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Abstract
The main goal of this paper is to derive a full characterization of the observability of linear
time-invariant impulsive systems. Two cases are studied. The first case considers continuous
outputs. A suitable adapted Kalman criterion is shown to characterize properly the observability.
In the second case, only discrete-time measurements of the outputs are available. A new rank
condition based on the structure of the impulses is shown to characterize observability. Finally,
these results are tested and illustrated both on academic examples and on the dynamical
model of diabetic type I patients. The latter provides a nice case study for an impulsive
system with discrete time measurements as the meals may be approximated by some impulse
inputs and the glycemia measurement is usually done in real life at various times through the day.
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1 Introduction

Impulsive systems are encountered in various areas as biology, health, robotics and others [1, 2,
3, 4, 5]. For instance, a diabetic type I will be shortly considered herein for which new specific
mathematical tools are needed for analysis, observation, and control. The meals decide about the
amount of glucose which is brought, say three times a day, and due to different time scales, it can
be approximated by impulse signals. The glycemia measurement is made from blood samples taken
at various times during the day.

Several mathematical models have been proposed to describe the dynamics of the glucose-insulin
interaction for healthy and diabetic type I persons. One of the first models was published in 1961
by V. Bolie [6] and remains as the simplest one. More sophisticated models have been proposed,
see for instance [7, 8, 9, 10, 11].

From a mathematical point of view, an impulsive control system is modeled either by continuous-
time equations whose right-hand side includes some Dirac impulses, or by a system of ordinary
differential equations and algebraic discrete equations. Its state trajectories are piecewise continuous,
with discontinuities of the first kind at some isolated points. The basic mathematical tools for
studying impulsive control systems (ICS) is the theory of impulsive differential equations [12].
The theory of linear ICS has been developed during this last decade through the investigation of
fundamental properties such as stability, controllability, and observability (see [2, 13, 14, 15, 16, 17]
and their references).

Observability in nonlinear ICS has been studied only by [18], while in linear ICS this property has
been investigated by many researchers as [13, 15, 16, 19, 20, 21]. The definition used in these papers
establishes that observability depends on measurements of the output on a finite-time interval [0, tf ].
When continuous output is considered, the most known result to characterize this property is still
the Kalman observability matrix O [13, 21, 19], but with a very restrictive assumption over the
class of impulsive system considered. Just diagonal matrices AI are considered, where AI defines
a discontinuity of the form x(τ+

k ) = AIx(τk). In [22, 20], a criterion is derived assuming that
the matrices A and AI conmute, and finally, in [16], based on the product of matrices e(A)ATI OT
an algebraic criterion is proposed. A different class of impulsive control systems is considered in
[23], for which the states evolve in continuous form but the output is available for measurement
at discrete times. Suitable criteria based on geometric properties of the invariant observable space
and the observability Gramian were worked out for this case.

The results of this paper are: first, the notion of strong observability is introduced for continuous
and discrete outputs. Kalman’s criterion is a necessary condition for strong observability similar as
the standard LTI case. Second, observability on a finite-time interval is analyzed. For the continuous
output case, Kalman’s criterion becomes just a sufficient condition. A new rank condition is derived
considering just the time shifts and shown to be necessary for observability of ICS. This generalizes
some results in the current literature. Also, the discrete output case is tackled, an equivalence
between the observability Gramian and a new algebraic condition is established. Third, these
criteria are tested in a model of diabetic type I patient (see [6]) adapted to the description of linear
ICS. Based on the observation of the states, an estimation of the parameters of the model proposed
was performed by using clinical data.
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The remainder of the paper is organized as follows: the state of art of observability in linear ICS
is given in Section 2. The theoretical framework and the main results for linear ICS are developed
in Section 3. The results are illustrated by using an adaptation of Bolie’s model of diabetic type I
patients in Section 4. The last Section is devoted to conclusions and perspectives.

2 Preliminaries

A plant is an impulsive control system when there is a set of time instants T = {τk}, τk ∈ R,
τk < τk+1 < ∞, and a set of inputs Uk ∈ Rn, k = 1, 2, . . ., such that the state x ∈ Rn at each τk
is changed impulsively by x(τ+

k ) = fI(x(τk)) + U(k, x). Note that the impulsive instants are not
necessarily equidistant, the control U(k, x) yields a discontinuity of x at instant τk, the function
fI(x) defines discontinuities of the first kind (or ‘natural jumps’) in the state variables, and the
system is left-continuous, i.e. x(τ−k ) = x(τk).

