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Abstract

Aims/ Objectives: In this paper, based on motivations coming from various physical
applications, we consider a coupled system of the wave in a one-dimensional bounded domain
with nonlinear localized damping acting in their equations. We also discuss the well-posedness
and smoothness of solutions using the nonlinear semigroup theory. Then, we give the asymptotic
stability and rates decay to the coupled system, based on solution of an ordinary differential
equation, since the feedback functions and the localized functions satisfy some properties widely
treated in obtaining uniform decay rates for solutions of semilinear wave equation. Furthermore,
the result requires the obtaining of the internal observability inequality for the conservative
system.
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1 Introduction

Let us consider the system {
utt − uxx + ξ1(x)g1(ut) + αv = 0

vtt − vxx + ξ2(x)g2(vt) + αu = 0,
(1.1)

in (0, L)× (0, T ), with Dirichlet boundary conditions

u(0, t) = 0, u(L, t) = 0, v(0, t) = 0, v(L, t) = 0, t ∈ (0, T ) (1.2)

and initial conditions

u(x, 0) = u0, ut(x, 0) = u1, v(x, 0) = v0, vt(x, 0) = v1, x ∈ (0, L) (1.3)

The positive constant α is a coupling parameter, related to the approximation of membranes as
described in the model above. This model represents the evolution of a system that involves two
elastic membranes subject to an elastic force, firstly presented in [1].

Later, the nonnegative localizing functions ξi will be supposed to belong to L∞(0, L) while the
functions gi will be supposed to be continuous and monotone.

For a single wave equation, it is important to mention two works: In [2] a result based on microlocal
techniques and geometric optics analysis allows us to find geometrical characterization of control
location and minimal control time in the exact controllability of waves. After eventual reflection,
diffraction, or sliding on the boundary, every optic ray emitted from the observation domain has
to reach the control zone. This is a necessary and sufficient condition to obtain exponential decay,
namely, the damping region satisfies the well-known Geometric Control Condition(GCC). For the
wave equation an observability inequality requires of the GCC, sufficiently large time and geometric
conditions on the subset to absorb all rays of geometric optics. Another important result is found
in [3], when the feedback term depends on the velocity in a linear way, which proves that the
energy related to equation decays exponentially if the damping region contains a neighborhood of
the boundary Γ or, at least, contains a neighborhood ω of the particular part given by {x ∈ Γ :
(x − x0).ν(x) ≤ 0}. For systems, there are in literature some works with Ω ⊂ Rn, as [4] or [5], in
the context of linear damping mechanisms. In [4], the abstract model is

u′′
1 +A1u1 +Bu′

1 + αPu2 = 0 in V ′
1 ,

u′′
2 +A2u2 + αP ∗u1 = 0 in V ′

2 ,

(u′
1, u

′
1)(0) = (u0

1, u
1
1) = U0

1 ∈ V1 ×H,

(u′
2, u

′
2)(0) = (u0

2, u
1
2) = U0

2 ∈ V2 ×H,

where H, V1 ⊂ H, and V2 ⊂ H are separable Hilbert spaces; A1, A2 are coercive self-adjoint
unbounded operators in H; B is unbounded symmetric in H, whereas the coupling operator P is
assumed to be bounded in H; P ∗ is the adjoint operator of P . Under a condition on the operators
of each equation and on the boundary feedback operator, the energy of smooth solutions of that
system decays polynomially at ∞, and them apply this abstract result to several systems as wave-
wave systems, Kirchhoff-Petrowsky systems, and wave-Petrowsky systems. On the other hand in
[5], we have the system {

