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ABSTRACT 
 
Underwater image enhancement faces variety of challenges owing to the diversity of underwater 
scenes (viewed as water types) and the rich multi-frequency information. To deal with these 
challenges, this paper proposes a multi-feature learning adaptive underwater image enhancement 
network comprising an adaptive module and a dual-layer synchronous enhancement network. First, 
we design an adaptive module which enables the determination of water type inside the model and 
eliminates the negative effect of water type diversity by building water type related features. Then, 
the model learns high-frequency and low-frequency features through a dual-layer synchronous 
enhancement network to extract more comprehensive information. Finally, the outputs of the dual-
layer network are merged to obtain more realistic underwater enhanced images. Numerous 
experiments have shown that the proposed method outperforms the comparison method for visual 
perception and assessment metrics. 
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1. INTRODUCTION 
 
Underwater imagery is an important tool for 
obtaining marine information and plays an 
essential role in the field of marine                        
research and underwater robotics. However, the 
light suffers severe attenuation and scattering 
during it propagates underwater. Complex                    
underwater imaging processes lead to low 
contrast, color distortion and blurred details in 
underwater images. Besides, different 
underwater scenes, namely water types, have 
different effects on degraded images. However, 
many existing studies on underwater image 
enhancement have not specifically focused on 
addressing the effects of different water types. In 
addition, underwater images contain rich 
information that can be simply divided into low-
frequency and high-frequency components. 
High-frequency components refer to local 
information, mainly consisting of texture and 
noise details in the image. Conversely, low-
frequency components mainly contain                      
global information within the color and                
structure.  
 
In this paper, we propose a multi-feature learning 
adaptive underwater image enhancement 
network to solve the effects of different water 
types and multi-frequency features on 
underwater image enhancement. The proposed 
network primarily comprises two parts: an 
adaptive module and a dual-layer synchronous 
enhancement network. The adaptive module is 
able to adaptively cope with the interference 
caused by different water types to the degraded 
images, preserving the features relevant to the 
scene. The network employs two branches to 
learn high-frequency and low-frequency features, 
integrating attention operation [1] with different 
receptive fields to ensure synchronized 
extraction of local features and modeling of long-
term dependencies for enhanced image quality. 
This method allows for a more nuanced analysis 
of the image content, and makes the color and 
detail of the enhanced result closer to                        
ground truth, compared with the previous                  
model. 
 

2. RELATED WORK 
 
At present, underwater image enhancement 
methods can be divided into underwater image 
enhancement and underwater image restoration 

depending on the way in which the image is 
processed underwater. 
 

2.1 Underwater Image Enhancement 
Method 

 
The underwater image enhancement method 
does not need to consider the image formation 
process, and directly processes the pixels of the 
underwater image to improve visual perception. 
Jamadandi et al. [2] proposed a deep learning 
structure based on Wavelet correction 
transformation. By using Wavelet correction 
transformation structure, image enhancement is 
regarded as a problem of image style 
transformation. Islam et al. [3] formulated the 
problem as image-to-image conversion, and 
conducted confrontational training on a large 
number of data sets based on the GAN model to 
learn the mapping. Li et al. [4] proposed water-
NET to maintain degraded image features and 
obtain enhanced images by taking histogram 
equalization, white balance, and gamma 
correction into account. Uplavikar et al. [5] made 
an attempt to confirm water type, and learned the 
features of images by separating unnecessary 
interference with water types. However, the 
network structure pays more attention to the 
characteristic information. Meanwhile, the 
obtained water type is often inaccurate. Thus, the 
network tends to introduce color distortion 
around the edges. Recently, Transformer shines 
in the field of computer vision.Peng et al. [6] 
introduced the Transformer model into the task of 
underwater image enhancement, and combined 
CNN with Transformer, which can not only model 
long-term dependence relationships but also pay 
attention to local information. zhou et al. [7] 
effectively solved the problems of poor visibility 
and feature drift of underwater images through a 
multi-interval sub-histogram perspective 
equalization underwater image enhancement 
method, which significantly improved the visual 
effect and performance of underwater images. 
 
The aboved researches typically employed a 
single-branch network to enhcane the destoryed 
image. This structure leads to information 
disorder when handling various semantic 
information, resulting in weaknesses in 
processing multi-frequency information. To 
address this issue, we introduce a dual-branch 
synchronous enhancement network where two 
branches independently decode information of 
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different frequencies to enhance the model's 
capacity in extracting multi-frequency information. 
 

2.2 Underwater Image Restoration 
Method 

 
The purpose of the image restoration method is 
to solve the serious degradation of the 
underwater image caused by the scattering of 
underwater light, other complex underwater 
imaging environments, such as low contrast, 
color decay and distortion [8] Chongyi et al. [9] 
propose a deep underwater image restoration 
model combined with the attention mechanism, 
integrating the characteristics of the different 
color spaces, to solve the underwater image 
color deviation and the problem of low contrast. 
John et al. [10] proposed wavelength 
compensation and image de-fog algorithm 
(WCID). This model considers removing light 
scattering and color change caused by the 
possible artificial light source, and compensating 
for the difference in wavelength attenuation when 
crossing water depth to the top of the image. 
Thus, it can eliminate the distortion caused by 
light scattering and color change. Since 
attenuation caused by wavelength changes leads 
to asymmetric propagation of colors, Prasen 
Sharma et al. [11] proposed to select 
corresponding receptive fields based on channel 
propagation range to suppress irrelevant 
semantic features, and improve model 
performance. According to the characteristics of 
underwater imaging, Drews [12] proposed 
underwater dark channel Prior (UDCP) to correct 
background light by combining dark channel 
Prior (DCP) [13] with color saturation. DCP is 
used to process ground images, but it has almost 
no effect on underwater images. UDCP cannot 
correctly restore scenes of underwater images. 
Anwar et al. [14] synthesized ten different types 
of underwater images for training according to 
the light attenuation coefficients of red, green, 
and blue in water with the different depths. The 
underwater image restoration method takes into 
account different imaging characteristics, but it is 
hard to calculate too many imaging parameters. 
Zhou et al. [15] proposed multicolor components 
and light attenuation (MCLA), which utilizes 
adaptive background light estimation, depth-map 
enhancement, and transmission map 
computation to effectively restore color, detail, 
and visibility in underwater images. Hou et al. [16] 
introduced the illumination channel sparsity prior 
(ICSP) guided variational framework for non-
uniform illumination underwater image 
restoration, leveraging the illumination channel 