The class of dynamic systems of interest basically consists of objects defined by a set of impulsive
first-order differential equations of the form

ẋ(t) = Ax(t), x(t+0 ) = x(t0) = x0, t 6= τk,

x(τ+
k ) = AIx(τk) +Bu(τk), k ∈ N,

yc(t) = Ccx(t) or

yd[k] = Cdx(τk) k ∈ N

(2.1)

where the independent variable t ∈ R denotes time, the state x ∈ Rn, the input u ∈ Rm, the variable
yc ∈ Rq is a continuous output, and yd is a set of discrete measurements. The matrices A, AI are
defined in Rn×n, B ∈ Rn×m and C ∈ Rq×n. This system is known as the linear time-invariant ICS.
Note that when AI = I, there are not natural jumps in the state variables, only due to the control
u(τk).

Let us denote the initial time as t0 = 0, the final time as tf = τ−k+1 > t0, the set of time instants as
T = {τ1, · · · , τk}, with δi being δi = τi+1 − τi, which verifies δ0 = τ1 − t0, and δk = tf − τk. Also,
consider that AI 6= I and B 6= 0, then the state response for these kind of systems can be generated
as follows:

• In t = t0, any control is applied. So, in the interval t0 ≤ t < τ1, the state response is

x(t) = Φ(t, t0)x0 = eA(t−t0)x0. (2.2)

• In t = τ1,

x(τ+
1 ) = AIx(τ1) +Bu(τ1) = AIe

Aδ0x0 +Bu(τ1). (2.3)

• In the interval t0 ≤ t < τ2, with one impulse applied to Eq. (2.1), the state response is

x(t) = eA(t−τ1)AIe
Aδ0x0 + eA(t−τ1)Bu(τ1), (2.4)

= Φ(t, t0)x0 + Φ(t, τ1)Bu(τ1). (2.5)

• In t = τ2,

x(τ+
2 ) = AIx(τ2) +Bu(τ2), (2.6)

= AI(e
Aδ1AIe

Aδ0x0 + eAδ1Bu(τ1)) +Bu(τ2).

• In the interval τ0 ≤ t < τ3, with two impulses applied to Eq. (2.1), the state response is
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x(t) = eA(t−τ2)AIe
Aδ1AIe

Aδ0x0 +

eA(t−τ2)eAδ1Bu(τ1) + eA(t−τ2)Bu(τ2), (2.7)

= Φ(t, t0)x0 + Φ(t, τ1)Bu(τ1) + Φ(t, τ2)Bu(τ2).

By repeating this procedure, the state transition matrix of Eq. (2.1) is deduced for the general
interval t0 ≤ t ≤ tf < τk+1, with k impulses applied to the system, and it is given by

Φ(t, t0) = eAδkAIe
Aδk−1 · · ·AIeAδ1AIeAδ0 . (2.8)

The state transition matrix is invertible for all t ∈ [t0, tf ] if only if the matrix AI is invertible,
and in this case, Φ(t0, t) = Φ−1(t, t0). The state response of system (2.1) on [t0, t] with k impulses
applied to the system is

x(t) = Φ(t, t0)x0 +

k∑
j=1

Φ(t, τj)Bu(τj). (2.9)

Note that if B = 0 and AI = I, the state transition matrix for LTI systems is recovered, that is,
Φc(t, t0) = eA(t−t0) and the state response is just x(t) = eA(t−t0)x0. Now, if B 6= 0 but AI = I, the
state response equation becomes

x(t) = eA(t−t0)

(
x0 +

k∑
j=1

e−AτjBu(τj)

)
, (2.10)

which agrees with the results in [4].

3 Observability for Linear ICS

The notion of observability in standard systems concerns the possibility of recovering the state
x(t) from the knowledge of the measured output (being continuous or discrete), the input u, and,
possibly, a finite number of their time derivatives.

Here, for linear ICS, this notion is reduced to finding the initial conditions using the knowledge of
the output, its time derivatives, and/or its time-shifts.

3.1 Observability with continuous output

The case with continuous output will be treated, i.e yc(t) = Ccx(t), with Cc a matrix of q × n
dimensions. In a similar way to the standard LTI system, a definition of strong observability is
stated as follows:

Definition 3.1. System (2.1) with continuous output is said to be strongly observable if any initial

state x(0) ∈ Rn is uniquely determined by the output yc(0) and its time derivatives ẏc(0), · · · , y(s)
c (0).

