ℎ�� = (�ℎ��)� = �, 
thus 
 

|�|‖�ℎ��‖ = ‖(�ℎ��)�‖ = ‖�‖ = 0 
 

But|�|≠ 0 and so ‖�ℎ��‖ = 0, implying�ℎ�� = � 
or � = ℎ, a contradiction. QED 
 

Corollary 3.2: Any normed � -divisible group is 
non-cyclic and torsion-free. 
 

Proof: Let {� ≠ �} generate the group. Then 
��/� = �� for some � ∈ �  and integer �and so 
����� = �, implying that g is a torsion element. 
But if ℎ ≠ � is a torsion element with ℎ� = � for 
some � ≠ 0, then 0 = ‖�‖ = ‖ℎ�‖ = |�|‖ℎ‖. It 
follows that ‖ℎ‖ = 0 orℎ = �, which is a 
contradiction. Thus there are no torsion 
elements.QED 
 

Corollary 3.3: Let (�,∙,‖∙‖) be a normed � -

divisible group and let �� be its completion with 
respect to ‖∙‖. Then �� ∋ lim�→ ∞ �

�� where 
{��}���

∞ ⊂ ℚ{� } converges in the completion of 
ℚ {� } with respect to the absolute value |∙| 
associated to ‖∙‖. 
 
Proof: First, let {��}���

∞ ⊂ ℚ {� }, then for any 
� ∈ �  we have {���}���

∞ ⊂ � . Thus 
 

‖��� ∙(���)��‖ = ‖������‖ = ‖�‖|�� − ��| 
 
Consequently, the sequence {���}���

∞  converges 

in�� with respect to (the natural metric induced 
by) the norm‖∙‖ ifthe sequence {��}���

∞  
converges in the completion of ℚ {� } with respect 
to (the natural metric induced by) the absolute 
value |∙|. QED 
 
Corollary 3.4: Let (�; �,��) be a close proximity 
function on (�,∙,‖∙‖). Then there exists an 
absolute constant �� > 0 such that 

lim inf�→ � �(��)
��‖��‖ ≥ �� for every null 

sequence {��}���
∞ ⊂ �\{�}. 

 
Proof: Suppose to the contrary that there exists 
no such absolute constant ��. Indeed, then                  

for every integer � ≥ 1, there is a null                   
sequence {��(� )}���

∞ ⊂ �\{�} such that 

lim inf�→ ∞ ����(� )�
��‖��(� )‖ < 1/� . It follows 

that for every m there are infinitely manyℎ� ∈
{��(� )}���

∞ so that�(ℎ�)
��‖ℎ�‖ < 1/� .But since 

{��(� )}���
∞  and {��(� + 1)}���

∞  are null 
sequences, then we can choose ℎ���such 

that‖ℎ���‖ < ‖ℎ�‖. It then implies that{ℎ�}���
∞  

is a null sequence withinf{���(ℎ�)‖ℎ�‖}= 0, 
whichis acontradiction to the fact that� is a close 
proximity function. QED 
 

Corollary 3.5: A close proximity function on a � -
divisible group induces close proximity 
functionson ℚ {� }. 
 

Proof: Indeed fix a non-identity element� 
belonging to the � -divisible groupG. Now given 
any null sequence {��}���

∞ ⊂ ℚ {� }\{0}and a 
close proximity function � on G, then {���}�

∞ is a 
null sequence in G and thusinf{�(���)‖���‖}> 0. 
But then inf{�(���)‖���‖}= ‖�‖inf{�(���)|��|}. 
Hence if ��(��) ≔ �(���) then we have 

inf���(��)|��|� > 0, implying that�� is a close 

proximity function on ℚ {� }. Since we can do 
same for every non-identity element g in G, the 
conclusion follows. QED 
 

As per examples we state, without verification, 
three close proximity functions, which we put 
together in the following lemma. We shall verify 
these, alongside other close proximity functions, 
in a sequel to this paper: 
 

Lemma 3.6: The following are close proximity 
functions on the respective groups defined: 
 

(i) Suppose the absolute value function 
associated to the normed � -divisible group 
(�,∙,‖∙‖) is the usual one on the real 
numbers. Assume S is a normal subgroup 
of G such that the quotient group �/� is 
Abelian and torsion and that the norm‖∙‖ is 
a discrete norm on S—i.e., there is an 
absolute constant � such that‖� ∈ �\{�}‖ ≥
�. Then the function ��/�(�) = ���(� ∙�) ≔

��� {� ∈ ℤ��:�
� ∈ �} is a close order 

function on G with �� = 1, � = 1; 
moreover, if �  is a singleton set then � is 
ultra-metric. (We refer to this as a � -ary 
order function on G). 

