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Abstract 
 

GSM network design requires efficient interference management technique, which offers significant 
capacity enhancement and improves cell edge coverage with low complexity of implementation. This is 
done by assigning different frequencies to adjacent cells to avoid interference or cross talk. Random 
assignment of these frequencies is quite herculean and inefficient for huge number of cells.  This paper 
proposed a formula for assigning frequencies for uniform  (�: � = 1: 1)  cell range and extends it to non-
uniform  (�: ℵ for ℵ > � )cell range in cell planning. Also, we obtain a functional relationship between 
the apothem and the circumradius as well as the inner and outer angle and deduce that hexagonal 
tessellation offers the best radius and angular relationship in GSM cell planning. 
 

 
Keywords: Frequency re-use; GSM, hexagons; overlap difference. 
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1 Introduction 
 
In mobile telecommunication networks, the term ‘cells' may artificially be represented by geometrical shapes 
such as hexagons or concentric circles-disks. This is because GSM antenna has been designed to radiate 
signals in sectors [1]. A  collection of these antennas make up a circle. But circles do not tile, so the choice 
of covering is essential to remove excessive overlaps. Hexagon is conveniently chosen because it is the only 
tessellable regular polygon that is closest to being circular with the widest area [2]. The circular shapes are 
themselves inconvenient as they have overlapping coverage areas. In reality, the ideal coverage of the power 
transmitted by the base station antenna is non-geometric because of inconsistency in signal strengths. A 
practical network will have cells of non-geometric shapes, with some areas not having the required signal 
strength for various reasons. The performance of the cellular system greatly depends on the spatial 
configuration of Base Stations (BSs). FR is useful in assigning frequencies in hexagonal cells for densely 
and sparsely geographical distribution of subscribers of GSM network.  
 

2 Related Works 
 
The fundamental feature of wireless cellular network is its frequencies re-use capability to maximum 
channel capacity and coverage density [3]. This technique splits an area into smaller regions without overlap 
for particular region utilizes the full frequencies range to avoid interference. As large geographic regions are 
split into smaller units to minimize line-of-sight signal loss propagation, to aid a mass number of active 
resources in that area [4]. All of the cell sites are connected to switches, which in turn linked to the public 
switching network.  
 
The demand for mobile services has been rising exponentially. However, the bandwidth and frequency 
spectrum to support these mobile services is critically limited. Due to limited and competitive scarce 
resources, GSM service providers need new tools to efficiently and effectively optimize the networks. Many 
techniques can be employed including frequency re-use, cell splitting, dynamic resource allocation, adaptive 

cell size algorithm [5] on a geometrically optimized covering cells.   
 
GSM network coverage is identical to Geometric Disks   Covering (GDC) which is one of the most typical 
and well-studied problems in computational geometry [6] and geometric topology. [7] investigated several 
optimal patterns for unbounded areas with special  constraints, e.g., connectivity among nodes, are proposed 
in the area of  wireless   networking.   
 
In the work of [8] , the author developed  a  bound  on  the  largest  area  of  a  hexagon  �  that  can  be  
covered (with  simple intersection)  by  � congruent  convex  domains  �, i.e.,  �(�) ≤ �ℎ(�), where  �(�) 
is  the  area of  � and  ℎ(�) is  the  maximum  inscribed  hexagon  area  in  �.    
            
In reference [9] applied geometric disks covering optimization to water carrot in crop management. In 
reference [10] the authors designed optimal patterns for connected coverage in wireless networks with 
directional antennae. The authors in [11] investigated how to cover a bounded square with a small number of 
circles, i.e., 6-8 and [12] extended their work up to 30 circles. Their patterns are highly specific, i.e., a unit 
square can be optimally covered by � discs with a specific radius. Tiling according to authors in [13] with 
squares and equilateral triangles are very useful tools to study several structural and thermodynamical 
properties of a wide variety of solids. [14] investigated the number of nodes needed to cover a bounded area.   
 