u′′ +A1u+Bu′ + αv = 0

v′′ +A2v + αu = 0

2



Charles; JAMCS, 26(3): 1-14, 2018; Article no.JAMCS.38196

in a separable Hilbert space H, where A1, A2 and B are self-adjoint positive linear operators in
H, and in addition, B to be a bounded operator. The solutions decay polynomially at infinity,
and that this decay rate is, in some sense, optimal. The stabilization result for abstract evolution
equations, studied by them is also applied to study the asymptotic behaviour of various systems
of partial differential equations. Furthermore, many questions about abstract systems are given
by them. If waves propagate at different speeds(i.e. variable coefficients) the situation becomes
more delicate and the strong stability is not true in general. Furthermore, we limit our attention
to one-dimensional domain. On the other hand, we have not been able to prove this result for
variable coefficients, as well as knowing how the regularity of the coefficients affects the stabilization
properties, in the same spirit of recent papers [6, 7, 8, 9]. To our knowledge, the problem remains
open for systems.

The prime object of study in this paper is to show the standpoint of another rate of decay
for the (wave-wave) system with frictional damping mechanisms. A distinctive feature of the
above mentioned paper is exactly to consider that these mechanisms will be nonlinear localized
mechanisms. Although, we are stabilizing the two equations with internal damping, by virtue of
the used method. As far as we are concerned, this is the first work which establishes this result
for nonlinear damping mechanisms. This is accomplished by following multipliers technique and
the method presented in [10], where without any geometrical condition and without assuming that
the feedback has a polynomial growth in zero, they showed that the energy decays as fast as the
solution of some associated differential equation. This rate will be then:

E(t) ≤ S

(
t

T0
− 1

)
E(0) ↘ 0, for all t ≥ T0, t→ ∞,

for energy E(t) of the system (1.1), where the scalar function S(t) (nonlinear contraction) is the
solution of an ODE. Still we use an adaptation of [11], where they generate appropriate estimates
for the energy functional as opposed to the classical method of constructing a particular Lyapunov
function for a general nonlinear equation.

In other words, we obtain exponential decay rates for the damping that is bounded from below by
a linear function and algebraic decay rates for polynomially decaying dissipation at the origin.

This paper is structured as follows. First, in the Section 2, we present the assumptions and the
result of the existence of solutions to the proposed system. In the Section 3 we obtain an essential
inequality for inhomogeneous system. Finally, in the Section 4, we established the rates decay for
the solutions of the nonlinear localized damped system.

2 Assumptions and Existence

Let’s assume that α is a real number such that |α| be a sufficiently small positive quantity, so that
we have a positive energy. Since {u, v} is a solution of (1.1) the energy of the system related to this
solution is

E(t) =
1

2

∫ L

0

(
|ut|2 + |ux|2 + |vt|2 + |ux|2 + 2αuv

)
dx, (2.1)

with t nonnegative.

Assumptions around the mechanisms of damping of the problem will be made. Firstly, to accomplish
the decay rates we will assume that

H1: The feedback function gi, for each i = 1, 2, is continuous and monotone increasing, and, in
addition, satisfies the following conditions:
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(i) gi(s)s > 0 for s ̸= 0,

(ii) ki s ≤ gi(s) ≤ Ki s for |s| > 1,

where ki and Ki are positive constants, and ki ≤ Ki.

And now, about the geometrical condition we will assume the following effective damping region:

H2: Let ε be a sufficiently small positive quantity. Assume that ξi ∈ L∞(0, L) are nonnegative
functions such that

ξi(x) ≥ τi > 0 a.e. in Iε := (L− ε, L), i = 1, 2. (2.2)

where τi are positive constants.

Lemma 2.1. The energy functional (2.1) satisfies

dE(t)

dt
= −

∫ L

0

{ξ1(x)g1(ut)ut + ξ2(x)g2(vt)vt} dx ≤ 0,∀t ≥ 0. (2.3)

Now consider the Hilbert space

H := H1
0 (0, L)×H1

0 (0, L)× L2(0, L)× L2(0, L), (2.4)

with internal product

⟨U, V ⟩H =

∫ L

0

{∇u1∇v1 +∇u2∇v2 + α(u1v2 + u2v1) + u3v3 + u4v4} dx,

with U = (u1, u2, u3, u4)
T and U = (v1, v2, v3, v4)

T, where to make use of T to denote the transpose.