Theorem 3.1. System (2.1) is strongly observable if the following condition holds

Rank[O] = Rank


Cc
CcA

...
CcA

n−1

 = n. (3.1)
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Proof. The proof is standard and it is similar to the LTI case. Just for illustration calculate at
point t = 0 the time derivatives of the output, that is

yc(0) = Ccx0,

ẏc(0) = CcAx0,

... =
...

y(n−1)
c (0) = CcA

n−1x0.

System (2.1) is strongly observable, if Rank[O] = n.

In [13, 16, 19, 21], the notion of observability proposed there allows considering measures of the
output in some finite-time interval, that is, not only at the point t = 0, as Definition 3.1. In
[16], another criterion is provided based on the matrix [OT , G1, · · · , Gk], where Gi depends on the
product eAtATI OT . Here, a more concise result is provided for this case.

The following definition encompasses the similar one described in [13, 16, 19].

Definition 3.2. System (2.1) with continuous output is said to be observable on some finite-time
interval [0, tf ] large enough, if any initial state x(0) ∈ Rn is uniquely determined by the output
yc(0), its times derivatives ẏ(0), · · · , y(s)(0) and its time-shifts yc(τi) for τi ∈ [0, tf ].

Theorem 3.2. System (2.1) with continuous output is observable on some finite-time interval [0, tf ]
if and only if the following condition holds

Rank


O

Cce
A∆0

Cce
A∆1AIe

A∆0

...
Cce

A∆l−1AIe
A∆l−2 · · ·AIeA∆1AIe

A∆0

 = n, (3.2)

Proof. Consider the input u(τk) = 0 ∀k without loss of generality. The output of system (2.1) is
given by yc(t) = CcΦ(τk, 0)x0. At each time instant τk, k = 1, · · · , l, the output measured is

yc(0) = Ccx0,

yc(τ1) = CcΦ(τ1, 0)x0 = Cce
A∆0x0,

yc(τ2) = CcΦ(τ2, 0)x0 = Cce
A∆1AIe

A∆0x0,

... =
...

yc(τl−1) = CcΦ(τl−1, 0)x0 = Cce
A∆l−1AIe

A∆l−2 · · ·AIeA∆1AIe
A∆0x0.

Adding the time derivatives of the output at t = 0, the following system

yc(0)
ẏc(0)

...

y
(n−1)
c (0)
yc(τ1)
yc(τ2)

...
yc(τl)


=



Cc
CcA

...
CcA

n−1

Cce
A∆0

Cce
A∆1AIe

A∆0

...
Cce

A∆l−1AIe
A∆l−2 · · ·AIeA∆1AIe

A∆0


x0 (3.3)
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can be written in the form

y = OCx0. (3.4)

The initial condition x0 can be uniquely determined as

x0 = (OCTOC)−1OCT y. (3.5)

System (2.1) is observable on a some finite-time interval, if Rank[OC ] = n.

Remark 3.1. If AI = dI with d an scalar, theorem 3.2 reduces to theorem 3.1, and system (2.1) is
(strongly) observable if Rank[O] = n.

3.2 Observability with discrete output

The notion of strong observability a linear ICS with discrete output measurements yd[j] will be
understood as the ability to to retrieve x0 before the first impulse.To develop observability over
some finite-time interval, it will be assumed that impulses are applied at the same time that the
output is measured.

Definition 3.3. System (2.1) with discrete output is said to be strongly observable if there exist
a set of times {S : s0, s1, · · · , sn−1} with s0 = 0 and si−1 < si < ∞} such that any initial state
x(0) ∈ Rn is uniquely determined by the output yd[j] = yd(sj−1) before the first impulsive time
sn−1 < τ1 ≤ sn.

Theorem 3.3. the following statements are equivalent

1. System (2.1) with discrete output is strongly observable,

2. Rank


Cd

Cde
As1

...
Cde

Asl−1

 = n,

3. Rank[Od] = Rank


Cd
CdA

...
CdA

n−1

 = n,

Proof. 1)⇒ 2). It follows from Eq. (2.9). The measurements of the output of system (2.1) is given
by

yd[j] = CdΦ(sj−1, 0)x0 = eAsj−1x0, j = 1, 2, · · ·n. (3.6)

At each measurement time instant sj , j = 1, · · · , n the output is

yd[1] = CdΦ(s0, 0)x0 = Cdx0,

yd[2] = CdΦ(s1, 0)x0 = Cde
As1x0,

yd[3] = CdΦ(s2, 0)x0 = Cde
As2x0,

... =
...

