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Abstract
Aims/ The structure of the solutions to the one dimensional focusing nonlinear Schrödinger equation
(NLS) for the order N in terms of quasi rational functions is given here. We first give the proof that
the solutions can be expressed as a ratio of two wronskians of order 2N and then two determinants
by an exponential depending on t with 2N − 2 parameters. It also is proved that for the order N ,
the solutions can be written as the product of an exponential depending on t by a quotient of two
polynomials of degree N(N + 1) in x and t. The solutions depend on 2N − 2 parameters and give
when all these parameters are equal to 0, the analogue of the famous Peregrine breather PN . It
is fundamental to note that in this representation at order N , all these solutions can be seen as
deformations with 2N − 2 parameters of the famous Peregrine breather PN . With this method, we
already built Peregrine breathers until order N = 10, and their deformations depending on 2N − 2
parameters. We present here Peregrine breather of order 11 constructed for the first time.
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1 Introduction

The term of rogue wave was introduced in the
scientific community by Draper in 1964 [1]. The
usual criteria for rogue waves in the ocean, is
that the vertical distance from trough to crest is
two or more times greater than the average wave
height among one third of the highest waves in a
time series (10 to 30 min). The first rogue wave
recorded by scientific measurement in North Sea
was made on the oil platform of Draupner in 1995,
located between Norway and Scotland. Rogue
waves in the ocean have led to many marine
catastrophes; it is one of the reasons why these
rogue waves turn out to be so important for the
scientific community. It becomes a challenge to
get a better understanding of their mechanisms
of formation.

The rogue waves phenomenon currently exceed
the strict framework of the study of ocean’s waves
and play a significant role in other fields; in
nonlinear optics [2], Bose-Einstein condensate
[3], atmosphere [4] and even finance [5].

Here, we consider the one dimensional focusing
nonlinear Schrödinger equation (NLS) to
describe the phenomena of rogue waves. The
first results concerning the NLS equation date
back the works of Zakharov and Shabat in 1968
who solved it using the inverse scattering method
[6, 7]. The case of periodic and almost periodic
algebro-geometric solutions to the focusing NLS
equation were first constructed in 1976 by Its and
Kotlyarov [8, 9]. In 1977 Kuznetsov found the
first breather type solution of the NLS equation
[10]; a simular result was given by Ma [11] in
1979. The first quasi rational solutions to NLS
equation were constructed in 1983 by Peregrine
[12]. In 1986 Akhmediev, Eleonski and Kulagin
obtained the two-phase almost periodic solution
to the NLS equation and obtained the first higher
order analogue of the Peregrine breather [13].
Other analogues of Peregrine breathers of order
3 were constructed and initial data corresponding
to orders 4 and 5 were described in a series
of articles by Akhmediev et al., in particular in
[14, 15] using Darboux transformations.

Quite recently, many works about NLS equation
have been published using different methods.
In 2010, rational solutions to the NLS equation

were written as a quotient of two wronskians
[16]. In 2011, the present author constructed
in [17] another representation of the solutions
to the NLS equation in terms of a ratio of two
wronskians of even order 2N composed of
elementary functions using truncated Riemann
theta functions depending on two parameters;
rational solutions were obtained when some
parameter tended to 0. In 2012, Guo, Ling
and Liu found another representation of the
solutions as a ratio of two determinants [18]
using generalized Darboux transform; a new
approach was proposed by Ohta and Yang in [19]
using Hirota bilinear method; finally, the present
author has obtained rational solutions in terms of
determinants which do not involve limits in [20]
depending on two parameters.

With this extended method, we present multi-
parametric families of quasi rational solutions
to the focusing NLS equation of order N in
terms of determinants (determinants of order 2N )
dependent on 2N − 2 real parameters. With this
representation, at the same time the well-known
ring structure, but also the triangular shapes also
found by Ohta and Yang [19], Akhmediev et al.
[21] are given.

The aim of this paper is to prove the
representation of the solutions to the focusing
NLS equation depending this time on 2N − 2
parameters; the proof presented in this paper
with 2N − 2 parameters has been never
published. This is the first task of the paper;
then we deduce its particular degenerate
representations in terms of a ratio of two
determinants of order 2N . The second task of
the paper is to give the proof of the structure of
the solution at the order N as the ratio of two
polynomials of order N(N + 1) in x and t by an
exponential depending on t. This representation
makes possible to get all the possible patterns for
the solutions to the NLS equation. It is important
to stress that contrary to other methods, these
solutions depending on 2N − 2 parameters give
the Peregrine breather as particular case when
all the parameters are equal to 0 : for this reason,
these solutions will be called 2N − 2 parameters
deformations of the Peregrine of order N .

The paper is organized as follows. First of all, we
express the solutions of the NLS equation using
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Fredholm determinants from these expressed in
terms of truncated functions theta of Riemann
first obtained by Its, Rybin and Salle [9]; the
representation given in theorem 2.1 is different
from those given in [9]. From that, we prove
the representation of the solutions of the NLS
equation in terms of wronskians depending on
2N − 2 parameters. We deduce a degenerate
representation of solutions to the NLS equation
depending a priori on 2N − 2 parameters at the
order N .

Then we prove a theorem which states the
structure of the quasi-rational solutions to the
NLS equation. It was only conjectured in

preceding works [17, 20]. Families depending
on 2N − 2 parameters for the N -th order as a
ratio of two polynomials of x and t multiplied by
an exponential depending on t are obtained; it
is proved that each of these polynomials have a
degree equal to N(N + 1).

Finally, to prove the efficiency of this method,
we construct the Peregrine breather of order 11.
For reasons of place, one cannot thus give the
explicit expression of Peregrine breather of order
11; it is presented only graphically. To the best of
my knowledge, it is the first time that this solution
is presented.

2 Expression of Solutions to the NLS Equation in Terms
of Wronskians

2.1 Solutions to the NLS equation in terms of θ functions
For r = 1, 3, we define

θr(x, t) =
∑
k∈{0;1}2N exp

{∑2N
µ>ν, µ,ν=1 ln

(
γν−γµ
γν+γµ

)2
kµkν

+
(∑2N

ν=1 iκνx− 2δνt+ xr,ν +
∑2n
µ=1, µ ̸=ν ln

∣∣∣ γν+γµ
γν−γµ

∣∣∣+ πiϵν + eν
)
kν
}
,

(2.1)

In this formula, the symbol
∑
k∈{0;1}2N denotes summation over all 2N-dimensional vectors k whose

coordinates kν are either 0 or 1.
The terms κν , δν , γν and xr,ν are functions of the parameters λν , 1 ≤ ν ≤ 2N ; they are defined by
the formulas :

κν = 2
√
1− λ2

ν , δν = κνλν , γν =
√

1−λν
1+λν

,;

xr,ν = (r − 1) ln γν−i
γν+i

, r = 1, 3.
(2.2)

The parameters −1 < λν < 1, ν = 1, . . . , 2N , are real numbers such that

−1 < λN+1 < λN+2 < . . . < λ2N < 0 < λN < λN−1 < . . . < λ1 < 1
λN+j = −λj , j = 1, . . . , N.