If we denote W (t) = {u, v, ut, vt}T then the initial boundary value problem (1.1)-(1.3) can be
rewritten as a first order problem as follows:

dW

dt
(t) +AW (t) = 0

W (0) =W0,
(2.5)

where W0 = {u0, v0, u1, v1} and the operator A = D(A) ⊂ H → H is given by A = −(A+B) with
component operators defined by

D(A) = (H1
0 (0, L) ∩H2(0, L))2 × (H1

0 (0, L))
2 and D(B) = H,

and

A =


0 0 1 0
0 0 0 1
∆ −αI 0 0

−αI ∆ 0 0

 ,

B =


0 0 0 0
0 0 0 0
0 0 −ξ1(x)g1(.) 0
0 0 0 −ξ2(x)g2(.)

 .

We observe that, in this case we have D(A) = D(A). From nonlinear semigroups theory [12], where
X will be a real Banach space and X∗ will denote its dual space, we have the following:
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Definition 2.1. A set T ⊂ X ×X∗ is called monotone if

(x1 − x2, y1 − y2) ≥ 0,

for any element [xi, yi] of T , i = 1, 2. If T is a single-valued operator from X × X∗, then the
monotonicity condition becomes

(x1 − x2, Tx1 − Tx2) ≥ 0,

for all x1, x2 ∈ D(T ).

Definition 2.2. A monotone subset of X×X∗ is said to be maximal monotone if it is not properly
contained in any other monotone subset of X ×X∗.

Definition 2.3. The operator T : X → X∗ is said to be bounded if it maps every bounded subset
of X into a bounded subset of X∗.

Definition 2.4. Let T be a single-valued operator defined from X to X∗ such that D(T) = X. T
is said to be hemicontinuous on X if

ω − lim
t→0

T (x+ ty) = Tx,

for any x and y in X, where ω − lim denotes the limit in the weak topology.

And from [13] we have the following existence and regularity result:

Theorem 2.2. Let Assumptions H1 and H2 hold. For any W0 ∈ D(A) there will exist a unique
strong solution for (2.5). Furthermore, if W0 ∈ H then (2.5) will admit a unique weak solution.

Proof. We need to show that the operator A = −(A+B) is maximal monotone, after, we will use
Brézis[13, Theorem 3.1] in order to conclude the result. At this moment we shall divide our proof
into two parts, because we will use Barbu[12, Corollary 1.1], where it is enough to show that:

(i) The operator −A is maximal monotone.

(ii) −B is monotone, hemicontinuous, and a bounded operator.

Proof of (i). Here we show that −A is monotone and R(I − A) = H, so by [13, Proposition 2.2]
the result follow. In fact, as

(−AW,W )H = 0

we have that −A is monotone. Now considering (F1, F2, F3, F4) ∈ H, we obtain

u− ut = F1 ∈ H1
0 (0, L), (2.6)

v − vt = F2 ∈ H1
0 (0, L), (2.7)

ut − (uxx − αv) = F3 ∈ L2(0, L), (2.8)

vt − (vxx − αu) = F4 ∈ L2(0, L), (2.9)

and then

u− (uxx − αv) = f1 = F1 + F3 ∈ L2(0, L),

v − (vxx − αu) = f2 = F2 + F4 ∈ L2(0, L).

This way we are able to see that

a : (H1
0 (0, L)×H1

0 (0, L))
2 −→ R

5
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defined by ∫ L

0

{ux∇θ1 + vx∇θ2 + uθ1 + vθ2} dx

where we have that
(u, v), (θ1, θ2) ∈ (H1

0 (0, L)×H1
0 (0, L))

is a bilinear form, continuous and coercive. From the Lax-Milgram theorem, we obtain the desired
surjection.

Therefore, the operator −A is maximal monotone by [13, Proposition 2.2].

(ii) −B is monotone, hemicontinuous, and a bounded operator.