yd[n] = CdΦ(sn−1, 0)x0 = CeAsn−1x0,
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an algebraic linear system y = OdIx0 can be written with

y =


yd[1]
yd[2]
yd[3]

...
yd[n]

 , and OdI =


Cd

Cde
As1

Cde
As2

...
Cde

Asn−1

 , (3.7)

from which x0 can be uniquely determined as

x0 = (OTdIOdI)−1OTdIy. (3.8)

System (2.1) with discrete output is strongly observable if necessarily Rank[OdI ] = n.
2)⇒ 3) Lemma 2.3.1, and Lemma 2.3.2 from [4, pp. 30-31] yield

eAλ =

n−1∑
i=0

fi(λ)Ai, f0(λ) = 1, fi+1(0) = 0, (3.9)

where fi(λ) is a scalar function. From the first statement, and applying the last equation, we get
that 

Cd
Cd(I + f1(s1)A+ · · ·+ fn−1(s1)An−1)
Cd(I + f1(s2)A+ · · ·+ fn−1(s2)An−1)

...
Cd(I + f1(sl−1)A+ · · ·+ fn−1(sl−1)An−1)

 = ΨOd, (3.10)

where

Ψ =


Iq 0 · · · 0
Iq f1(s1)Iq · · · fn−1(s1)Iq
...

...
. . .

...
Iq f1(sl−1)Iq · · · fn−1(sl−1)Iq

 (3.11)

and

Od =


Cd
CdA

...
CdA

n−1

 . (3.12)

The matrix Ψ has full rank if and only if

Q =


1 0 · · · 0
1 f1(s1) · · · fn−1(s1)
...

...
. . .

...
1 f1(sl−1) · · · fn−1(sl−1)

 (3.13)

has full rank. From Lemma 2.3.3 in [4, pp. 33], the functions fi(τi) are linearly independent in
every open interval (ts, ts+1) containing the measurement time instant si. As it was assumed the
existence of time instants s0, s1, · · · , sn−1, then Q has full rank from Lemma 2.3.3. Now, if the
system is observable, necessarily Rank[Od] = n.

Note this criterion is reduced to the same Kalman’s criterion available for the ordinary linear time
invariant discrete time system. Now, a definition for observability on a some finite-time interval
will be developed. This definition fits with the definition stated in [15, 23]. Remember that it was
assumed for simplicity that the measurement is done at the same time the impulse is applied to the
system.
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Definition 3.4. System (2.1) with discrete output is said to be observable on some finite-time
interval [0, tf ] large enough, if any initial state x(0) ∈ Rn is uniquely determined by discrete
measurements of the output yd[k] = yd(τi) for τi ∈ [0, tf ].

Example Consider the linear impulsive system (2.1) with δi = 1, and the matrices

A =

 0 1 0
0 0 1
0 0 0

 , AI =

 1 0 0
0 1 0
0 0 0

 (3.14)

Cd =
(

1 0 0
)
, B =

 0
0
0

 . (3.15)

To determine if the system is observable, the output is measured at different time instants τk, that
is

• At τ0 = 0, y[0] = x1(0).

• At τ1, y[1] = x1(τ1)= CeAδ0x0 = x1(0) + x2(0) + 1
2
x3(0).

• At τ2, y[2] = x1(τ2) = CeAAIe
Ax0 = x1(0) + 2x2(0) + 3

2
x3(0).

From the last three equations, it is clear that the initial condition is recovered. So, this system is
completely observable. However, if AI is changed to

AI =

 1 0 0
0 0 0
0 0 0

 , (3.16)

the system becomes unobservable for any set of time impulses. Note that the pair (Cd, A) is always
observable for any matrix AI , and the condition Rank[CTd (CdA)T (CdA

2)T ]T = 2 is not able to
characterize observability.

Example Assume that a linear impulsive system is described by δi = 1 and the same matrices Cd
and B as in Example 3.2, but A = 0 and

AI =

 0 1 0
0 0 1
0 0 0

 . (3.17)

The discrete measurements at impulse times τk are

• At τ0 = 0, y[0] = x1(0).

• At τ1, y[1] = x1(τ1)= Cde
Aδ0x0 = x1(0).

• At τ2, y[2] = x1(τ2) = Cde
AAIe

Ax0 = CdAIx0 = x2(0).

