
*Corresponding author: E-mail: logirajk@gmail.com;

Asian Journal of Research in Computer Science

4(3): 1-8, 2019; Article no.AJRCOS.53088
ISSN: 2581-8260

Implementation of Java Based Racing Game, Pirate
Race, Using Runnable Interface

K. Logiraj1*

1
Department of Mathematics, Eastern University, Sri Lanka.

Author’s contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/AJRCOS/2019/v4i330115

Editor(s):
(1) Dr. Young Lee, Associate Professor, Department of Electrical Engineering and Computer Science,

Frank H. Dotterweich College of Engineering, Texas A&M University-Kingsville, USA.
(2) Dr. G. Sudheer, Professor, Department of Mathematics and Computer Science, G.V.P College of Engineering for Women,

Madhurawada, India.
(3) Dr. Shivanand S. Gornale, Professor, Department of Computer Science, School of Mathematics and Computing Sciences,

Rani Channamma University, Vidyasangam, NH - 4, Belagavi, India.
Reviewers:

(1) Osondu Oguike, University of Nigeria, Nigeria.
(2) Mohammed Farik, The University of Fiji, Fiji.
(3) Yulia, Petra Christian University, Indonesia.

Complete Peer review History: http://www.sdiarticle4.com/review-history/53088

Received 04 October 2019
Accepted 11 December 2019

Published 19 December 2019

ABSTRACT

Nowadays Java has become the most popular programming language that has been designed to
develop desktop applications that run on Java virtual machine (JVM) regardless of computer
architecture. Particularly, Java is useful for developing Game Applications. Implementing these
applications is an effective educational way to encourage Java Learners. This paper aims to
develop a desktop racing game to motivate freshmen who self-identity as creative or who wants to
implement their own 2D racing games rather than a prescribed activity. It brings fun and simplicity
of the game ‘Pirate Race’ with new features. This game was developed with the Runnable Interface
by extending the JFrame and the movement of the objects in the frame was controlled by keyboard
events. ‘Pirate Race’, is a simple game application that targets Java Learners to understand how
usable classes and interfaces can be handled in a relatively short time. The application presents a
graphical user interface with 2D graphical images having different file types (GIF, PNG, JPG) and
with a background sound. The application allows the user to move the ship by pressing the (up,
down, left, right) keys of the keyboard. The user’s goal is to compete with the other two pirate ships
and finish the race with the first rank. When racing with opponents, the user must take correct

Original Research Article

Logiraj; AJRCOS, 4(3): 1-8, 2019; Article no.AJRCOS.53088

2

moves to prevent the ship from crashing with ice mountain that resides in the sea. The game
contains simple controls that can be easily caught by children. Therefore, it is suitable for players of
the ages three and up. This will be a challenging and interesting game for children who likes to play
computer games.

Keywords: Java virtual machine; racing game; Jframe; game application; graphical user interface.

1. INTRODUCTION

Java is the most popular programming language
in the computational world. Java was developed
by James Gosling and Patrick Naughton at Sun
Microsystems Inc. in 1991, later acquired by
Oracle Corporation [1]. It's a simple programming
language, while it’s easy to write, compile and
debug a program in Java. It allows the user to
develop modular programs and reusable codes.
There are more than three billion devices that run
Java. It is used to build Mobile Applications,
Desktop Applications, Web Applications, and
Games and so on.

Runnable is an interface that is used to execute
the instances of a class using a thread [2]. The
java.lang package contains the interface which
provides a standard set of rules for the instances
of classes. A run method should be defined
inside the class in order to create a thread [3].
This method with void as return type and it takes
in no arguments. A separate flow of control in
network programming is represented using these
runnable classes. Also, it is used to perform
multi-thread programming.