Now, using Assumptions H1 and H2, the operator −B satisfies

(−BW,W )H ≥ 0.

Then it is monotone. Taking

Wi = (ui, vi, ūi, v̄i)
T ∈ H, i = 1, 2,

where prime is used for the partial derivatives with respect to time t ≥ 0, we consider the following
expression

(−B(W1 + tW2),W )H =
(
ξ1(x)g1(ū1 + tū2), u

′)
L2 +

(
ξ2(x)g2(v̄1 + tv̄2), v

′)
L2 , t > 0.

We desire to show that lim
t→0

(
ξ1(x)g1(ū1 + tū2), u

′)
L2 =

(
ξ1(x)g1(ū1), u

′)
L2 ,

lim
t→0

(
ξ2(x)g2(v̄1 + tv̄2), v

′)
L2 =

(
ξ2(x)g2(v̄1), v

′)
L2 .

(2.10)

We will show only the first equality, because the other is analogous. For this, let f ∈ L1(0, L) be
defined by

f(x) =
(
ξ1(x)g1(ū1(x)), u

′(x)
)
,

and defining the sequence (fn) ⊂ L1(0, L), given by

fn(x) = ξ1(x)g1(ū1(x) +
1

n
ū2(x))u(x),

we have,
lim

n→∞
fn(x) = f(x),

almost ever in (0, L). Taking into account the set

Xn =

{
x ∈ [0, L]; |ū1(x) +

1

n
ū2(x)| < 1

}
,

we obtain the sequence (fn) limited. Then, by Lebesgue’s Dominated Convergence Theorem we
obtain the desired limit of the first equality from (2.10). Therefore, −B is hemicontinuous.

Finally, the operator −B maps every bounded subset into a bounded subset. In fact, if ||W ||H < M
for any M > 0, using the assumption H1 we have

|| −BW ||H ≤ ||β1||2∞{L. sup
s∈[−1,1]

|g1(s)|2 +K1.M}+ ||β2||2∞{L. sup
s∈[−1,1]

|g2(s)|2 +K2.M}.

With the statements (i) and (ii), the operator A is maximal monotone of H, and so from [13,
Theorem 3.1] we conclude the proof.

Before presenting our main result, we need a useful resource used in his proof given at next section.
In fact, for the sake of clarifying the resolution firstly we recommend getting the observability for
the conservative system.

6
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3 Observability

Recall that for the undamped system {
utt − uxx + αv = 0,

vtt − vxx + αu = 0
(3.1)

in (0, L) × (0, T ), with Dirichlet boundary conditions (1.2) and initial conditions (1.3), we have a
conservative system. In order to prove the observability for the system (1.1):{

utt − uxx + ξ1(x)g1(ut) + αv = 0

vtt − vxx + ξ2(x)g2(vt) + αu = 0,

we shall work with regular solutions; however they remain valid for weak solutions by using density
arguments. Multiplying the first equation of the system (1.1) by xux, the second equation of the
system (1.1) by xvx and performing an integration by parts we arrive at

0 =
1

2

∫ T

0

∫ L

0

u2
t + v2t + |ux|2 + |vx|2 dxdt

− L

2

∫ T

0

|ux|2(L) + |vx|2(L)dt+
[∫ L

0

utxux + vtxvx dx

]T
0

+ α

∫ T

0

xuv

∣∣∣∣L
0

dt︸ ︷︷ ︸
=0

−α
∫ T

0

∫ L

0

uv dxdt+

∫ T

0

∫ L

0

ξ1(x)g1(ut)xux + ξ2(x)g2(vt)xvx dxdt.

Now using Young’s inequality, and having in mind the energy defined in (2.1), we obtain the main
inequality related with the observability for T large enough, namely

E(0) ≤ C1

(∫ T

0

|ux|2(L) + |∇v|2(L) +
∫ T

0

∫ L

0

ξ21(x)g
2
1(ut) + ξ22(x)g

2
2(vt) dxdt

)
dt.

where C1 is a positive constant which do not depend on T .