• At τ3, y[3] = x1(τ3) = Cde
AAIe

AAIe
Ax0 = CdA

2
Ix0 = x3(0).

Although A = 0, this linear impulsive system is observable because of the natural impulses in the
state variables. For the case with AI = I, the system is unobservable. Note that observability
depends on the structure of the three matrices (Cd, A,AI) and not just on the pair (Cd, A) as in
the standard LTI case. Besides four measurements were needed to determined the initial condition
x0.

This set of examples suggests that the straightforward rank condition of the observability matrix
involving the (Cd, A) pair only is not a complete tool to characterize observability in linear ICS
with discrete output.
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The observability Gramian is a known way to characterize observability of standard LTI systems.
In [13], it is adapted to linear ICS with a continuous output, and in [23], with a discrete output.
For the second case, it reads as: given the impulsive system (2.1) on [0, tf ], and the time instants
T = {τk}, k = 0, 1, 2, · · · , l, t0 = 0, and tf ∈ [τl−1, τl), the observability Gramian MOI (t0, tf ) is
defined by

MOI (0, tf ) =

l−1∑
j=0

ΦT (τj , 0)CTd CdΦ(τj , 0). (3.18)

For the zero input and x(0) = x0,

xT0 MOI (0, tf )x0 =

l−1∑
j=0

‖yd[j]‖2 , (3.19)

from which it follows that for an observable system on [0, tf ], the observability Gramian is positive
definite for any impulse set time T , and any finite interval containing at least l impulse times.
Conversely, if there exists an integer l such that the observability Gramian is positive definite for
any impulse time set and any finite interval containing at least l impulse times, then the system is
observable [23]. Note that this criterion fits to Definition 3.4.

The next theorem provides a new algebraic rank condition and asserts the equivalence between the
observability Gramian criterion and this condition.

Theorem 3.4. The following statements are equivalents

1. System (2.1) is observable on some finite-time interval [0, tf ],

2. Rank


Cd

CdΦ(τ1, 0)
...

CdΦ(τl−1, 0)

 = Rank


Cd

Cde
A∆0

...
Cde

A∆1AIe
A∆0

 = Rank[OI ] = n,

3. MOI > 0.

Proof. Consider the input u(τk) = 0, ∀k without loss of generality. Proof of 1)⇔ 3) can be found
in [23], so it will be omitted here.

1)⇒ 2). It follows from Eq. (2.9). The output of system (2.1) is given by

yd(τk) = CdΦ(τk, 0)x0, k = 0, 1, 2, · · · l. (3.20)

At each time instant τk, k = 0, · · · , l the output is

yd(τ0) = CdΦ(τ0, 0)x0 = Cdx0,

yd(τ1) = CdΦ(τ1, 0)x0 = Cde
A∆0x0,

yd(τ2) = CdΦ(τ2, 0)x0 = Cde
A∆1AIe

A∆0x0,

... =
...

yd(τl−1) = CdΦ(τl−1, 0)x0 = CeA∆l−1 · · ·AIeA∆0x0,

the linear system above can be written as

y =


Cd

CdΦ(τ1, 0)
CdΦ(τ2, 0)

...
CdΦ(τl−1, 0)

x0 = OIx0, (3.21)

9
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from which, if system (2.1) is observable and there exist l impulse times, then x0 can be uniquely
determined as

x0 = (OITOI)−1OIT y, (3.22)

and necessarily Rank[OI ] = n.

2)⇒ 3). If system (2.1) is observable, suppose that there is a vector w 6= 0 such that wTMOIw is
singular, i.e.

wTMOIw = wT
(
l−1∑
j=0

ΦT (τj , 0)CTd CdΦ(τj , 0)

)
w = 0,

which leads to

wTMOIw =

(
l−1∑
j=0

wTΦT (τj , 0)CTd CdΦ(τj , 0)w

)
= 0,

and

wTMOIw =

l−1∑
j=0

‖CdΦ(τj , 0)w‖2 = 0.

From the last equation,
CdΦ(τj , 0)w = 0 ∀τj j = 0, 1, 2, · · · (3.23)

The latter is evaluated at l impulses applied to system (2.1) at time instant τj , and yields
Cd

CdΦ(τ1, 0)
CdΦ(τ2, 0)

...
CdΦ(τl−1, t0)

w = OIw = 0. (3.24)

As system (2.1) is observable, rank[OI ] = n. In consequence, w = 0, which stands in contradiction
and proves that MOI is a positive definite matrix. That completes the proof.