There are several classical papers on the problem of how large an area �  congruent shapes can cover.  
However, neither squares nor rectangles yield optimal overlap for cell planning.The contribution of this 
paper is summarized as: The proposed technique is capable of achieving a higher system throughput gain 
compared with conventional forwarding relay system. This will maximize the cell splitting frequencies to 
boost network coverage probability. Nonetheless, it tends to investigate the single optimality in re-using the 
frequency from the well-known uniform to a non-uniform cell range using tillable hexagons in both overlap 
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difference and overlap areas. Also, a relationship of overlap difference for two non-uniform cell range has 
been computed. 

 

3 Computational Experience 
 
In a cellular communication system, cell shape varies depending on geographic, environmental and network 
parameters such as terrain and artificial structures  properties, base station location and transmission  power,  
accessing  techniques, etc. We shall study the possible geometry of the cell shapes as shown in Fig. 1. 
 
 

 
 

 
                               

Fig. 1. GSM cell shapes in radio networks 
 

3.1 Overlap for optimal disks covering 
 
We consider simple layouts as shown in Fig. 2. Fig. 2(a) illustrates the hexagonal cell layout. The apothem 
and the circumradius of the hexagonal cell are � � and ��, respectively.  In Fig. 2(b), cells are partially 
overlapped because  �� equals to the hexagon's   circumradius. In this case, the model considers nodes were 
not belonging to the cell of interest.  Cited in [15], algebraically, the best positioning of the GSM network is 
where the hexagonal and circular cells overlap to give us a difference of 2(�� − ��) as shown in Fig.  2(a).  
 
 

 
 

(a) Hexagonal  cell  layout   (b) Idealized  circular  layout 
 

Fig. 2. Cell layout models for GSM networks 
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Theorem 1:   For  a  hexagonal  geometry of  side  ratio 1:1, the  co-channel  re-use  ratio  is  given  by   
 

��� = �
    3�                       ,         ���  �= �

� 3(�� + ��+ ��), ���  �≠ �
� 

 
Where � = �� + ��+ ��  [10] is the cluster size for �, �∈ ℤ ≥ 0. 
 
Proof: 
 
Consider the hexagonal geometric tessellation with seven different cells as shown in Fig.  3. The chain of 
hexagons is either along � vertical or 60� rotation of �  cells.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     
 

 
Fig. 3. Co-channel reuse ratio 

 
Generally, for  � = �� + ��+ ��  we can find  the  nearest  co-channel neighbours of  a  particular  cell:  
 

a) Move  �= 2  cells  along  any  chain  of  hexagons  and  then 
b) Turn  120� clockwise and move  �= 1  cells. 
c) � ∈ ℕ - Cluster  size  of  cell 
d) � ∈ ℝ - radius  of  circle  equivalent  to  any  one  side  of  the  hexagon 

 
Using the cosine rule  to  find  �  from  ∆���: 
 

 �� = ��√ 3��
�

+ ��√ 3��
�

− 2�× �√ 3���× �√ 3�����120� 

= 3���� + 3���� − 6���� �
− 1

2
� 

 
= 3��(�� + �� + ��) 

 

� = �� 3(�� + �� + ��) = |��′| 
 

For  �≠ �        ∴ ��� =
�

�
= � 3(�� + �� + ��)                                                                                                   (1)            

 

For  �= �,          ��,� =
�

�
= � 3(�� + �� + �× �) = 3� 

 
(a) N- cluster cell (� = 7) 

 
 
                      (b)   � − Reuse  Distance      
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Is the reuse factor (ratio) and  � = �� 3(�� + �� + ��) is the reuse distance. For a fixed cell size, if � is small 
then the cluster size decreases which in turn results in an increase in the number of clusters and hence the 
capacity. However, if � is small, the co-channel cells are located much closer and hence more interference.   
 

Lemma 1: For a hexagonal geometry with ��� =
�

�
= √ 3�  a small value of ��� provides larger capacity 

since the cluster size is small  (requires more of the same  frequency) whereas because of a smaller level of 
co-channel interference a large value for ��� improves the  transmission  quality. Table 1 shows some cluster 
size and frequency re-use factor of theorem 1. 
 