On the other hand, let the function η ∈ C2[0, T ], with ε being a sufficiently small positive quantity,
be such that

0 ≤ η ≤ 1, η(t) = 1 in [0, ε] ∪ [T − ε, T ], η(t) = 0 in [2ε, T − 2ε].

Multiplying the first equation of (1.1) by xux η and performing integration by parts

L

2

∫ T

0

|ux|2(L)η dt =

∫ T

0

∫ L

0

1

2
u2
tη − utxuxη

′ +
1

2
|ux|2η + αvxuxη dxdt

+

[∫ L

0

utuxxη dx

]T
0

+

∫ T

0

∫ L

0

ξ1(x)g1(ut)xuxη dxdt.

The equation above, and by definition of η and assertion H1, it follows that

L

2

∫ ε

0

|ux|2(L) dt+
L

2

∫ T

T−ε

|ux|2(L) dt =
L

2

∫ ε

0

|ux|2(L)η dt+
L

2

∫ T

T−ε

|ux|2(L)η dt

≤ L

2

∫ 2ε

0

|ux|2(L)η dt+
L

2

∫ T

T−2ε

|ux|2(L)η dt

≤ εC3[E(0) + E(T )] + C2[E(0) + E(T )].

7
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Analogously multiplying the second equation of (1.1) by x∇v η and performing integration by parts

L

2

∫ ε

0

|vx|2(L) dt+
L

2

∫ T

T−ε

|vx|2(L) dt =
L

2

∫ ε

0

|vx|2(L)η dt+
L

2

∫ T

T−ε

|vx|2(L)η dt

≤ L

2

∫ 2ε

0

|vx|2(L)η dt+
L

2

∫ T

T−2ε

|vx|2(L)η dt

≤ εC5[E(0) + E(T )] + C4[E(0) + E(T )].

where Ci are positive constants which do not depend on T .

From main inequality related with the observability, with the inequalities above, and having in mind
the conservation law of energy, we deduce for T large enough(and for a fixed ε), the observability
inequality namely

E(0) ≤ Cε

(∫ T−ε

ε

|ux|2(L) + |vx|2(L) dt+
∫ T

0

∫ L

0

ξ21(x)g
2
1(ut) + ξ22(x)g

2
2(vt) dxdt

)
Because of the finite speed of propagation, the observability can take place only if T is large enough,
see e.g. [14]. Furthermore, it is important to emphasize that the positive constant Cε does not
depend on the solutions of conservative system. Although we are in 1-D case, we mentioned for the
sake of clarity that the region in which the observation applies needs to be large enough to capture
all rays of Geometric Optics or the so-called Geometric Control Condition(GCC).

4 Asymptotic Stability

The main purpose of the present section is to determine the asymptotic stability to the damped
system (1.1). In order to do that, we will follow the ideas first introduced in [10], and adapted by
[11]. For this, let h be defined by {

h(x) = h1(x) + h2(x),

h1(0) = 0 = h2(0),

where the hi are concave, strictly increasing functions such that

hi(sgi(s)) ≥ s2 + g2i (s), for |s| ≤ 1. (4.1)

Note that such function can be straightforwardly constructed, given the hypotheses on the functions
gi in Assumption H1. With those functions, we define

r(·) = h

(
·

|Q|

)
(4.2)

where |Q| := meas(Q), and Q := (0, L)× (0, T ). As r is monotone increasing, the function cI + r is
invertible for all c ≥ 0. For M a positive constant( the constant M will depend on E(0) and time
T0), we then set

p(x) = (cI + r)−1(Mx). (4.3)

The function p is easily seen as a positive function , continuous and strictly increasing with p(0) = 0.
Finally, let

q(x) = x− (I + p)−1(x). (4.4)

The next lemma is proved in [10].

8
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Lemma 4.1. Let the functions p, q be defined as above. Consider a sequence (sn) of positive
numbers which satisfies

sm+1 + p(sm+1) ≤ sm.

