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Abstract

In this work, we study linear systems with Mass, Dampkorce, Gyroscopic Force, Stiffness and
Circulatory Force (MDGKN systems) with control paramgtdihe relationship between the parameters
determines the stability or otherwise of the system. Oyepunov direct method is used to analyse
MDGKN system. Stability theorem for determining thahslity or otherwise of MDGKN is formulated.
The results are illustrated on a 2x2 and a 3x3 matrix systerskow the effectiveness of the results
obtained.
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1 Introduction

Linear systems involving Mass, Damping Force, Gyroscopicd; Stiffness and Circulatory Force describe
the damped gyroscopic system with circulatory effect knowth@dMDGKN systems. These systems arise
in the modeling of mechanical systems with followercés, in formulation of rotor systems with internal

damping and with sliding bearings, in turbines with unsymigcedtsteam flow, in articulated pipes, etc [1].

For almost a century it has been well known that circwaforces can cause instabilities [2]. In many
engineering and physical applications, it is vital tiw how the stability is improved or destroyed when
these forces are taken into account [3-9]. In this wokk,study the stability properties of the MDGKN

systems and formulate stability theorem for determittiegstability or otherwise of MDGKN systems with

control parameters. Examples are given to demonstrateesults obtained.

2 Methodology

Consider the non-conservative linear system of the form
MX + (6D + uG)x + (K + vN)x = f(t) (1)
where the dot denotes the time derivatives R™ ; and

D=D">0,G=—-G*>0and N =—N* are real matrices corresponding to dissipative, gyréscom
circulatory forces. The magnitudes are controlled byphmmeterss, u andv, respectively whilef (t)
describes excitation. The relationship between the dopamameters determines the stability or instability
status of system (1). We now examine the following cases

Case 1.6~v<u

The most interesting in practice is the situation whesedlierces in the systeare small as compared with
the gyroscopic force. The critical gyroscopic paramgten the boundary of the gyroscopic stabilization
domain of the non-conservative system is a function of thengpeters corresponding to the dissipative and
circulatory forces. Moreover, stability is extremelysiive to the choice of a perturbation while the be¢an
of forces leading to the asymptotic stability is not obvious

Case 2:u L 6~v

This case with a tendency for high perturbation arisinghfvery small gyroscopic effect may be unstable
and will not be considered since the bounds of solutions are t@dhet for unstable systems.

In the following we assume the situation of case 1 wheestability is ensured and for simplicity we omit
the parameters and proceed with the analysis.

If excitation in eqn (1) is negligiblé.e f(t) = 0, we obtain the following homogeneous linear system
Mi+(D+G6G)x+K+N)x=0 2

The stability or otherwise of system (2) can be deitgethby eigenvalue method and also by Routh-Hurwitz
method [10]. In this work, we shall use Lyapunov directhroé to analyse the stability or otherwise of the
system. The advantage of this method over eigenvalue methwt the stability status of the system can be
determined easily in cases where the eigenvalues canrfoubé easily. Applying the direct method of
Lyapunov, we have the following:
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The system (2) is equivalent to the system

X, = Xy
%, = =MD + G)x, — M (K + N)x; (3)

Putting (3) in the equivalent form of a first order systge have the following
7=Az (4)

0

here A —[ !
WHETeA=1_M-2(k + N) —M~Y(D +G)

(I is the identity matrix an@ is the zero matrix).

We define a functiorV(z(t)) called a Lyapunov function for system (4)Mf> 0 and the time derivative
V < 0 for all solutionsz(t) of (4). The existence of such a Lyapunov function inspBgbility of the
system (asymptotic stability ¥ < 0)[11,12]. Let

V= z(t)* Pz(t)

be the Lyapunov function with a Hermitian matri¥’>0. For the solutions of (4) we then have
V = Z(t)* (A* P+ PA)z(t), such that conditionV < 0 is expressed by the matrf@ = Q* = 0 of
the Lyapunov matrix equation.

A*P+PA=-Q

The system (4) (and therefore also system (2) is asyioally stable, if there exist Hermitian matrides0
andQ>0 which satisfy the Lyapunov matrix equation.