Table 1. Possible cluster size and frequency re-use factor 
 

Movement   

of  cells 

Cluster  size (�) Co-channel  re-use  ratio (��� =
�

�
= √ �� ) 

�= 1, �= 0 1 1.732 

�= 1, �= 1 3 3 

�= 2, �= 0 4 3.46 

�= 2, �= 1 7 4.58 

�= 3, �= 0 9 5.20 

�= 2, �= 2 12 6 

�= 3, �= 1 13 6.24 
 

 

For broadband cellular access based on orthogonal frequency division multiple access, fractional frequency 
reuse (FFR) is crucial in justifying inter-cell interference and optimizing cell-edge performance. The studies 
done in [16] about FFR, each cell is split into a centre zone, and an edge zone with their spectrum 
correspondingly partitioned into two parts. One part is allocated with re-use 1 in all cell-centre zones. The 
second part is further split into sub-bands. These sub-bands, to be used in the cell-edges zones, have a higher 
reuse factor. We, however, state a theorem is permitting us to re-use co-channel cells of hexagons of 
different side lengths. 
 

Theorem 2:  For   a  hexagonal  geometry  with  side  ratio  �: ℵ, the  co-channel  re-use  ratio  for  non-
uniform  cell  range  is  given  by   
 

        ��� = � 3(���� + �ℵ��+ ℵ���)   , for  ℵ ≥ �               
 

Where � = ���� + �ℵ��+ ℵ��� is the cluster size for �, �∈ 0 ∪ {ℕ}  and  � > ℵ ∈ �. 
 

Proof 
 
 

 
 

Fig. 4. Generalized frequency re-use in GSM network 
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Movement along the ��ℎ cells = 4N�����60� 
 

= 2���= 2��
√ 3

2
� 

= √ 3��� 
 
Movement along the  ��ℎ  cells = 2ℵ�����0� 
 

= 2ℵ��= 2ℵ 
√ 3

2
�� 

= √ 3ℵ�� 
Then,    
 

 �� = ���√ 3��
�

+ ��ℵ√ 3��
�

− 2��√ 3����ℵ√ 3������120� 

� = �� 3(���� + �ℵ��+ ℵ���) 

��� =
�

�
= � 3(���� + �ℵ��+ ℵ���) 

 
where   � = ���� + �ℵ��+ ℵ���          
                  
Case 1:  Uniform cell range: �: ℵ = 1: 1 
 

� = �� + ��+ ��  as   in  Theorem 1 
 

Case 2:  Non-uniform cell range: �: ℵ = 1: 2 
 
Then, � = 1  and  ℵ = 2 
 

� = �� + 2��+ 4��             
 
Case 3:  Non-uniform cell range: �: ℵ = 1: 3 
 

Then, � = 1  and  ℵ = 3 
 

� = �� + 3��+ 9�� 
 

Table 2. Generalized cluster size and frequency re-use factor 
 
Movement  of  cells 

 (�, �) 
           �: ℵ = �: � �: ℵ = �: � 
Cluster  size 
(�) 

Co-channel       
 re-use Ratio  

   (��� = √ ��) 

Cluster  size (�) Co-channel  re-use  Ratio

 (��� = √ ��) 

(1,0) 1 1.732        1 1.732 
(0,1) 4 3.464 9 5.196 
(1,1) 7 4.583 13 6.245 
(2, 0) 4 3.464 4 3.464 
(0, 2) 16 6.928 36 10.392 
(2, 1) 12 6 19 7.550 
(1, 2) 21 7.937 43 11.358 
(3, 0) 9 5.196 9 5.196 

(0, 3) 36 10.392 81 15.588 
Sequence 1, 4, 7, 9, 12, 16, 21, .. 1,4,9,13,19,36,43,81, … 
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3.2 Overlap difference in hexagon-inscribed disks  
 
Overlap in cell planning ensures smooth handover in GSM network. This overlap has no differential effect 
such as fading and attenuation in signals.  The overlap may occur for a smooth handover of cells and has the 
disadvantage of increasing the number of GSM masts as well as antenna required in a given area. A typical 
overlap may arise as a result of uniform cell radius (disks) or non-uniform cell radius. 
 