Then sm ≤ S(m) where S(t) is a solution of the differential equation{
S′(t) + q(S(t)) = 0,

S(0) = s0.

Moreover,
lim
t→∞

S(t) = 0,

if p(x) > 0 for x > 0.

Now, considering the lemma (2.1), our main task is prove that

E(T ) ≤ C

∫ T

0

∫ L

0

{ξ1(x)(u2
t + g21(ut)) + ξ2(x)(v

2
t + g22(vt))}dxdt, (4.5)

for some C = (T,E(0)) > 0 and for T sufficiently large, holds for every weak solution to problem
(1.1). Assuming that (4.5) takes place, for estimate each tranche of this inequality we define

Ωu = {(x, t) ∈ Q; |ut(x, t)| > 1} and Σu = Q \ Γu,

Ωv = {(x, t) ∈ Q; |vt(x, t)| > 1} and Σv = Q \ Γv,

where Γu and Γv are boundary, and using the Assumptions H1 and H2 with Jensen’s inequality,
we get

E(T ) ≤ C

2∑
i=1

(k−1
i +Ki)

∫
Q

ξ1(x)g1(ut)ut + ξ2(x)g2(vt)vtdxdt

+ C|Q|
2∑

i=1

(1 + ||ξi||∞)r

(∫
Q

ξ1(x)g1(ut)ut + ξ2(x)g2(vt)vtdxdt

)
,

so we are able to define

M =
1

C|Q|
∑2

i=1(1 + ||ξi||∞)
and c =

∑2
i=1(k

−1
i +Ki)

C|Q|
∑2

i=1(1 + ||ξi||∞)
.

Using (2.1) in inequality above, we can still rewrite it as

p(E(T )) ≤ E(0)− E(T ),

and proceeding verbatim as considered in [10], there is a time T0 > 0 such that the solution of
problem (1.1) satisfies the following decay rate

E(t) ≤ S

(
t

T0
− 1

)
E(0), for all t ≥ T0, (4.6)

where

S

(
t

T0
− 1

)
E(0) ↘ 0, with t→ ∞,

for energy E(t), where the scalar function S(t) (nonlinear contraction) is the solution of the following
ODE: {

S′(t) + q(S(t)) = 0,

S(0) = E(0)

9
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and the function q is defined in (4.4). Effective computations of the decay rates are given in [15],
and in our case it suffices to consider (4.3) and (4.4) with the structure of the function h, which
is related to the dissipation by the inequality (4.1). Now, we are in a position to state our main
result:

Theorem 4.2. Assume Assumptions H1 and H2. Then the problem (1.1) possesses a unique
(weak) solution which satisfies the decay rate estimate given in (4.7), if 0 < E(0) < M .

Proof. In order to prove Theorem (4.2) it is sufficient to prove inequality (4.5). Since

E(t) ≤ E(0), ∀t > 0,

it is enough to prove, for all given T,M > 0, T sufficiently large, that there is a constant C =
C(T,M) > 0 such that

E(0) ≤ C

∫ T

0

∫ L

0

{ξ1(x)(u2
t + g21(ut)) + ξ2(x)(v

2
t + g22(vt))}dxdt, (4.7)

happens for every {u, v, ut, vt} strong solution of (1.1)), checking 0 < E(0) < M.

Let us suppose that (4.7) is not verified and let

W0n = {u0n, v0n, u1n, v1n}

be a sequence of initial data limited in space H for the corresponding solution

Wn(t) =
{
un, vn, u

′
n, v

′
n

}
n∈N

of system (1.1). One has En(0) < M i.e, uniformly bounded in n, and

lim
n→∞

En(0)∫ T

0

∫ L

0
ξ1(x)(u2

t + g21(ut)) + ξ2(x)(v2t + g22(vt)) dxdt
= ∞,

or equivalently,

lim
n→∞

∫ T

0

∫ L

0
ξ1(x)(u

2
t + g21(ut)) + ξ2(x)(v

2
t + g22(vt)) dxdt

En(0)
= 0. (4.8)