(ii) Given a prime p and the group ℚ {�}, then 

the function ��(� ≠ 0) = ��⌊���(|�|∞)/��� �⌋� 

(where ⌊∙⌋ (resp. ⌈∙⌉) denotes the floor 
(resp. ceiling) function and where |∙|∞ is the 
usual absolute value on the real numbers) 
is a close ultra-metric proximity function on 
ℚ {�} with �� = 1 and � = � given the usual 
p-adic norm on ℚ . (We refer to this 
proximity function as the p-adic proximity 
function on ℚ {�}). 

(iii) For an algebraic number field � with the 
usual normalised absolute values |∙|� over 
all places v such that ∏ |�|�� = 1 for every 
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� ∈ �\{0}, the function ��(�) ≔
∏ ��� {1,|�|�}� —i.e., the Weil height—is a 
close proximity function on �� with �� = 1 
and � = 2 given the norm defined by the 
usual absolute value on the complex 
numbers. (We shall refer to this as the �-
proximity function). 

 

Example 3.7: A particular example of case (i) 
above is given by � = ℚ {� } and � = ℤ, where 
the function ��/� is a close order function on 

ℚ {� } given the usual norm on the real numbers. 
Indeed |� ∈ ℤ|≥ 1 and so |∙| is discrete on ℤ. On 
the other hand, a non-example is given by� =
ℚ �
× , the multiplicative group of (the positive real 

values of the) ℚ {� }-powers of the positive 
rational numbers ℚ �� ≔ � with norm ‖∙‖ ≔
|log(∙)|—that is, ℚ �

× ≔ ��� ∈ ℝ ��:� ∈ ℚ ��,� ∈

ℚ {� }�.Here the so-defined � -ary order function 

��/� is an open order function on ℚ �
× . This is so, 

obviously, as the norm is not a discrete norm 

onℚ ��; indeed, for instance, �1 +
�

�
�
���

∞
⊂ ℚ �� 

and yet �log�1 +
�

�
�� → 0 as � → ∞. 

 

4. PROOF OF MAIN RESULTS 
 

We now establish the main results of this paper, 
culminating in the proof of the main theorem 
stated in the introduction. We start with the 
following lemma. 
 

Lemma 4.1: Let (�; �,��) be aclose proximity 
function on (�,∙,‖∙‖). Then for every 
distinguished Cauchy sequence {��}���

∞ ⊂ �\{�} 
(i.e., �� ≠ lim�→ ∞ �� for all n) we have 
lim�→ ∞ �(��) = ∞. 
 

Proof: Given that {��}���
∞  is distinguished and 

Cauchy, then it contains an infinite subsequence 
of distinct elements; thus for every � > 0, there 
exists N such that for all � ,� ≥ � where �� ≠
��we have 0 < ‖����

��‖ < �; in that case since 
� ≔ inf{�(����

��)�‖����
��‖}> 0 for every � ≥

��, then it follows that 
 

���(��)�(��)�
�
≥ �(����

��)�

≥
inf �(����

��)�‖����
��‖

‖������‖

=
�

‖������‖
>
�

�
 

But lim�→ �
�

�
= � lim�→ �

�

�
= ∞, 

thus lim�,���→ ∞
�����

���(��)�(��)�
�
= ∞. Now 

suppose to the contrary that lim inf�→ ∞ �(��) <

∞. It follows that there exists an infinite 
subsequence of {��}���

∞ , say {��
∗}���

∞ , such that 
�(��

∗ ) ≤ � for some upper bound U. But since 
{��}���

∞  is a distinguished Cauchy sequence, 
then {��

∗}���
∞  is also a distinguished Cauchy 

sequence converging to the same limit, thus (by 
the same argument as above) we have 

lim�,���→ ∞
��
∗ ���

∗
���(��

∗ )�(��
∗)�

�
= ∞. But then given 

any infinite disjoint partitions A and B of 
{��

∗}���
∞ —i.e. � ∪ � = {��

∗}���
∞  but � ∩ � = ∅—

then we arrive at 
 

lim
�,���→ ∞
��
∗ ���

∗

���(��
∗ )�(��

∗)�
�

= �� � lim
���→ ∞
��
∗ ∈�

�(��
∗ )��� lim

���→ ∞
��
∗ ∈�

�(��
∗)�� ≤ (���)� 

 
which is a contradiction to the fact that left-hand 
side is unbounded. Consequently, 
lim inf�→ ∞ �(��) = ∞ and so lim�→ ∞ �(��) =
∞.QED 
 
Theorem 4.2: Let (�; �,��) be a closeproximity 

function on (�,∙,‖∙‖)with ��  as the completion of 
G. Let{��}���

∞ ⊂ �\{�}be a Cauchy sequence 

converging to�� ∈ ��so that 0 < ‖����
��‖ =

�(�(��)
��)for all n, where � > ��. Then for all 

sufficiently large m and n,�(��) = �(��)if and 
only if �� = ��; moreover, this is also true for 
� = ��if the implied constant is less than 
�

����
inf�����

{�(����
��)��‖����

��‖}. 