(2.3)

The condition (2.3) implies that

κj+N = κj , δj+N = −δj+N , γj+N = γ−1
j , xr,j+N = xr,j , j = 1, . . . , N. (2.4)

Complex numbers eν 1 ≤ ν ≤ 2N are defined in the following way :

ej = iaj − bj , eN+j = iaj + bj , 1 ≤ j ≤ N, a, b ∈ R. (2.5)

ϵν ∈ {0; 1}, φ, ν = 1 . . . 2N are arbitrary real numbers.
With these notations, the solution of the NLS equation

ivt + vxx + 2|v|2v = 0, (2.6)

can be expressed as ([9])

v(x, t) =
θ3(x, t)

θ1(x, t)
exp(2it− iφ), (2.7)
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2.2 From θ functions to Fredholm determinants
To get Fredholm determinants, we have to express the functions θr defined in (2.1) in terms of subsets
of [1, .., 2N ]

θr(x, t) =
∑

J⊂{1,..,2N}

∏
ν∈J

(−1)ϵν
∏

ν∈J, µ/∈J

∣∣∣∣γν + γµ
γν − γµ

∣∣∣∣× exp

(∑
ν∈J

iκνx− 2δνt+ xr,ν + eν

)
. (2.8)

In (2.8), the symbol
∑
J⊂{1,..,2N} denotes summation over all subsets J of indices of the set {1, .., 2N}.

Let I be the unit matrix and Cr = (cjk)1≤j,k≤2N the matrix defined by :

cνµ = (−1)ϵν
∏
η ̸=µ |γν + γη|∏
η ̸=ν |γν − γη|

exp(iκνx− 2δνt+ xr,ν + eν), (2.9)

ϵj = j 1 ≤ j ≤ N, ϵj = N + j, N + 1 ≤ j ≤ 2N. (2.10)

Then det(I + Cr) has the following form

det(I + Cr) =
∑

J⊂{1,...,2N}

∏
ν∈J

(−1)ϵν
∏

ν∈J µ/∈J

∣∣∣∣γν + γµ
γν − γµ

∣∣∣∣ exp(iκνx− 2δνt+ xr,ν + eν). (2.11)

Comparing this last expression (2.11) with the formula (2.8) at the beginning of this section, we have
clearly the identity

θr = det(I + Cr). (2.12)

We can give another representation of the solutions to NLS equation. To do this, let’s consider the
matrix Dr = (djk)1≤j,k≤2N defined by :

dνµ = (−1)ϵν
∏
η ̸=µ

∣∣∣∣γη + γν
γη − γµ

∣∣∣∣ exp(iκνx− 2δνt+ xr,ν + eν). (2.13)

We have the equality det(I +Dr) = det(I +Cr), and so the solution of NLS equation takes the form

v(x, t) =
det(I +D3(x, t))

det(I +D1(x, t))
exp(2it− iφ). (2.14)

Theorem 2.1. The function v defined by

v(x, t) =
det(I +D3(x, t))

det(I +D1(x, t))
exp(2it− iφ). (2.15)

is a solution of the focusing NLS equation with the matrix Dr = (djk)1≤j,k≤2N defined by

dνµ = (−1)ϵν
∏
η ̸=µ

∣∣∣∣γη + γν
γη − γµ

∣∣∣∣ exp(iκνx− 2δνt+ xr,ν + eν).

where κν , δν , xr,ν , γν , eν being defined in(2.2), (2.3) and (2.5).

2.3 From Fredholm determinants to wronskians
We want to express solutions to NLS equation in terms of wronskian determinants. For this, we need
the following notations :

ϕr,ν = sinΘr,ν , 1 ≤ ν ≤ N, ϕr,ν = cosΘr,ν , N + 1 ≤ ν ≤ 2N, r = 1, 3, (2.16)
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with the arguments

Θr,ν = κνx/2 + iδνt− ixr,ν/2 + γνy − ieν/2, 1 ≤ ν ≤ 2N. (2.17)

We denote Wr(y) the wronskian of the functions ϕr,1, . . . , ϕr,2N defined by

Wr(y) = det[(∂µ−1
y ϕr,ν)ν, µ∈[1,...,2N ]]. (2.18)

We consider the matrix Dr = (dνµ)ν, µ∈[1,...,2N ] defined in (2.13). Then we have the following
statement

Theorem 2.2.

det(I +Dr) = kr(0)×Wr(ϕr,1, . . . , ϕr,2N )(0), (2.19)

where

kr(y) =
22N exp(i

∑2N
ν=1 Θr,ν)∏2N

ν=2

∏ν−1
µ=1(γν − γµ)

.

Proof : We start to remove the factor (2i)−1eiΘr,ν in each row ν in the wronskian Wr(y) for 1 ≤ ν ≤
2N .
Then

Wr =

2N∏
ν=1

eiΘr,ν (2i)−N (2)−N × W̃r, (2.20)

with

W̃r =

∣∣∣∣∣∣∣∣∣
(1− e−2iΘr,1) iγ1(1 + e−2iΘr,1) . . . (iγ1)

2N−1(1 + (−1)2Ne−2iΘr,1)
(1− e−2iΘr,2) iγ2(1 + e−2iΘr,2) . . . (iγ2)

2N−1(1 + (−1)2Ne−2iΘr,2)
...

...
...

...
(1− e−2iθr,2N ) iγ2N (1 + e−2iΘr,2N ) . . . (iγ2N )2N−1(1 + (−1)2ne−2iΘr,2N )

∣∣∣∣∣∣∣∣∣
The determinant W̃r can be written as

W̃r = det(αjkej + βjk),

where αjk = (−1)k(iγj)
k−1, ej = e−2iΘr,j , and βjk = (iγj)

k−1, 1 ≤ j ≤ N , 1 ≤ k ≤ 2N ,
αjk = (−1)k−1(iγj)

k−1, ej = e−2iΘr,j , and βjk = (iγj)
k−1, N + 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N .