Type I:  Uniform Disks  
 
It has been established by [17], that to cover a given plane with disks of radius  �� and hexagonal apothem 
��, we require an overlap difference of 2(�� − ��). We deduce formulas for calculating the width of any 
hexagonal disks covering as shown in Table 2. Consider two intersecting uniform disks shown in Fig. 5. 
 

 
 

Fig. 5. Overlap width for uniform disks (cell  radius) 
 

Type II: Non-uniform Disks 
 
Non-uniform cell radius for two different GSM antenna masts with radii �  and ��  and corresponding 
apothem of � and  �� would have a cell overlap difference of � − � + 2�� − ��. A mixture of non-uniform 
cell radius results in many overlaps and in effect give rise to an increase in the number of GSM antenna mast 
to be erected. Here we have relatively wider area. The difference � − � + 2�� − �� > 2(�� − ��).  This is 
illustrated in Fig. 6.  
 

 
 

Fig. 6. Overlap difference for  non-uniform  disks 
 

The actual expression for the overlap difference can be calculated from Fig. 6. 
 
Overlap difference   = � − � + �� − �� + ��. 
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Case I: Triangle  ��� 
 
Overlap   difference (�) = � − � 

���60� =
�

�
⟹ � = ����60� 

∴ � =
�√ 3

2
 

 

Overlap difference  (�) = �1 −
√ �

�
� � =

�

�
�2 − √ 3�� 

 
Case II: Triangle  �′�′� 
 
Overlap   difference  (��)  = �� − �� 
 

Similarly, triangle  �′�′� is equilateral so  �� =
��√ �

�
. Thus       �� =

�

�
�2 − √ 3���.  

 
Case III: Circle with diameter  ��′. 
 
Overlap difference of �� = ��. Generally, for  non-uniform  cell  range, we  have  overlap  difference      
 

 ��      = � + �� + �� 
                         = � − � + �� − �� + ��. 

                    =
�

�
�2 − √ 3�� +

�

�
�2 − √ 3��� +

���

�
 

 

     �� =
�

�
��2 − √ 3�� + �4 − √ 3����                     (2) 

 
Equation (2) is far greater than 2(�� − ��). Thus it is inefficient to consider covering with disks using non-
uniform radii. Applicably, masting of GSM antenna for non-uniform cell range is economically unwise as 
well as inefficient in time complexity. Table 3 illustrates the occupying overlap difference for both uniform 
and non-uniform cell radius.   
 

Table 3. Occupying width for uniform and non-uniform cell range 
 

GSM  Cell  Design Type   Uniform  Cell  Radius Non-uniform  Cell Radius 
 
 
Overlap  Difference (�� ) 

2(�� − ��) � − � + 2�� − �� 

�2 − √ 3��� 1

2
��2 − √ 3�� + �4 − √ 3���� 

2

3
�2√ 3 − 3��� 

1

3
��2√ 3 − 3�� + (4√ 3 − 3)��� 

 

 
It is also an established fact that �� > �� and as �� increases the overlap difference (width - ��) increases. 

This is because the multipliers  (2 − √ 3)   and   �4√ 3 − 3�  for both uniform and non-uniform disks 

respectively are both greater than one (1), hence as �� = �(��) → ∞ , then   �� → ∞. The resulting area  is 
calculated by the  following  approaches. 
 

3.3 Area of single overlap   
 
Overlap areas in  hexagonal tessellation can be created using either uniform or non-uniform cell  range. We  
consider two  cases. 
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Case I: Uniform Cell radius 
 
We have established that optimal disks covering is achieved when the cells overlap to give us a difference  
of  2(�� − ��). 
 

 
 

Fig. 7. Area of a single  overlap for  uniform  disks 
 

From Fig. 7 we have: 
 
Area of single overlap =  2 × (area of sector  ��� −  an area of triangle ���). 
 