2.1 Derivation of P and Q

To derive suitable positive definite Hermitian matsice and Q from the Lyapunov function of the
dynamical system (2), we start with the energy equatiochwili a first integral of the equations of motion.
By multiplying (2) from the left with¢*(t) and adding the complex transpose of this equation we get

2*M% + x"Kx + 2 [} x* Dxdt + [, (%" Nx — x*Nx)dt = 2E, (5)

whereE, = 1/2 (x*(0)Mx (0) + x*(0)Kx(0)) is the initial mechanical energy of the system. It isials

that we cannot use the energy= x*Mx + x*Kx > 0 as a Lyapunov function since the sign ¥ is
indefinite due to the circulatory forces describedVby 0. The idea is now to add terms to (5) to obtain a
function V for whichV is negative definite. For this purpose, we constructafitet integral of the system
(2) by now multiplying from left with x(t) and adding the complex transpose of this new equatiois. T
leads to

(x*Mx + x*Mx + x*Dx) + fot(Zx* Kx —2%"Mx + (x*Gx — x"Gx))dt = ¢ (6)

where c is an integration constant. To find a Lyapunov fanatie introduce a proper positive constant
which has to be determined. Multiplying equation (6}’}62/ and adding (5) and (6) we get after rearranging
terms the following:
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x* (K +%D) X +X"Mx + g(a'c*Mx + x*Mx) = 2E, +gc
- fot(yx* Kx + %(x*ch —X*Gx) + (X*Nx — x*Nx) + x*(2D — yM)x)dt @)

putting (7) in the quadratic formf, = z*Pz
. _ [x* _[x
wherez* = [x] andz = [x]

we have that

x* Pll Plz] . _ x*Pllx x*Plz.jC
[x] [P21 P,y) X A1 C V= P 2P

But egn (7) is in the form

%4

t
V= P+f Q(s)ds
0

Where using (7) we have

YMOM Yo+ 26-m
2 2
wherey is a real number.

3 Stability Analysis

Considering the MDGKN system with control parameters, weeqed with the analysis as follows: We
assume thal = M* >0, D=D" >0 and K = K* > 0. Since P and Q must be positive definite, we are
interested in finding the condition for the existence ofeal mumbery that guarantees the positive
definiteness of P and Q. Schur’s lemma provides this conditio

3.1 Schur’s lemma

. o[R1 Rz
Amatrix R [R; R,
if and only if R; and R; — R3RT1R, are positive definite[11].

] with Hermitian submatrices R, and R is positive definite

Applying the lemma to Q given by (8), we get that Qb@nid only if there existg >0 such that
2D —yM — (—N +§G) (yK)™ (—N +§G) >0
Rearranging terms we get the following conditions
—y? (M + %G*K‘lG) +y <2D +2(G'KIN + N*K—lc)) —N'K"IN >0 9)

We define allz € €™, then (9) is equivalent to the inequality
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—y2z* (M + iG*K‘lG) z+yz" (20 +2(G'KT'N + N*K—lc))z — 2*N*K~'Nz > 0 (10)

Taking z*z = I, the coefficients of the quadratic polynomial yjnare Rayleigh quotients for Hermitian
matrices. These Rayleigh quotients are limited by thdleshaigenvalud,,;,, and the largest eigenvalue
Amax Of the respective matrices [11,13]. The Rayleigh quotidotsthe matricesV,D,G*K~1G, M +

iG*K‘lG and N*K™'N are all positive sinced,D,and K~! are assumed to be positive definite.
Introducing the scalars, b and ¢ defined by

@ = A (M +36°K716) > 0 \
b = Anin(2D +5 (G'K7N + N*K1G) (11)
€ = Anax (N*"K~IN) > 0

Inequality (10) is now satisfied if there exigtsd with

—y%?a+yb—c>0 (12)
There are solutions if and only if

b —4ac>0 and b>0 (13)