We want to calculate W̃r. To do this, we use the following Lemma

Lemma 2.3. Let A = (aij)i, j∈[1,...,N ], B = (bij)i, j∈[1,...,N ],
(Hij)i, j∈[1,...,N ], the matrix formed by replacing in A the jth row of A by the ith row of B Then

det(aijxi + bij) = det(aij)× det(δijxi +
det(Hij)

det(aij)
) (2.21)

Proof : We use the classical notations : Ã = (ãji)i, j∈[1,...,N ] the transposed matrix in cofactors of A.
We have the well known formula A× Ã = detA× I.
So it is clear that det(Ã) = (det(A))N−1.
The general term of the product (cij)i,j∈[1,..,N ] = (aijxi + bij)i,j∈[1,..,N ] × (ãji)i,j∈[1,..,N ] can be
written as
cij =

∑N
s=1(aisxi + bis)× ãjs

= xi
∑n
s=1 aisãjs +

∑n
s=1 bisãjs
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= δij det(A)xi + det(Hij).
We get
det(cij) = det(aijxi + bij)× (det(A))N−1 = (det(A))N × det(δijxi +

det(Hij)

det(A)
).

Thus det(aijxi + bij) = det(A)× det(δijxi +
det(Hij)

det(A)
).

2.
We denote U = (αij)i, j∈[1,...,2N ], V = (βij)i, j∈[1,...,2N ].
By applying the previous lemma, one obtains :

W̃r = det(αijei + βij)

= det(αij)× det(δijei +
det(Hij)

det(αij)
) = det(U)× det(δijei +

det(Hij)

det(U)
),

(2.22)

where (Hij)i, j∈[1,...,N ] is the matrix formed by replacing in U the jth row of U by the ith row of V
defined previously.
The determinant of U of Vandermonde type is clearly equal to

det(U) = iN(2N−1)
∏

2N≥l>m≥1

(γl − γm). (2.23)

To calculate determinant W̃r, we must compute now det(Hij). To do that, two cases must be studied
:
1. For 1 ≤ j ≤ N . The matrix Hij is clearly of the VanderMonde type where the j-th row of U in U is
replaced by the i-th row of V . Clearly, we have :

det(Hij) = (−1)N(2N+1)+N−1(i)N(2N−1) ×M, (2.24)

where M = M(m1, . . . ,m2N ) is the Vandermonde determinant defined by mk = γk for k ̸= j and
mj = −γi. Thus we have :

det(Hij) = −(i)N(2N−1) ×
∏

2N≥l>k≥1, (ml −mk)

= −(i)N(2N−1) ×
∏

2N≥l>m≥1, l̸=j,m ̸=j(γl − γm)×
∏
l<j(−γi − γl)×

∏
l>j(γl + γi),

= (−1)j(i)N(2N−1) ×
∏

2N≥l>m≥1, l ̸=j,m ̸=j(γl − γm)×
∏
l̸=j(γl + γi).

(2.25)

To evaluate W̃r, we must simplify the quotient qij :=
det(Hij)

det(U)
:

qij =
(−1)j(i)N(2N−1)×

∏
2N≥l>m≥1, l ̸=j,m ̸=j(γl−γm)×

∏
l̸=j(γl+γi)

iN(2N−1)
∏

2N≥l>m≥1(γl−γm)

=
(−1)j

∏
l̸=j(γl+γi)∏

l<j(γj−γl)
∏

l>j(γl−γj)
=

(−1)j
∏

l̸=j(γl+γi)

(−1)j−1
∏

l̸=j(γl−γj)
= −

∏
l ̸=j(γl+γi)∏
l̸=j(γl−γj)

.

(2.26)

We can replace qij by rij defined by −
∏

l ̸=j(γl+γi)∏
l ̸=i(γl−γi)

, because det(δijxi+
det(qij)

det(A)
) = det(δijxi+

det(rij)

det(A)
)

(similar matrices).
We express rij in terms of absolute value; as j ∈ [1;N ] and 0 < γ1 < . . . < γN < 1 < γ2N < . . . <
γN+1, we have :∏

l̸=i(γl − γi) = (−1)i−1∏
l̸=i |γl − γi| ,

∏
l̸=j(γl + γi) =

∏
l ̸=j |γl + γi| . (2.27)

So the term rij can be written as

rij = (−1)i
∏

l̸=j |γl+γi|∏
l̸=i|γl−γi|

= (−1)ϵ(i)
∏

l̸=j |γl+γi|∏
l̸=i|γl−γi|

= cije
−2iΘr,i(0), (2.28)

with respect to the notations given in (2.10) and (2.13).
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2. The same estimations for N + 1 ≤ j ≤ 2N are made; detHij is first

det(Hij) = (−1)N(2N+1)+N−1(i)N(2N−1) ×M, (2.29)

with M = M(m1, . . . ,m2N ) the Vandermonde determinant defined by mk = γk for k ̸= j and
mj = −γi. Thus we have :

det(Hij) = (i)N(2N−1) ×
∏

2N≥l>k≥1, (ml −mk)

= (i)N(2N−1) ×
∏

2N≥l>m≥1, l ̸=j,m ̸=j(γl − γm)×
∏
l<j(−γi − γl)×

∏
l>j(γl + γi),

= (−1)j−1(i)N(2N−1) ×
∏

2N≥l>m≥1, l̸=j,m ̸=j(γl − γm)×
∏
l̸=j(γl + γi).

(2.30)

The quotient qij :=
det(Hij)

det(U)
equals :

qij =
(−1)j−1(i)N(2N−1)×

∏
2N≥l>m≥1, l̸=j,m ̸=j(γl−γm)×

∏
l ̸=j(γl+γi)

iN(2N−1)
∏

2N≥l>m≥1(γl−γm)

=
(−1)j−1 ∏

l ̸=j(γl+γi)∏
l<j(γj−γl)

∏
l>j(γl−γj)

=
(−1)j−1 ∏

l̸=j(γl+γi)

(−1)j−1
∏

l ̸=j(γl−γj)
=

∏
l ̸=j(γl+γi)∏
l̸=j(γl−γj)

.