Nowadays people, especially children are
interested in playing games on their smart
devices such as desktop computers,
smartphones, and tablets. It is quite difficult for
newcomers to handle the classes and interfaces
in developing Java Game applications. There
has been substantial research work that focuses
on handling the components of game systems
that can imitate human game playing styles [4].
Microsoft developed a game development tool,
Kodu Game Lab, which helps engage students in
learning programming through making and
playing games [5]. As a result, many racing
games developed with various gameplay that are
unique to the game itself. Hydro Thunder
Hurricane is an arcade-style boat racing game
and the sequel to Hydro Thunder. The primary
mode of the gameplay involves a sixteen
competitor race to the finish line [6]. In order to
win the game, the player has to finish at first
place. Therefore, the Player must make
continuous adjustments to its ship’s direction as

opposed to simply driving in a straight line and
turning only when an obstacle in the sea
approaches. Racing games are the most
interesting types of game for personal computer,
which allows to entertain and attract children.
‘Pirate Race’ is a challenging game between
user pirate ship and the other two competing
pirate ships. The opponent ship movements are
already defined in the program according to the
pixel value of the coordinate in the frame.

As said above, the proposed application is a
desktop computer game, targeting children and
adults who wish to play racing games and
making correct moves to win. The intention is
also to popularize this racing game as a desktop
application, because of its easy for players to
control movements using a keyboard.

2. PIRATE RACE

Pirate Race is a racing game for desktop
computers designed and implemented using
Runnable Interfaces. Users can install the
installation file of the game on their local
computers and run it. The game consists of three
pirate ships, include a user ship and two
competing ships. The user ship movements are
controlled by the keyboard events and the other
two pirate ship movements are controlled
automatically by the program. The user ship
must be aware of the ice mountain in the sea
during the race. If the ice mountain is on the user
ship’s path, the player must use the correct move
to pass the ice mountain to avoid crashing on it.
Meanwhile, if the user ship uses another
direction to move the ship, the speed will be
reduced and the ship will be delayed. Depending
on the distance, the rank will be calculated for
the three pirate ships. The ranking will be
displayed on the screen when racing. If the
user’s ship crashed with an ice mountain using a
wrong move, the game will be over.

There is a starting line and an end line in the
game. The goal of the user ship is to finish the
end line safely in a short time period. At the
same time, if the user can not complete the
target line on time, the user can replay the game.

Logiraj; AJRCOS, 4(3): 1-8, 2019; Article no.AJRCOS.53088

3

Fig. 1. The starting position of the implemented pirate race

3. GAME IMPLEMENTATION

Usually, a game consists of some basic
components, like moving objects, backgrounds,
friendly user interface, etc. In general, dealing
with graphics is the most important task in race
game programming. The Awt, Swing and Util
packages are used to design Graphical User
Interface (GUI) in games. Awt package is mainly
used to design graphical user interface
components such as buttons, labels, text field
and other frames [7]. This application was
implemented on eclipse using Java, because of
its easy for coding. The implementation of Pirate
Race can be done as follows:

3.1 Interface Design

The most important and fundamental component
of the Awt package is JFrame. Actually, this
component extends class Frame of package Awt.
JFrame object manages the user interface with
paint on the screen to receive information from

the keyboard. The game initial JFrame properties
are given below.

Algorithm:

//Setting the JFrame Window Size
Title of the JFrame=”Pirate Race”
JFrame Width=”1370”
JFrame Height=”725”

// Intialize the user ship position.
User Ship Initial X Coordinate Value=400
User Ship Initial Y Coordinate Value=100

3.2 Move Function

The movement of the user ship can be controlled
by a method called move(). According to the
keyboard events, the coordinate values are
updated with corresponding directions. Each and
every time of execution the run function invoke
the move function. The code lines given below
represents the user ship movement control
statements.

Algorithm:

Function:move()

// Position of the user ship when racing.
 X Coordinate newValue += eventValue in X Direction

Logiraj; AJRCOS, 4(3): 1-8, 2019; Article no.AJRCOS.53088

4

 Y Coordinate newValue += eventValue in Y Direction

//Control the user ship movement within the window
If (X Coordinate newValue <= 100) then
 X Coordinate newValue=100;
If (X Coordinate newValue >= 800) then
 X Coordinate newValue=800;
If (Y Coordinate newValue <= 100) then
 Y Coordinate newValue=100;

If (Y Coordinate newValue <= 100) then
 Y Coordinate newValue=100;