Since (En(0)) is uniformly bounded in n, we obtain

u′
n

∗
⇀ u′ in L∞(0, T ;L2(0, L)), (4.9)

v′n
∗
⇀ v′ in L∞(0, T ;L2(0, L)), (4.10)

∇un
∗
⇀ ux in L∞(0, T ;L2(0, L)), (4.11)

∇vn ∗
⇀ vx in L∞(0, T ;L2(0, L)), (4.12)

From (4.11), and by the Poincaré inequality, we obtain

un
∗
⇀ u in L∞(0, T ;L2(0, L)), (4.13)

and therefore by the Aubin-Lions theorem, we get

un → u strongly in L2(0, T ;L2(0, L)). (4.14)

Analogously, from Poincaré inequality and by the Aubin-Lions theorem we also have

vn → v strongly in L2(0, T ;L2(0, L)). (4.15)

10
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Since (En(0)) is bounded, the inequality (4.8) yields

lim
n→∞

∫ T

0

∫ L

0

ξ1(x)(u
2
t + g21(ut)) dxdt = 0 = lim

n→∞

∫ T

0

∫ L

0

ξ2(x)(v
2
t + g22(vt)) dxdt. (4.16)

Using the assumptions H1 and H2 and after (4.16), we obtain

lim
n→∞

∫ T

0

∫
Iε

u′2
n dx dt = 0 = lim

n→∞

∫ T

0

∫
Iε

v′2n dx dt.

The convergences above and passing to the limit in (1.1), we arrive at
u′′ −∆u+ αv = 0 in Q := (0, L)× (0, T ),

v′′ −∆v + αu = 0 in Q,

u′ = 0 = v′ in Qε := Iε × (0, T ).

(4.17)

Taking the derivative of (4.17) on t in the distributional sense and substituting φ = ut and ψ = vt,
we infer 

φtt −∆φ+ αψ = 0 in Q,

ψtt −∆ψ + αφ = 0 in Q,

φ = 0 = ψ in Qε.

Employing Holmgren’s uniqueness theorem we deduce that φ = ψ = 0 in Q, and consequently,

u′ = v′ = 0, in Q. (4.18)

Returning to (4.17) we obtain in Q: {
−∆u+ αv = 0 in Q,

−∆v + αu = 0 in Q.
(4.19)

as |α| is a sufficiently small positive quantity. Multiplying the first equation of (4.19) by u, the
second one by v and adding the obtained results, yields∫

Q

{(ux)
2 + (vx)

2 + 2αuv}dxdt = 0

which implies from norm in H, that u = 0 = v. Now, setting initially

wn :=
√
En(0), φn :=

un

wn
, and ψn :=

vn
wn

from (4.8) we obtain

0 = lim
n→∞

∫
Q

ξ1(x)

(
φ′2

n +
g1(wnφ

′
n)

2

w2
n

)
+ ξ2(x)

(
ψ

′2
n +

g2(wnψ
′
n)

2

w2
n

)
dxdt. (4.20)

Furthermore, defining, for each n, the energy En(t) of the normalized problem as

En(t) =
1

2

∫ L

0

{φ′2
n + ψ

′2
n +∇φn +∇ψ2

n + 2αφnψn} dx,

then,

En(0) =
En(0)

w2
n

= 1, for all n ∈ N. (4.21)

11
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Consequently, making use of the Poincaré inequality and by the Aubin-Lions theorem, one has

φn → φ in L2(0, T ;L2(0, L)),

ψn → ψ in L2(0, T ;L2(0, L)).

Taking into account the convergence above and passing to the limit in the system
φ′′

n −∆φn + ξ1(x)
g1(wnφ

′
n)

wn
+ αψn = 0,

ψ
′′
n −∆ψn + ξ2(x)

g2(wnψ
′
n)

wn
+ αφn = 0

(4.22)

in Q, we conclude 
φ′′

n −∆φn + αψn = 0 in Q,

ψ
′′
n −∆ψn + αφn = 0 in Q,

φnt = 0 = ψnt in Qε.