(2.31)

We replace qij by rij defined by
∏

l̸=j(γl+γi)∏
l̸=i(γl−γi)

, for the same reason as previously exposed.
rij is expressed in terms of absolute value; as j ∈ [N + 1; 2N ] and 0 < γ1 < . . . < γN < 1 < γ2N <
. . . < γN+1, we have :∏

l̸=i(γl − γi) = (−1)2N−i+N ∏
l̸=i |γl − γi| ,

∏
l̸=j(γl + γi) =

∏
l̸=j |γl + γi| . (2.32)

So the term rij can be written as

rij = (−1)N+i
∏

l̸=j |γl+γi|∏
l̸=i|γl−γi|

= (−1)ϵ(i)
∏

l̸=j |γl+γi|∏
l̸=i|γl−γi|

= cije
−2iΘr,i(0), (2.33)

with respect to the notations given in (2.10) and (2.13).
Replacing ei by e−2iΘr,i , det W̃r can be expressed as

det W̃r = det(U)× det(δijei +
det(Hij)

det(U)
) = det(U)× det(δijei + rij)

= det(U)
∏2N
i=1 e

−2iΘi det(δij + (−1)ϵ(i)
∏
l̸=i

∣∣∣ γl+γiγl−γi

∣∣∣ e2iΘr,i).
(2.34)

We estimate the two members of the last relation (2.34) in y = 0, and using (2.23) we obtain the
following result

det W̃r(0) = iN(2N−1)∏
2N≥l>m≥1(γl − γm)

∏2N
i=1 e

−2iΘr,i(0)

×det(δij + (−1)ϵ(i)
∏
l̸=i

∣∣∣ γl+γiγl−γi

∣∣∣ e2iΘr,i(0))

= iN(2N−1)∏2N
j=2

∏j−1
i=1 (γj − γi)e

−2i
∑2N

i=1 Θr,i(0) det(δij + cij)

= iN(2N−1)∏2N
j=2

∏j−1
i=1 (γj − γi)e

−2i
∑2N

i=1 Θr,i(0) det(I + Cr)

= iN(2N−1)∏2N
j=2

∏j−1
i=1 (γj − γi)e

−2i
∑2N

i=1 Θr,i(0) det(I +Dr).

(2.35)

Therefore, the wronskian Wr given by (2.20 ) can be written as

Wr(ϕr,1, . . . , ϕr,2N )(0) =
∏2N
j=1 e

iΘr,j(0)(2)−2N (i)−N × W̃r

=
∏2N
j=1 e

iΘr,j(0)(2)−2N (i)−N iN(2N−1)∏2N
j=2

∏j−1
i=1 (γj − γi)e

−2i
∑2N

i=1 Θr,i(0) det(I +Dr)

= (2)−2N ∏2N
j=2

∏j−1
i=1 (γj − γi)e

−i
∑2N

i=1 Θr,i(0) det(I +Dr).

(2.36)
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As a consequence

det(I +Dr) = kr(0)Wr(ϕ1, . . . , ϕ2N )(0). (2.37)

2.4 Wronskian representation of solutions to the NLS equation
From the initial formulation (2.15) we have

v(x, t) =
det(I +D3(x, t))

det(I +D1(x, t))
exp(2it− iφ).

Using (2.19), the following relation between Fredholm determinants and wronskians is obtained

det(I +D3) = k3(0)×W3(ϕr,1, . . . , ϕr,2N )(0)

and
det(I +D3) = k3(0)×W3(ϕr,1, . . . , ϕr,2N )(0).

As Θ3,j(0) contains N terms x3,j 1 ≤ j ≤ N and N terms −x3,j 1 ≤ j ≤ N , we have the equality
k3(0) = k1(0), and we get the following result :

Theorem 2.4. The function v defined by

v(x, t) =
W3(ϕ3,1, . . . , ϕ3,2N )(0)

W1(ϕ1,1, . . . , ϕ1,2N )(0)
exp(2it− iφ).

is a solution of the focusing NLS equation depending on two real parameters a and b with ϕrν defined
in (2.16)

ϕr,ν = sin(κνx/2 + iδνt− ixr,ν/2 + γνy − ieν/2), 1 ≤ ν ≤ N,
ϕr,ν = cos(κνx/2 + iδνt− ixr,ν/2 + γνy − ieν/2), N + 1 ≤ ν ≤ 2N, r = 1, 3,

κν , δν , xr,ν , γν , eν being defined in(2.2), (2.3) and (2.5).

3 Families of Multi-parametric Solutions to the NLS Equa-
tion in Terms of a Ratio of Two Determinants

Solutions to the NLS equation as a quotient of two determinants are constructed.
Similar functions defined in a preceding work [20] are used, but modified as explained in the following.
The following notations are needed :

Xν = κνx/2 + iδνt− ix3,ν/2− ieν/2,

Yν = κνx/2 + iδνt− ix1,ν/2− ieν/2,

for 1 ≤ ν ≤ 2N , with κν , δν , xr,ν defined in (2.2).
Parameters eν are defined by (2.5).
Here, is the crucial point : we choose the parameters aj and bj in the form

aj =

N−1∑
k=1

ãkj
2k+1ϵ2k+1, bj =

N−1∑
k=1

b̃kj
2k+1ϵ2k+1, 1 ≤ j ≤ N. (3.1)

Below the following functions are used :

φ4j+1,k = γ4j−1
k sinXk, φ4j+2,k = γ4j

k cosXk,

φ4j+3,k = −γ4j+1
k sinXk, φ4j+4,k = −γ4j+2

k cosXk,
(3.2)
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for 1 ≤ k ≤ N , and

φ4j+1,N+k = γ2N−4j−2
k cosXN+k, φ4j+2,N+k = −γ2N−4j−3

k sinXN+k,

φ4j+3,N+k = −γ2N−4j−4
k cosXN+k, φ4j+4,N+k = γ2N−4j−5

k sinXN+k,
(3.3)

for 1 ≤ k ≤ N .
We define the functions ψj,k for 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N in the same way, the term Xk is only
replaced by Yk.