 
Proof: Let M be the implied constant in the 
estimate �(�(��)

��). Now from the sub-additivity 
of ‖∙‖, we have 
 

‖����
��‖ ≤ ‖����

��‖ + ‖����
��‖

= ‖����
��‖ + ‖����

��‖
≤ �� (��)

�� + �� (��)
�� 

 
Let us assume that �(��) = �(��) but that 
�� ≠ ��. Thus ‖����

��‖ ≤ 2�� (��)
�� or 

equivalently �(��)
�����(��)

��‖����
��‖ ≤ 2�  

and since �(����
��) ≤ ��(��), then 

�(��)
����(�(����

��)��‖����
��‖) ≤ 2���� .  

 
Finally, via the lower bound 
�(����

��)��‖����
��‖ ≥

inf�����
{�(����

��)��‖����
��‖}≔ �, then we 

arrive at �(��)
���� ≤

�

�
2����  and as such �(��) 

is bounded above by �
�

�
2���� �

�/(����)
 if � > �� 
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or that � ≥
�

����
 when � = ��. Hence if � > ��, 

then �� = ��if�(��) = �(��) >

�
�

�
2���� �

�/(����)
, which latter condition holds for 

all sufficiently large n due to Lemma 4.1; similarly 
if � = �� and � < � 2���⁄ , then necessarily 
�� = �� if �(��) = �(��), which completes the 
proof. QED 
 
We now prove our main theorem, thus: 
 
Theorem 4.3: Let (�; �,��) be a close proximity 
function on (�,∙,‖∙‖) and let � ∈ � . Then for every 
� > �� and Cauchy sequence {��}���

∞ ⊂ �\{�,�} 
converging to g, there exists N such that 
‖���

��‖ = �(�(��)
��) if and only if � ≤ �, where 

the implied constant is independent of n or g; 
moreover, this is also true for � = �� if � is ultra-
metric and the implied constant is less than 
�

���
inf����{�(���

��)��‖���
��‖}. 

 
Proof: Given ‖���

��‖ ≤ �� (��)
�� for some 

absolute constant � , then multiplying through by 

��(�)�(��)�
��

 gives us 

 

�(��)
������(�)�(��)�

��‖���
��‖ ≤ � �(�)�� 

 
But �(���

��) ≤ ��(�)�(��), hence 
�(��)

�����(���
��)��‖���

��‖ ≤ ���� �(�)��. Since 
� ∉ {��}���

∞ , then for some infimum L we have 
� ≤ �(���

��)��‖���
��‖; thus �(��)

���� ≤
���� �(�)��/� and as such for � > �� it follows 
that �(��) is bounded above by (���� �(�)��/
�)��/(����). Hence Lemma 4.1 tells us that there 
is no distinguished Cauchy sequence {��}���

∞  
converging to g and satisfying the estimate in the 

lemma, so we can choose � ≔ max��:�(��) ≤

(���� �(�)��/�)��/(����)}. Now let � = �� with � 
being ultra-metric and suppose �(��) > �(�) 
such that ‖���

��‖ ≤ � �(��)
���. Here, note that 

�(���
��) ≤ � max{�(��),�(�)}=  ��(��) and 

consequently we have 
 

� ≤ �(���
��)��‖���

��‖ ≤ ����(��)
��‖���

��‖
≤ ����  

 
implying that � ≥ �/���; hence if we require that 
� < �/���, then necessarily we must have the 
bound �(��) ≤ �(�). It thus follows from Lemma 
4.1 that there is no distinguished Cauchy 
sequence {��}���

∞  converging to g and satisfying 
the estimate in the Lemma; in this case we can 
choose � ≔ max{�:�(��) ≤ �(�)}.QED 
 
 

5. CONCLUSION 
 
In conclusion, we note that if a close proximity 
function exhibits the extra property of being 
uniform—that is, if there is some absolute 
constant �� > 0 such that �(��)

��‖��‖ ≥ �� for 

every null sequence {��}���
∞ ⊂ �\{�}—then the 

latter parts of Theorems 4.2 and 4.3 would have 
�

����
�� and 

�

���
�� respectively instead                          

of 
�

����
inf����{�(���

��)��‖���
��‖} and 

�

���
inf����{�(���

��)��‖���
��‖}. In this way, the 

implied constants in the theorems above would 
be independent of n or G when � = ��. We make 
use of this uniformity in the sequel to this paper. 
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