In this casey can be chosen as any number in the interval

b-+b2-4ac b+Vb%-4ac

2a 2a

(14)
and then matrix Q will be positive definite.
Next, if > 0 then2D — yM > 0. This implies. D — M > 0.
Also, P > 0 and applying the Schur’s lemma on P we have
M —%M(K + gD)‘lgM >0
Multiplying through by(K + %D) we have

M(K+%D)—%M(K+%D)_1(K+gD)gM>0
2
M(K+%D—VZM)>0

2

|4 14
>K+-D—-——M>0

2 4

We now formulate the following theorem that provides the d¢mndfor the stability of system (1) and then
asymptotic stability of system (2).
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3.2 Stability theorem

Assume a,b and c defined by (11). If b? —4ac > 0and b > 0,
then system (1) is asymptotically stable.

To apply the theorem, it will be beneficial and less custi®e to estimate andb as follows

1
a< Amax(M) + Zlmax(G*K_lG)
b = 2Amin(D) + > Amin (G*K 7N + N'K1G) (15)
Thus,

Amax(G*K_lG) = grznax/kmin '
Amax (N*K_lN) < nrznax/kmin (16)
Amin(G*K_lN + N*K_IG) 2 _ngaxnmax/kmin ’

where gmax = [0 |lmax » Mmax = [A(N)|max are the maximum of the absolute values of the eigeavalu
of G and N, respectively, arid,;, is the smallest eigenvalue Kf> 0 [14]. Additionally we usen,,,, for
Amax(M) andd,,;, for A, (D). Applying (15) and (16) conditions (13) for the existenceg bf 0 become

i.EJ‘%rLax

4 2

4| Mmax+=—— |Ninax
min

kmin

2
(dein _ gmaxnmax) _ >0, (17)

kmin

n
dein _ ImaxNmax >0

kmin

Obviously, both inequalities in (17) are satisfied if

drzninkmin - dmingmaxnmax - mmaxn‘?nax >0 (18)

(18) is a more restrictive condition than (13) and contdiassmallest and largest eigenvalues of the system
matrices. It is therefore a simple sufficient coruditifor asymptotic stability of system (2). Choosing

appropriatey >0 by adding the two limits in (14) we haye= g
And using the estimates afandb we have the following

¥ = [minkmin =5 ImaxMmax)/ MmaxKmin + 5 Gnax) (19)
This condition is sufficient for asymptotic stability @) [15,16,11,17,18].

4 Applications

Example 1

To illustrate the formulas for response bounds for thenmdgeneous system let us consider the 2x2 system
described by

é”iﬂJ’(i 2 0] [ ] 1 0])[x1] f(® (20)
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We obtain the constanésb and ¢ defined in (11) as follows:

1
a = Amax <M + ZG*K*G) =7
1 32
b = Apnin(2D + E(G*K‘lN + N*K™1G) = =
€= Adpax(N*K™IN) = 1

Applying the values on the stability condition we have tha

b? —4ac=1296>0
The system is therefore stable according to the gtathieorem.
Example 2

Consider the 3x3 system

3 1 —11[% 8 -2 2 0 2 3N\[*%

131x2+(—28—2+—202>x2+

-1 1 31l 2 -2 8 -3 =2 0l/ lxg
4 2 3

2 4 2
3 2 4

0 2 1IN [* 0
(R )| R @
-1 -1 01/1x3 0

We compute the constants defined in (11) as follows:

a = Amax (M +iG*K_1G) = 37+;/m

b = Anin(2D +(G'K7IN + N°K736) = 13
¢ = Apax(N'K7IN) = 3

Since b > 0 and b? — 4ac = 70.8 > 0 , the system is stable according to the stabiliéptam.
5 Conclusion

The gyroscopic systems (damped and undamped) are gerstaaly systems but the addition of circulatory
forces can destroy stability. For the MDGKN systemdwitntrol parameters, the relationship between the
control parameters determines the stability or othervfitieeosystems. Stability theorem for determining the
stability or otherwise of MDGKN is formulated. The resuare illustrated on a 2x2 and a 3x3 matrix
systems to show the effectiveness of the obtained reWViltis these results, the stability status of MDGKN
systems can be determined without explicit computation géreialues or in situations where the
eigenvalues cannot be computed easily.
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