Similarly, as previously seen, we noticed that φn = ψn = 0. In what follows, we shall prove
some technical identities that will play an important role when proving the asymptotic stability by
contradiction.

Let θ ∈ C∞
0 (0, T ) a cut-off function, with ε being a sufficiently small positive quantity, be defined

by ∣∣∣∣∣∣
0 ≤ θ(t) ≤ 1, ∀t ∈ (0, T ),
θ(t) = 1, in [ε, T − ε],
θ(t) = 0, when t = 0, T.

Multiplying the first equation by uθ, we arrive at∫
Q

u2
t θ + utuθ

′ dxdt =

∫
Q

{u2
x + αuv + ξ1(x)g1(ut)u}θ dxdt. (4.23)

And multiplying de first equation by xuxθ, we obtain∫
Q

utuxxθ
′ dxdt+

L

2

∫ T

0

ux
2(L)θ dt =

∫
Q

{αvux + ξ1(x)g1(ut)ux}xθ dxdt

+

∫
Q

1

2
(u2

t + (ux)
2)θ dxdt. (4.24)

From (4.23),

0 =

∫
Q

−φ′2
n θ − φ′

nφnθ
′ + (∇φn)

2θ + αφnψnθ + ξ1(x)
g1(wnφ

′
n)

wn
φnθ dxdt.

Taking the weak and strong convergence above, making use of the Poincaré inequality and the
Aubin-Lions theorem, and since φ = ψ = 0, from the identity (4.20), (4.21) and (4.24) we obtain

lim
n→∞

∫ T

0

∫ L

0

(∇φn)
2θ dxdt = 0. (4.25)

By other hand, from (4.24)

0 =

∫
Q

1

2
{φ′2

n + (∇φn)
2}θ − φ′

n∇φnxθ
′ dxdt− L

2

∫ T

0

(∇φn)
2(L)θ dt

+

∫
Q

{
αψn + ξ1(x)

g1(wnφ
′
n)

wn

}
∇φnxθ dxdt.

12
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Considering the above convergence, and taking the identity above into consideration, one has

lim
n→∞

L

2

∫ T

0

(∇φn)
2(L)θ dt = 0. (4.26)

Analogously, we obtain

lim
n→∞

∫ T

0

∫ L

0

(∇ψn)
2θ dxdt = 0, (4.27)

and

lim
n→∞

L

2

∫ T

0

(∇ψn)
2(L)θ dt = 0. (4.28)

In order to obtain the desired contradiction let us rewrite (3)) in terms of problem (4.22), that is

En(0) ≤ Cε

(∫ T−ε

ε

(∇φn)
2(L) + (∇ψn)

2(L) dt+

∫
Q

ξ1(x)
g1(wnφ

′
n)

2

w2
n

+ ξ2(x)
g2(wnψ

′
n)

2

w2
n

dxdt

)
.

Combining (4.21), (4.20), (4.26), (4.28) and the inequality above into consideration we obtain that
1 ≤ 0, which is a contradiction, proving inequality (4.7) as we desired.

5 Conclusion

This model describes the evolution of a system of two elastic membranes. We generalizes the
results of [4] and [5] to the case of non-linear dampings acting in both the equations, under suitable
hypothesis on the non-linearities, and we able to prove a uniform decay for solutions. Then, the
hypotheses (both the equation are stabilized, the supports of the dampings are the same set, which
is of non-zero measure) seem to me overmuch, and we wonder if one could prove the same result
under more general assumptions. Moreover, both waves have the same propagation speed, but
maybe it would be possible also to consider the case of equations with variable coefficients. Finally,
one could also look at how the regularity of the coefficients affects the stabilization properties, in
the same spirit of recent papers [7], [8], and [6], about observability and controllability of wave
equations in dimension 1.
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