= 2 × �
1

2
��

�� −
1

2
��

������ 

 

 �� = ��
�(� − ����)                                                                                                               (3) 

     
For  an  � − sided  regular  polygon, the  total  overlap  area  (��)  is  given  by  
 

�� = ���
�(� − ����)                                                                                                                 (4) 

 

For   hexagonal tiling, � =
�

�
  a single  area  is 

 

�� = ��
� �

�

�
− ���

�

�
�                      

 

  �� =  
��

�

�
(2� − 3√ 3)                                                                                                                          (5) 

 
The achieved (5)  is the formula for  calculating excess area coverage  loss (due to overlaps) when a pair of 

GSM masts are positioned with an overlap difference of 2(�� − ��). The multiplier 0 <
(����√ �)

�
< 1 widens 

the quadratic  relationship between the area overlap and the  radius  of  the  inscribed  hexagon  in  (5).  In  
field  work, an  overlap  has  the  differential  disadvantage  of  reducing  the  coverage  area  to  be  covered. 
As  a  result  the  overlap  area  must  be  kept  as  small and  few as possible - optimization.   (5)  can be 

modified  using  the  fact  that �� =
���

√ �
, then   

 

Area of single overlap =
���

�

�
×  

�

�
(2� − 3√ 3)            

                             

                                        =
���

�

�
(2� − 3√ 3)                                                                                                  (6) 
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Case II:  Non-uniform Cell Radius 
 
Non-uniform  cell  radius  for  two  different  GSM  antenna  masts  with  radii  �    and  ��   with  
corresponding  apothem  of  �  and  ��  would  have  a  cell  overlap  difference   of  � − � + 2�� − ��. This   
is illustrated in  Fig.  8.  
 
 

 
 

Fig. 8. Area of   overlap  for  non-uniform  disks 
 

Area of a  single  repeated  overlap 

 

       ��′ = area of  bigger  sector ��� −  area of   ∆��� + area  of     smaller sector  

 

       �′�′� −   area of ∆�′�′� +  (area  of  circle  with  diameter  ��′ ÷ 2) 

 

=
1

2
��� −

1

2
������+

1

2
��

��� −
1

2
��

������ +
1

2
���

� 

 

  ��′  =
�

�
���(� − ����) + ��

�(�� − �����) +
�

�
��

��      

                                

           =
�

�
�� � 

�

�
− ����

�

�
� � +

�

�
��

� �
�

�
− ���

�

�
� +

�

�
��

� 

 

         ��′  =
�

��
����2� − 3√ 3� + ��

��5� − 3√ 3��                                                                                       (7) 

 

Equation (7) is repeated six (6) times for  non-uniform  disks  covering. Hence the required total area is   
 

��′  =
�

��
����2� − 3√ 3� + ��

��5� − 3√ 3��                                                                                  (8) 

               

(8)  can be defined in terms of   (5)  connecting the two different areas. The relationship is   
        

��′ =
�

�
����2� − 3√ 3� + 3���

� + ��
��2� − 3√ 3��      

                        

��′ =
�

�
����2� − 3√ 3� + 3���

� + ���                                                                                      (9) 
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Since  � > 0  and  �� > 0  the  expression  ���2� − 3√ 3� + 3���
� >> 0.  However, ���2� − 3√ 3� +

3���
�  > ��,  implying that ��′ = ��; therefore  making  the  value  of  ��′ > ��. As  a  result  the  area  of  

a  single   overlap  difference  in  the  uniform  cell  range  as in (5)  is  smaller   than   that  of  the  non-
uniform   cell  range as in (9). It  is  not   cost  efficient  for  telecom  engineers  as  well  as  industrial   
mathematicians  to  consider   non-uniform  GSM  cell  radius  with  number  of   intersecting  cells  more  
than  that  with  an  overlap  difference  of 2(�� − ��). We   find  a  relationship  between  the  inner angle �  
and  the outer angle  ��  as  well  as  the inner  radius  �  and outer radius  �� respectively  for  a  regular 
polygon  of side  �. 