3.3 Run Function

The Runnable Interface should have an undefined method run() with void as a return type to invokes
in the thread that executes separately. It allows for implementing the game loop. The execution of the
code can be delayed using a Thread.sleep(Delay Time).The codes are given below represent how the
run() invoked in the thread.

public void run(){
 try {
 while(true)
 {
 move();Thread.sleep(20);
 }
 }
 catch (Exception e)
 {
 System.err.println(e.getMessage());
 }
 }

3.4 Background Sound

The AudioInputStream object starts its own
thread that runs until the program terminates and
it loads an audio clip in the constructor to play it
when the event fires. Initially create a “sound”
directory in the “src” folder and put a file named
“Name of the sound file.wav” in that directory.
The program lines are given below.

URL url = this.getClass
().getClassLoader().getResource("sound/15-He's
A Pirate.wav");
AudioInputStream audioIn =
AudioSystem.getAudioInputStream(url);
Clip clip = AudioSystem.getClip();
Clip. Open (audioIn);
clip.start ();

3.5 An Abstract Adapter Class for
Receiving Keyboard Events

Defining an abstract class Key Adapter for
receiving keyboard events [8,9]. While moving

the user ship on the Screen the coordinate
values increase/ decrease according to the key
pressed in the keyboard. The following codes are
shows how to assign a value when pressing up,
down, right, left keys.

Algorithm:

Functon:keypressed()

//Initialize

key=get the key pressed

if (key=Left Arrow Key) then
 eventValue in X Direction=-4;
if (key=Right Arrow Key) then
 eventValue in X Direction=+4;

if (key=Up Arrow Key) then
 eventValue in Y Direction=-4;

if (key=Down Arrow Key) then
 eventValue in Y Direction=+4;

Logiraj; AJRCOS, 4(3): 1-8, 2019; Article no.AJRCOS.53088

5

Functon:keyreleased()

//Initialize
key=get the key released

if (key=Left Arrow Key) then
 eventValue in X Direction=0;
if (key=Right Arrow Key) then
 eventValue in X Direction=0;

if (key=Up Arrow Key) then
 eventValue in Y Direction=0;

if (key=Down Arrow Key) then
 eventValue in Y Direction=0;

3.6 Get the Image Resource from A
Folder

An abstract class Toolkit is present in java.awt
package [10]. It is a predefined method available
in the toolkit class. This way the Toolkit object is
created in the class. getImage() is a predefined
abstract method present in Toolkit class [9]. The

return type of this method is the Image class
object. The following are Java codes for showing
how to use getImage () for loading the image into
the interface.

Toolkit toolkit = Toolkit.getDefaultToolkit ();
Image image=toolkit.getImage (this.getClass
().getClassLoader ().getResource
("images\\sea.gif"));

3.7 Winning Condition

The player has to finish the race at first place in
order to win the race. At the start of the race, all
three ships distance are initialized to zero. Then
the user ship distance is incremented along with
the up-key pressed in the keyboard by the
player. The winning condition is checked in the
finish line that depending on the maximum
distance traveled by the ships. The following
algorithm developed for the winning and losing
condition of the User ship.

Algorithm:

Let at the Beginning of the race,

//Initialize

Ship1 Distance=0
Ship2 Distance=0
User Ship Distance=0

If (Ship1 Distance>10000 || Ship2 Distance >10000)
 {
 If (Ship1 Distance< (User Ship Distance) && Ship2 Distance< (User Ship Distance))
{
 Print ("You Won!!!! ");
 Exit ()
 }

Else if (Ship1 Distance> (User Ship Distance) && Ship2 Distance< (User Ship Distance))
 {

 Print ("You Are Second!!!! ");
 Exit ()
 }
 Else if (Ship1 Distance< (User Ship Distance) && Ship2 Distance> (User Ship Distance))

{
 Print ("You Are Second!!!! ");

 Exit ()
}

Else if (Ship1 Distance> (User Ship Distance) && Ship2 Distance > (User Ship Distance))