Remark 3.2. Assuming that matrix AI = dI, with d an scalar, System (2.1) with discrete output
is (strongly) observable if and only if

Rank[Od] = Rank


Cd
CdA

...
CdA

n−1

 = n. (3.25)

4 Model of a Diabetic Type I Patient

Here, a modified Bolie’s model for diabetic type I patients is considered

ẋ1(t) = −a1x1 − a2x2 + a3x3, x1(0) = x10,

ẋ2(t) = −a4x2, x2(0) = x20,

ẋ3(t) = −a5x3, x3(0) = x30, (4.1)

x2(τ+
k ) = x2(τk) +

1

V
u(τk), k ∈ N,

x3(τ+
k ) = x3(τk) + a6, k ∈ N,
y[k] = x1(τk) k ∈ N,

10
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where x1 is the deviation of the blood glucose concentration from its basal value (assumed to be
Gb = 1.0 g/l), x2 is the plasma insulin concentration in U/l, the control variable u represents a
sudden change in the insulin concentration due to an injection of insulin, and y is a discrete measure
of the deviation of the blood glucose concentration. The parameter a1 is the consumption of glucose
by the brain and other tissues, a2 represents the decrease of glucose under the action of insulin, and
a4 is the natural absorption rate of insulin in the body.

Other factor that changes the concentration of the blood glucose is the input of meals. These inputs
can be seen, in a day of the patient, as an impulsive jump of the glucose concentration in the body
and after a digestion process as a variation in the blood concentration. As a first approximation, the
digestion process is modeled as a first-order process. The variable x3 is the glucose concentration
in the body because of digestion, a3 is the rate of variation of blood glucose concentration due to
meals, and a6 represents a sudden jump in the glucose concentration as response of the meal input.

The observability of system (4.1) is checked through Theorem 3.3. If δi = 5 (the output is measured
at each 5 min), by the statement 2),

Rank [OI ] = 3, (4.2)

since

OI =

 Cd
Cde

5A

Cde
10A

 , (4.3)

a1 6= a4 6= a5, and

det [OI ] = a2a3
(e5a5 − e5a1)(e5a4 − e5a1)(e5a5 − a6e

5a4)

e10(a1+a4+a5)(a1 − a4)(a1 − a5)
. (4.4)

The initial condition x0 is

x10 = y[0], (4.5)

x20 =
a−1

2 (a6y[0]− (a6e
5a1 + e5a5)y[1] + e5(a1+a5)y[2])

(a4 − a1)−1e−10a4(e5a4 − e5a1)(a6e5a4 − e5a5)
,

x30 =
e10a5(y[0]− (e5a1 + e5a4)y[1] + e5(a1+a4)y[2])

a3(a5 − a1)−1(e5a1 − e5a5)(e5a5 − a6e5a4)
.

To adapt the model to an individual patient the following assumptions was taken:

1. The parameter a1, a3, a4 and a5 are constants for a group of patients, and their values are
taken from the literature [6, 8].

2. The parameter a6 is given for each patient because the meals are different for each one.

3. The insulin therapy is known for all patients.

4. The glucose blood concentration is measured every 5 minutes.

5. The parameter a2 is different for each patient and it has to be estimated.

As the system is observable, it is possible to estimate this parameter using the measurement of the
output and the input, which is known. This estimation was based on clinical data. From model
(4.1), the estimation formula for a2 is

a2 =
a3x3 − a1x1 − ẋ1

x2
. (4.6)

The best value was obtained by a least squares method and was equal to 0.213. In Fig. 1 can be
seen the response for the estimated state for the given patient. The straight line represents the real
measurement of the blood glucose concentration and the dashed one the estimation of the glucose
using the Bolie’s model adapted to the ICS.
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Fig. 1. Blood glucose concentration and insulin concentration estimated using data
from a patient of CHU. The insulin model is a first order model

5 Conclusions and Future Works

The observability of linear time-invariant impulsive control systems with either continuous outputs
or discrete outputs has been fully characterized. Criteria have been given in terms of suitable rank
conditions. Throughout the paper it was shown that these criteria have to be stated in terms of
the matrices (A, AI , C). Obviously, the special case without impulses reduces to the well known
Observability Kalman Criterion for linear control systems.

This result generalizes and unifies criteria that can be found in the current literature, using the
observability Gramian and algebraic conditions.

Future research challenges include the generalization to switched impulsive systems, and the design
of effective impulsive observers for biological applications.

Parameter identifiability and the effective identification are connected problems which are worth to
investigate within a similar approach. Its application to parameter identification of the glycemia
dynamics is promising for diagnosis for patients. The latter is open for further research as well.
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