ψ4j+1,k = γ4j−1
k sinYk, ψ4j+2,k = γ4j

k cosYk,

ψ4j+3,k = −γ4j+1
k sinYk, ψ4j+4,k = −γ4j+2

k cosYk,
(3.4)

for 1 ≤ k ≤ N , and

ψ4j+1,N+k = γ2N−4j−2
k cosYN+k, ψ4j+2,N+k = −γ2N−4j−3

k sinYN+k,

ψ4j+3,N+k = −γ2N−4j−4
k cosYN+k, ψ4j+4,N+k = γ2N−4j−5

k sinYN+k,
(3.5)

for 1 ≤ k ≤ N .
Then it is clear that

q(x, t) :=
W3(0)

W1(0)

can be written as

q(x, t) =
∆3

∆1
=

det(φj,k)j, k∈[1,2N ]

det(ψj,k)j, k∈[1,2N ]

. (3.6)

We recall that λj = 1 − 2jϵ2. All the functions φj,k and ψj,k and their derivatives depend on ϵ and
can all be prolonged by continuity when ϵ = 0.
Then the following expansions are used

φj,k(x, t, ϵ) =

N−1∑
l=0

1

(2l)!
φj,1[l]k

2lϵ2l +O(ϵ2N ), φj,1[l] =
∂2lφj,1
∂ϵ2l

(x, t, 0),

φj,1[0] = φj,1(x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N − 1,

φj,N+k(x, t, ϵ) =

N−1∑
l=0

1

(2l)!
φj,N+1[l]k

2lϵ2l +O(ϵ2N ), φj,N+1[l] =
∂2lφj,N+1

∂ϵ2l
(x, t, 0),

φj,N+1[0] = φj,N+1(x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N − 1.

We have the same expansions for the functions ψj,k.

ψj,k(x, t, ϵ) =

N−1∑
l=0

1

(2l)!
ψj,1[l]k

2lϵ2l +O(ϵ2N ), ψj,1[l] =
∂2lψj,1
∂ϵ2l

(x, t, 0),

ψj,1[0] = ψj,1(x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N − 1,

ψj,N+k(x, t, ϵ) =

N−1∑
l=0

1

(2l)!
ψj,N+1[l]k

2lϵ2l +O(ϵ2N ), ψj,N+1[l] =
∂2lψj,N+1

∂ϵ2l
(x, t, 0),

ψj,N+1[0] = ψj,N+1(x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, N + 1 ≤ k ≤ 2N..

Then we get the following result :
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Theorem 3.1. The function v defined by

v(x, t) = exp(2it− iφ)×
det((njk)j,k∈[1,2N]

)

det((djk)j,k∈[1,2N]
)

(3.7)

is a quasi-rational solution of the NLS equation (2.6)

ivt + vxx + 2|v|2v = 0,

where

nj1 = φj,1(x, t, 0), 1 ≤ j ≤ 2N njk =
∂2k−2φj,1

∂ϵ2k−2 (x, t, 0),

njN+1 = φj,N+1(x, t, 0), 1 ≤ j ≤ 2N njN+k =
∂2k−2φj,N+1

∂ϵ2k−2 (x, t, 0),

dj1 = ψj,1(x, t, 0), 1 ≤ j ≤ 2N djk =
∂2k−2ψj,1

∂ϵ2k−2 (x, t, 0),

djN+1 = ψj,N+1(x, t, 0), 1 ≤ j ≤ 2N djN+k =
∂2k−2ψj,N+1

∂ϵ2k−2 (x, t, 0),
2 ≤ k ≤ N, 1 ≤ j ≤ 2N

The functions φ and ψ are defined in (3.2),(3.3), (3.4), (3.5).

Proof : The columns of the determinants appearing in q(x, t) are combined successively to eliminate
in each column k (and N + k) of them the powers of ϵ strictly inferior to 2(k − 1); then each common
term in numerator and denominator is factorized and simplified; finally we take the limit when ϵ goes
to 0.
Precisely, first of all, the components j of the columns 1 and N+1 are respectively equal by definition
to φj1[0] + 0(ϵ) for C1, φjN+1[0] + 0(ϵ) for CN+1 of ∆3, and ψj1[0] + 0(ϵ) for C′

1, ψjN+1[0] + 0(ϵ) for
C′
N+1 of ∆1.

At the first step of the reduction, we replace the columns Ck by Ck − C1 and CN+k by CN+k −
CN+1 for 2 ≤ k ≤ N , for ∆3; the same changes for ∆1 are done. Each component j of the
column Ck of ∆3 can be rewritten as

∑N−1
l=1

1
(2l)!

φj,1[l](k
2l − 1)ϵ2l and the column CN+k replaced

by
∑N−1
l=1

1
(2l)!

φj,N+1[l](k
2l − 1)ϵ2l for 2 ≤ k ≤ N . For ∆1, we have the same reductions, each

component j of the column C′
k can be rewritten as

∑N−1
l=1

1
(2l)!

ψj,1[l](k
2l − 1)ϵ2l and the column

C′
N+k replaced by

∑N−1
l=1

1
(2l)!

ψj,N+1[l](k
2l − 1)ϵ2l for 2 ≤ k ≤ N .

The term k2−1
2
ϵ2 for 2 ≤ k ≤ N can factorized in ∆3 and ∆1 in each column k and N + k , and so

these common terms can be simplified in numerator and denominator.
If we restrict the developments at order 1 in columns 2 and N+2, we get respectively φj1[1]+0(ϵ) for
component j of C2, φjN+1[1] + 0(ϵ) for component j of CN+2 of ∆3, and ψj1[1] + 0(ϵ) for component
j of C′

2, ψjN+1[1] + 0(ϵ) for component j of C′
N+2 of ∆1. This algorithm can be continued up to the

columns CN , C2N of ∆3 and C′
N , C′

2N of ∆1.
Then taking the limit when ϵ tends to 0, q(x, t) can be replaced by Q(x, t) defined by :

Q(x, t) :=

∣∣∣∣∣∣∣∣∣
φ1,1[0] . . . φ1,1[N − 1] φ1,N+1[0] . . . φ1,N+1[N − 1]
φ2,1[0] . . . φ2,1[N − 1] φ2,N+1[0] . . . φ2,N+1[N − 1]

...
...

...
...

...
...

φ2N,1[0] . . . φ2N,1[N − 1] φ2N,N+1[0] . . . φ2N,N+1[N − 1]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ψ1,1[0] . . . ψ1,1[N − 1] ψ1,N+1[0] . . . ψ1,N+1[N − 1]
ψ2,1[0] . . . ψ2,1[N − 1] ψ2,N+1[0] . . . ψ2,N+1[N − 1]

...
...

...
...

...
...

ψ2N,1[0] . . . ψ2N,1[N − 1] ψ2N,N+1[0] . . . ψ2N,N+1[N − 1]

∣∣∣∣∣∣∣∣∣

(3.8)

So the solution of the NLS equation takes the form :

v(x, t) = exp(2it− iφ)×Q(x, t)
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So we get the result given in (3.7). 2

4 Families of Quasi-rational Solutions of Order N Depend-
ing on 2N − 2 Parameters

Here a theorem which states the structure of the quasi-rational solutions to the NLS equation is given.
It was only conjectured in preceding works [17, 20]. Moreover we obtain here families depending
on 2N − 2 parameters for the N th-order Peregrine breather including families with 2 parameters
constructed in preceding works and so we get other symmetries in these deformations than those
were expected.
In this section we use the notations defined in the previous sections. The functions φ and ψ are
defined in (3.2), (3.3), (3.4), (3.5).