Logiraj; AJRCOS, 4(3): 1-8, 2019; Article no.AJRCOS.53088

6

{

 Print ("You Are Lost!!!!");
 Exit ()
 }
 }

Fig. 2. The winning position of the pirate race

Fig. 3. The loosing position of the pirate race

Logiraj; AJRCOS, 4(3): 1-8, 2019; Article no.AJRCOS.53088

7

Fig. 4. The second position of the pirate race

3.8 Crashing With Ice Mountain

During a race, if a User Ship hits an Ice
Mountain, the game comes to an end; to avoid
this situation the ship needs to use
correct moves to pass the Ice Mountain. In this
paper, the crashing condition has been
checked using the coordinate position of Ice

Mountain reside in the screen and the user ship
coordinates position on the screen while
racing. If both coordinate positions are
intercepted with each other, then hits
the ice mountain becomes true otherwise it
will be false. The following algorithm describe
how the condition check using a Java if
statement.

Fig. 5. The crashing position of the pirate race

Logiraj; AJRCOS, 4(3): 1-8, 2019; Article no.AJRCOS.53088

8

Algorithm:

Input: User ship X, Y coordinate, Ice Mountain X,
Y coordinate, Ice Mountain Width and Height.

If (User ship X coordinate < (Ice Mountain X
Coordinate + Ice Mountain Width) && User ship
Y Coordinate < (Ice Mountain Y Coordinate + Ice
Mountain Height) && User ship X coordinate >
(Ice Mountain X Coordinate) && User ship Y
coordinate > (Ice Mountain Y Coordinate)) {

Print ("Ship Crashed!!!! ");

 Exit ()

 }

4. CONCLUSION

I expect this paper will be an easy approach to
designing games in java. The Pirate Race was
tested by over twenty users, who all reported that
they thoroughly enjoyed the game. It was
observed most of the users who were able to win
the game with easy controls. This suggests that
not only did the game provide an entertaining
game experience, it also provided an
understandable way to implement Java games
using a runnable interface. It will grab the
attention of a much wider body of java game
developers who willing to develop their own
game and allow newcomers to the field of game
programming to feel comfortable.

In general, it can be concluded that the Runnable
Interface supported the efficient development of
the Pirate Race game. The interface supports
implementing the game with background sound,
2D images with different file types and the key
events. Making decisions based on multiple
conditional cases has definitely a strong
advantage over hard computing techniques and
the paper will motivate the java learners in the
world of game programming.

COMPETING INTERESTS

Author has declared that no competing interests
exist.

REFERENCES

1. Doke ER, Hardgrave BC, Johnson RA,
Doke ER, Hardgrave BC, Johnson RA. An
introduction to object-oriented
programming. COBOL programmers
Swing with Java. 2011;21-40.

2. Clingman D, Kendall S, Mesdaghi S.
Practical Java Game Programming;
Charles River Media; 1 edition; 2004.

3. BA, PJ, Bhosale KA. Research paper
on java interactional development
environment programming tool. IARJSET.
2017;4(4):121–124.

4. Bjork S, Lundgren S, Holopainen J. Game
design patterns, in: Lecture Note of the
Game Design track of Game Developers
Conference 2003, March 4–8, San Jose,
CA, USA; 2003.

5. Fowler A, Fristoe T, MacLaurin M. Kodu
game lab: A programming environment.
The Computer Games Journal: Whitsun
2012, TuDo-cs Ltd. 2012;17-22.

6. McWhertor Michael. hydro thunder returns
with all-new xbox live arcade
sequel. Kotaku; 2010.
(Retrieved August 24, 2010)

7. Jain S. Developing Games (March 26,
2010). in Java for Beginners. Dev. Games
Java Beginners. 2016;4(ii):693–696.

8. Dong Y, Ying. Design and evaluation of
Java game programming environment:
Major report, Concordia University; Last
Modified; 2018.

9. Mads Hansen, Jacob Dinesen Gronhund.
Java 2D Games, Roskilde University;
2012.

10. David Fox, Roman Verhovsek, Micro Java
Game Development, Addison-Wesley
Professional; 2002.

© 2019 Logiraj; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://www.sdiarticle4.com/review-history/53088