 

Case I:      �� = �� �  

 

Where 

�� � 

> 1 , ��� � > 6
= 1 , ���  � = 6

< 1 , ��� � < 6

� 

 

Geometrically, 

 

Case II:  � = �(��) i.e. ��: ��� → � 

 

There  is  a  linear  relationship  between  �  and  ��.  For  a  GSM  with  large  cell  radius  as  centre  and  
small  cell  radius  as  rings  covering  it  circumference   as  in  Fig. 9  we  have  the  mathematical  linear  
relationship 

 

  � = ����                                                                                                                                     (10) 

 
 

  where     �� �

> 1 , ��� � > 6 
= 1 , ��� � = 6

< 1 , ��� � < 6

�. 

 

 

(a) Pentagon(�� < �)                          (b) Hexagon��� =
�

�
� 
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(c) Heptagon (�� > �) 

 
 

Fig. 9. Angular and Radii relationship for uniform and non-uniform disks 
 

Table 4. Illustrates example of the linear relationship between  ��  and  �  in equilateral triangle, 
square, pentagon and hexagon 

 

Polygon Equilateral triangle Square Pentagon Hexagon 
Sides 3 4 5 6 
Angle at 
centre  (�, ��) 

��

�
 ,   �� <

��

�
 

�

2
, �� <

�

2
 

2�

5
,   �� <

2�

5
 

�

3
 ,   �� =

�

3
 

Overlap  area 1

2
�
1.23�� +  ��

�

 (�� − �����)
� 

1

2
�
0.57�� + ��

�

 (�� − �����)
� 

1

2
�
0.31�� + ��

�

 (�� − �����)
� 

1

2
�
0.18�� + ��

�

 (�� − �����)
� 

Radii - �, �� �, �√ 3 , �, �√ 2 
�,

�

2
�10 − 2√ 5 

�, � 

Overlap area 1

2
�
1.23�� + 3�� 
 (�� − �����)

� 
1

2
�
0.57�� + 2��

 (�� − �����)
� 

1

2
�

0.31�� +  1.38
�� (�� − �����)

� 
0181�� 

 

4 Discussion of Results 
 
In   this  paper   we  discussed  the ratio  of  area of  tessellable  polygons  to  that  of  a circle. We  
established  the  fact  that  among  the  three  tessellable  regular  polygons  the  area  of   hexagon  
approximates  that of  a circle more closely than any other  regular  tessellable  polygon. This  proof  was  
further  confirmed  with  the  least overlap  area  0.181�� as  shown  in  Table 4. The study lead us to a 
formula for calculating the generalized co-channel re-use ratio. Variant  overlap difference  was  obtained  
for  both  uniform  and  non-uniform  cell range  and  it was found  that  2(�� − ��) < � − � + 2�� − ��. 

The overlap  area for  uniform cell  range  is  known  to be calculated  using  
��

�

�
�2� − 3√ 3�  or  

���
�

�
(2� −

3√ 3)  and  that of the non-uniform  cell range  is  
�

��
����2� − 3√ 3� + ��

��5� − 3√ 3��. The  study  also 

establishes  that  a cell  site  planed  with � < 6 will  have both  apothem  and   radius to  be related  of  the 
form � < ��  and  inner  and  outer  angle  at  centre  of the  form  �� < �. Nonetheless,  when  � > 6,  
� > ��  and  �� > �   otherwise  � = ��  and  �� = �.  Table 4 establishes  this  relationships  for  the  
radius, angle  and  area  of  overlaps  for  sample  polygons.        
 

5 Conclusion 
 
 

We  found  that  GSM  cell  design requires  a  lot  of geometric and algebraic calculations  that  aid  in  
planning and analyzing of wireless networks. This was due to the fact that overlap difference for uniform 
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cell range in  GSM design network 2(�� − ��)  is  far less than that of the non-uniform cell range  � − � +
2�� − ��.  This result was consistent to the area coverage as uniform cell design has wider coverage area 
with fewer masts than non-uniform cell design. We use geometry to establish a formula for the co-channel 
re-use ratio and the cluster size which is systematic and transparent as compared to the arbitrary selection of 
frequency in telecommunication network design. An industrial mathematician or a cell planner needs to have 
an in-depth mathematical skill when deciding how to assign frequencies to cells for efficient network 
coverage.  
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