Theorem 4.1. The function v defined by

v(x, t) = exp(2it− iφ)×
det((njk)j,k∈[1,2N]

)

det((djk)j,k∈[1,2N]
)

(4.1)

is a quasi-rational solution of the NLS equation (2.6) quotient of two polynomials N(x, t) and D(x, t)
depending on 2N − 2 real parameters ãj and b̃j , 1 ≤ j ≤ N − 1.
N and D are polynomials of degrees N(N + 1) in x and t.

Proof : From the previous result (3.8), we need to analyze functions φk,1, ψk,1 and φk,N+1,
ψk,N+1. Functions φk,j and ψk,j differ only by the term of the argument x3,k, so only the study of
functions φk,j will be carried out. Then the study of functions ψk,j can be easily deduced from the
analysis of φk,j .
The expansions of these functions in ϵ are studied. We denote (lkj)k,j∈[1,2N ] the matrix defined by

lkj =
∂2j−2

∂ϵ2j−2
φk1, lk,j+N =

∂2j−2

∂ϵ2j−2
φk,1+N , 1 ≤ j ≤ N, 1 ≤ k ≤ 2N,

∂0

∂x0
φ meaning φ. Each coefficient of the matrix (lkj)k,j∈[1,2N ] must be evaluated, the power of x and

t in the coefficient of ϵ2(m−1) for the column m ∈ [1, 2N ]. We remark that with these notations, the
matrix (lkj)k,j∈[1,2N ] evaluated in ϵ = 0 is exactly (nkj)k,j∈[1,2N ] defined in (3.8). Four cases must be
studied depending on the parity of k.
1. We study lk1 for k odd, k = 2s+ 1.

lk1 = (−1)s sin(2ϵ(1− ϵ2)
1
2 x+ 4iϵ(1− ϵ2)

1
2 (1− 2ϵ2)t

−i ln 1 + iϵ(1− ϵ2)−
1
2

1− iϵ(1− ϵ2)−
1
2

− e1)× ϵk−2(1− ϵ2)−
k−2
2

= (−1)s sin ϵ(

p∑
l=0

c2lϵ
2lx+ 2i

p∑
l=0

c2lϵ
2l(1− 2ϵ2)t+ 2

p∑
l=0

(−1)lϵ2l
(1− ϵ2)−

2l+1
2

(2l + 1)

−
N−1∑
l=1

ãlϵ
2l + i

N−1∑
l=1

b̃lϵ
2l +O(ϵp+1))× ϵk−2(

r∑
l=1

g2lϵ
2l +O(ϵr+1))

= (−1)s sin ϵ(

p∑
l=0

(c2lx+ d2lt+ f2l +O(ϵp+1))ϵ2l)× ϵk−2(

r∑
l=1

g2lϵ
2l +O(ϵr+1))
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=

q∑
l=0

(−1)l+sϵ2l

(2l + 1)!
(

p∑
n=0

(c2nx+ d2nt+ f2n +O(ϵp+1))ϵ2n)2l+1 × ϵk−1(

r∑
l=1

g2lϵ
2l +O(ϵr+1))

=

q∑
l=0

(−1)l+sϵ2l

(2l + 1)!
(

p∑
n=0

Pn(x, t)ϵ
2n)2l+1 × ϵk−1

r∑
l=1

g2lϵ
2l +O(ϵt)

where Pn(x, t) is a polynomial of order 1 in x and t.

lk,1 =

q∑
l=0

ϵ2l
∑

α0+...+αp=2l+1

βα0,...,αpP0(x, t)
α0 . . . Pp(x, t)

αpϵ2(α1+2α2+pαp) × ϵ2s
r∑
l=1

g2lϵ
2l +O(ϵt)

=

q∑
l=0

ϵ2l
∑

α0+...+αp=2l+1

Qα0,...,αp(x, t)ϵ
2(α1+2α2+pαp) × ϵ2s

r∑
l=1

g2lϵ
2l +O(ϵt),

where Qα0,...,αp(x, t) is a polynomial of order 2l + 1 in x and t.
The terms in ϵ0 are obtained for l = 0 in the two summations with α0 = 1.
For column m, we search the terms in ϵ2m−2 with the maximal power in x and t. It is obtained for
2l + k − 1 = 2m− 2, which gives l = m− s− 1.
The notations given in (3.7) are used. We get the following result

Proposition 4.1.

deg(n2s+1,m) = 2(m− s)− 1 for s ≤ m− 1, n2s+1,m = 0 for s ≥ m. (4.2)

2. We study lk1 for k even, k = 2s.

lk1 = (−1)s+1 cos(2ϵ(1− ϵ2)
1
2 x+ 4iϵ(1− ϵ2)

1
2 (1− 2ϵ2)t

−i ln 1 + iϵ(1− ϵ2)−
1
2

1− iϵ(1− ϵ2)−
1
2

− e1)× ϵk−2(1− ϵ2)−
k−2
2

= (−1)s+1 cos ϵ(

p∑
l=0

c2lϵ
2lx+ 2i

p∑
l=0

c2lϵ
2l(1− 2ϵ2)t+ 2

p∑
l=0

(−1)lϵ2l
(1− ϵ2)−

2l+1
2

(2l + 1)

−
N−1∑
l=1

ãlϵ
2l + i

N−1∑
l=1

b̃lϵ
2l +O(ϵp+1))× ϵk−2(

r∑
l=1

g2lϵ
2l +O(ϵr+1))

= (−1)s+1 cos ϵ(

p∑
l=0

(c2lx+ d2lt+ f2l +O(ϵp+1))ϵ2l)× ϵk−2(

r∑
l=1

g2lϵ
2l +O(ϵr+1))

=

q∑
l=0

(−1)l+d+1ϵ2l

(2l)!
(

p∑
n=0

(c2nx+ d2nt+ f2n +O(ϵp+1))ϵ2n)2l × ϵk−2(

r∑
l=1

g2lϵ
2l +O(ϵr+1))

=

q∑
l=0

(−1)l+s+1ϵ2l

(2l)!
(

p∑
n=0

Pn(x, t)ϵ
2n)2l × ϵ2s−2

r∑
l=1

g2lϵ
2l +O(ϵt)

where Pn(x, t) is a polynomial of order 1 in x and t.

lk,1 =

q∑
l=0

ϵ2l
∑

α0+...+αp=2l

βα0,...,αpP0(x, t)
α0 . . . Pp(x, t)

αpϵ2(α1+2α2+pαp) × ϵ2s−2
r∑
l=1

g2lϵ
2l +O(ϵt)

=

q∑
l=0

ϵ2l
∑

α0+...+αp=2l

Qα0,...,αp(x, t)ϵ
2(α1+2α2+pαp) × ϵ2s−2

r∑
l=1

g2lϵ
2l +O(ϵt),
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where Qα0,...,αp(x, t) is a polynomial of order 2l in x and t.
The terms in ϵ0 are obtained for l = 0 in the two summations with α0 = 1.
For column m, we search the terms in ϵ2m−2 with the maximal power in x and t. It is obtained for
2l + k − 2 = 2m− 2, which gives l = m− s.
With the notations given in (3.7), we have

Proposition 4.2.

deg(n2s,m) = 2(m− s) for s ≤ m, n2s,m = 0 for s > m. (4.3)

3. We study lkM
2

+1 for k odd, k = 2s+ 1.

lkM
2

+1 = (−1)s cos(2ϵ(1− ϵ2)
1
2 x− 4iϵ(1− ϵ2)

1
2 (1− 2ϵ2)t+ i ln

1 + iϵ(1− ϵ2)−
1
2

1− iϵ(1− ϵ2)−
1
2

− eM
2

+1)

×ϵM−k−1(1− ϵ2)−
M−k−1

2

= (−1)s(cos ϵ(

p∑
l=0

c2lϵ
2lx− 2i

p∑
l=0

c2lϵ
2l(1− 2ϵ2)t− 2

p∑
l=0

(−1)lϵ2l
(1− ϵ2)−

2l+1
2

(2l + 1)

−
N−1∑
l=1

ãlϵ
2l + i

N−1∑
l=1

b̃lϵ
2l +O(ϵp+1))× ϵM−k−1(

r∑
l=1

g2lϵ
2l +O(ϵr+1))

= (−1)s(cos ϵ(

p∑
l=0

(c2lx+ d2lt+ f2l)ϵ
2l +O(ϵp+1))× ϵM−k−1(

r∑
l=1

g2lϵ
2l +O(ϵr+1))

=

q∑
l=0

(−1)l+sϵ2l

(2l)!
(

p∑
n=0

(c2nx+ d2nt+ f2n +O(ϵp+1))ϵ2n)2l × ϵM−k−1(

r∑
l=1

g2lϵ
2l +O(ϵr+1))

=

q∑
l=0

(−1)l+sϵ2l

(2l)!
(

p∑
n=0

Pn(x, t)ϵ
2n +O(ϵp+1))2l × ϵM−2s−2(

r∑
l=1

g2lϵ
2l +O(ϵr+1))

where Pn(x, t) is a polynomial of order 1 in x and t.

lk,M
2

+1 =

q∑
l=0

ϵ2l
∑

α0+...+αp=2l

βα0,...,αpP0(x, t)
α0

. . . Pp(x, t)
αpϵ2(α1+2α2+pαp) × ϵM−2s−2

r∑
l=1

g2lϵ
2l +O(ϵt)

=

q∑
l=0

ϵ2l
∑

α0+...+αp=2l

Qα0,...,αp(x, t)ϵ
2(α1+2α2+pαp) × ϵM−2s−2

r∑
l=1

g2lϵ
2l +O(ϵt),

where Qα0,...,αp(x, t) is a polynomial of order 2l in x and t.
The terms in ϵ0 (column M

2
+ 1) are obtained for l = 0 in the two summations with α0 = 1.

For column M
2

+m, we search the terms in ϵ2m−2 with the maximal power in x and t. It is obtained
for 2l + 2(N − s− 1) = 2m− 2, which gives l = m+ s−N .
Then we get the following result

Proposition 4.3.

deg(n2s+1,m+M
2
) = 2m+ 2s−M for s ≥ M

2
−m, n2s+1,m = 0 for s <

M

2
−m. (4.4)
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4. We study lk,1+M
2

for k even, k = 2s.

lkM
2

+1 = (−1)s sin(2ϵ(1− ϵ2)
1
2 x− 4iϵ(1− ϵ2)

1
2 (1− 2ϵ2)t+ i ln

1 + iϵ(1− ϵ2)−
1
2

1− iϵ(1− ϵ2)−
1
2

− eM
2

+1)

×ϵM−k−1(1− ϵ2)−
M−k−1

2

= (−1)s sin ϵ(

p∑
l=0

c2lϵ
2lx− 2i

p∑
l=0

c2lϵ
2l(1− 2ϵ2)t− 2

p∑
l=0

(−1)lϵ2l
(1− ϵ2)−

2l+1
2

(2l + 1)

−
N−1∑
l=1

ãlϵ
2l + i

N−1∑
l=1

b̃lϵ
2l +O(ϵp+1))× ϵM−k−1(

r∑
l=1

g2lϵ
2l +O(ϵr+1))

= (−1)s sin ϵ(

p∑
l=0

(c2lx+ d2lt+ f2l)ϵ
2l +O(ϵp+1))× ϵM−k−1(

r∑
l=1

g2lϵ
2l +O(ϵr+1))

=

q∑
l=0

(−1)l+sϵ2l

(2l + 1)!
(

p∑
n=0

(c2nx+ d2nt+ f2n +O(ϵp+1))ϵ2n)2l+1 × ϵM−k(

r∑
l=1

g2lϵ
2l +O(ϵr+1))

=

q∑
l=0

(−1)l+sϵ2l

(2l + 1)!
(

p∑
n=0

Pn(x, t)ϵ
2n +O(ϵp+1))2l+1 × ϵM−2s(

r∑
l=1

g2lϵ
2l +O(ϵr+1))

where Pn(x, t) is a polynomial of order 1 in x and t.

lk,1 =

q∑
l=0

ϵ2l
∑

α0+...+αp=2l+1

βα0,...,αpP0(x, t)
α0

. . . Pp(x, t)
αpϵ2(α1+2α2+pαp) × ϵM−2s

r∑
l=1

g2lϵ
2l +O(ϵt)

=

q∑
l=0

ϵ2l
∑

α0+...+αp=2l+1

Qα0,...,αp(x, t)ϵ
2(α1+2α2+pαp) × ϵM−2s

r∑
l=1

g2lϵ
2l +O(ϵt),

where Qα0,...,αp(x, t) is a polynomial of order 2l + 1 in x and t.
The terms in ϵ0 are obtained for l = 0 in the two summations with α0 = 1.
For column M

2
+m, we search the terms in ϵ2m−2 with the maximal power in x and t. It is obtained

for 2l +M − k = 2m− 2, which gives l = m+ s−N − 1.
Using the notations given in (3.7), we get the following result

Proposition 4.4.

deg(n2s,m+M
2
) = 2m+ 2s−M − 1 for s ≥ M

2
+ 1−M,

n2s,m+M
2

= 0 for s < M
2
+ 1−m.

(4.5)

These results can be rewritten in the following way

Proposition 4.5.

deg(nj,k) = 2k − j for j ≤ 2k,
nj,k = 0 for j > 2k,
deg(nj,k) = 2k + j − 2M − 1 for j ≥ 2M + 1− 2k,
nj,k = 0 for j < 2M + 1− 2k.

(4.6)
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The degree of the determinant of the matrix (nkj)k,j∈[1,2N ] can now be evaluated.
From the previous analysis, we see that x and t have necessarily the same power in each nkj . The
maximal power in x and t, is successively taken in each column. It is realized by the following product

N∏
j=1

nj,j

N∏
j=1

nN+j,2N+1−j .

Applying the result given in (4.6) we get

deg(det(nkj)k,j∈[1,2N ]) =
N∑
j=1

deg(nj,j) +
N∑
j=1

deg(nN+j,2N+1−j)

=
N∑
j=1

2j − j +
N∑
j=1

2(M + 1− j)− 2M − 1 +
M

2
+ j

=

N∑
j=1

j +

N∑
j=1

N + 1− j = N(N + 1).

It is the same for determinant det(dkj)k,j∈[1,2N ], we have deg(det(dkj)k,j∈[1,2N ])
= N(N + 1).
Thus the quotient

det((nkj)j,k∈[1,2N]
)

det((dkj)j,k∈[1,2N]
)

defines a quotient of two polynomials, each of them of degree N(N + 1), and this proves the result.
Parameters a1 =

∑N−1
k=1 ãkϵk and a1 =

∑N−1
k=1 ãkϵk must be chosen in the following way.

The term ϵk must be a power of ϵ to get a nontrivial solution; ϵk must be a strictly positive number a
in order to have a finite limit when ϵ goes to 0. If the power of ϵ is superior to 2N − 2, the derivations
going up to 2N − 2, then this coefficient becomes 0 when the limit is taken when ϵ goes to 0 and so
has no relevance in the expression of the limit.

5 The Peregrine Breather of Order 11
It is important to say that, contrary to the P1 breather, all higher ranks PN breathers can be obtained
by deformation of multi-parameters solutions. It is fundamental to stress that with this method, we
can get very easily the PN breather : it is sufficient to take all parameters equal to 0.

Actually N = 11 is a greatest rank for which the solution is given. We get explicitly solutions in terms
of a ratio of two polynomials of degree 132 in x and t by an exponential depending on time. We
don’t have the space to present it here. We postpone to give a more precise study of this eleventh
Peregrine breather and its 20 parameters deformations to another publication.
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Figure 1. Solution to NLS equation, N = 11, v(x, 0).

Figure 2. Solution to NLS equation, N = 11, v(0, t).

Figure 3. Solution to NLS equation, N = 11, v(x, t).
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6 Conclusions

Here we proved the structure of quasi-rational
solutions to the one dimensional focusing NLS
equation at order N . They can be expressed as
a product of an exponential depending on t by a
ratio of two polynomials of degree N(N + 1)
in x and t. If we choose ãi = b̃i = 0 for
1 ≤ i ≤ N−1, we obtain the classical (analogue)
Peregrine breather. Thus these solutions appear
as 2N − 2-parameters deformations of the
Peregrine breather of order N .

The solutions for orders 3 and 4 first found by
Matveev have also been explicitly found by the
present author [22, 23]. We have also explicitly
found the solutions at order 5 with 8 parameters
[24]: these expressions are too extensive to be
presented : it takes 14049 pages! For other
orders 6, 7, 8, the solutions are also explicitly
found but are too long to be published in any
review. In the relative works [25, 26, 27, 28, 29]
only the analysis has been done and figures
of deformations of the Peregrine breathers has
been realized. The solutions for order 9 with 16
parameters [28] and respectively for order 10 with
18 parameters are also completely found [29].

We still insist on the fact that quasi rational
solutions of NLS equation can be expressed as a
quotient of two polynomials of degree N(N + 1)
in x and t dependent on 2N − 2 real parameters
by an exponential depending on time. Among
these aforementioned solutions of order N , there
is one which has the largest module : it is the
solution obtained in this representation when
all the parameters are equal to 0; one obtains
the Peregrine breather order N . His importance
is due to the fact that among the solutions of
order N , its module is largest, equal to 2N + 1.
This result first formulated by Akhmediev has just
been proved recently [30].

In the recent studies proposed by the author,
the solutions of order N can be represented
by their module in the plane (x; t). With
the representation given in this article, one
obtains at order N , the configurations containing
N(N + 1)/2 peaks, except the special case
of Peregrine breather. These configurations
can be classified according to the values of
the parameters ai or bi for i varying between

1 and N − 1. It is important to note that the
role played by ai or bi for a given index i is the
same one, in obtaining the configurations. The
study refers to the analysis of the solutions when
only one of the parameters is not equal to 0.
Among these solutions, one distinguishes two
types of configurations; for a1 or b1 not equal
to 0, one observes triangular configurations with
N(N+1)/2 peaks. For ai or bi not equal to 0 and
2 ≤ i ≤ N − 1, one observes concentric rings.
The simplest structure is obtained for aN−1 or
bN−1 not equal to 0 : one obtains only one ring
of 2N − 1 peaks with in his center Peregrine
breather of order N − 2; this fact was also first
formulated by Akhmediev. The detailed study of
the other structures is being analyzed. We hope
to be able to give results soon.

We can conclude that the method described in
the present paper provides a very efficient and
powerful tool to get explicit solutions to the NLS
equation and to understand the behavior of rogue
waves.

There are currently many applications in different
fields as recent works by Akhmediev et al. [31] or
Kibler et al. [32] attest it in particular.

This study leads to a better understanding of the
phenomenon of rogue waves, and it would be
relevant to go on with higher orders.
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