sparsity prior and a variational model with L0 
norm term, constraint term, and gradient term to 
enhance the quality of images. 
 
Although the above methods demonstrate good 
performance in certain scenarios, they require 
redesign when confronted with new situations. 
To enhance the model's generalization, we 
introduce an adaptive module to assess the 
water type within the input image and enhance 
underwater images within a specific domain. 
 
Our proposed model is able to deal well with the 
impacts of different water types and capture 
more comprehensive information, achieving 
state-of-the-art results on real-world [4] [9] [10] 
and synthetic datasets [17]. 
 

3. METHODS 
 
The proposed multi-feature learning adaptive 
underwater image enhancement framework is 
shown in Fig.1, the framework consists of two 
parts, adaptive module to remove the influence 
of water type on the generated images, and dual-
layer synchronous enhancement network to learn 
features of different frequencies. 
 

3.1 Adaptive Module 
 
The quality of underwater images is degraded 
due to wavelength-dependent light absorption 
and scattering in underwater scenes. Besides, 
underwater images captured from different 
domain scenes vary in brightness, contrast and 
visibility. It is difficult to accurately enhance 
underwater images from different underwater 
scenes using traditional networks.  Hence, we 
expect our model could recognize the difference 
information of underwater images, so that the 
model can be more targeted to reconstruct clear 
images in specific water types. To address this 
problem, we propose an adaptive module (AM), 
which consists of water type classifier and water 
type related feature extractor, as shown in Figure 
1 (b). Next, we will carefully describe each 
component. 
 

As shown in Fig. 1 (a), The encoder adopts the 
degraded image as input to obtain the 
compression encoded features. Although the 
encoded features contain most of the feature 
information in an underwater image, the 
information related to the water types is not 
sufficient and may lead to erroneous 
enhancements during processing of the image. 
Therefore, we apply the encoded feature as the 
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input of adaptive module to further extract the 
water type related information. The water type 
classifier identifies the water type based on the 
encoded feature. As shown in Fig. 1 (c), the 
water type classifier consists of convolutional 
layer, batch normalization, ReLU activation 
function and linear layer. This structure 
effectively improves the performance of the 
model and reduces the computational cost. The 
water type classifier can be defined as followed: 
 

𝐼, 𝐼′ = 𝐶(𝐸(𝑋))                                            (1) 
 
where 𝑋 is the input image, 𝐶(∙) and 𝐸(∙) denote 

the water type classifier and encoder. 𝐼 is used to 
determine the water type of the input image, and 
𝐼′ is the output of the middle layer of the classifier. 
 
Since the encoded features lack sufficient 
features related to the water type, which leads to 
disordered information in the decoding process. 
Thus, we add a water type related feature 
extractor to get the information related to water 
type by combine the encoded feature and 𝐼′ . 
Specifically, the output of the middle layer of the 
classifier contains information related to the 

water type, we employ deconvolutional 
implementation to upsample it. The upsampled 
features mostly contain water type information 
and are weakly correlated with other semantic 
information in the image. Hence, we perform an 
element-wise addition operation on the middle 
layer features and the encoded features, and 
then use point-wise convolution to obtain water 
type related features. This process can be 
defined as follows: 
 

𝐼 ̅ = 𝐶𝑜𝑛𝑣1×1(𝐷𝑒𝐶𝑜𝑛𝑣(𝐼
′)𝐸(𝑋))                     (2) 

 
where 𝐷𝑒𝐶𝑜𝑛𝑣(∙)  and 𝐶𝑜𝑛𝑣1×1(∙) denote 
deconvolutional layer and point-wise convolution, 
both of them are followed by batch normalization 

and ReLU activation function. 𝐼 ̅  is the water              
type related feature, which used as the input               
of the subsequent dual-layer synchronous 
enhancement network.  
 
Through this module, it can adaptively remove 
the influence on the reconstructed image caused 
by the diversity of water types in the degraded 
image with different watercolors, and enhanced 
the generalization ability of the model. 

 

 
  

Fig. 1. The framework consists of three parts: (a) the encoder consists of a series of 
convolutional blocks; (b) an adaptive module consists of (c) water type classifier and (d) water 
type related feature extractor, which be used to separate the interference of water types; (e) a 

dual-layer synchronization network consists of (f) low-frequency branch and (g) high-
frequency branch for learning high-frequency and low-frequency information separately 
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3.2 Dual-Layer Synchronous 
Enhancement Network 

 
Most of the traditional underwater image 
enhancement networks do not consider the 
feature information at different frequencies 
underwater, resulting in enhanced images that 
still have detail loss. Underwater images are rich 
in feature information, and features of different 
frequencies contribute differently to the 
enhanced images.  
 
Underwater images mainly contain high-
frequency information with obvious changes of 
detailed features such as line and noise, and 
low-frequency information such as color and 
texture. In order to learn these features more 
comprehensively, we propose a dual-layer 
synchronous enhancement network. The 
proposed dual-layer synchronous enhancement 
network is composed of two identical layers, 
high-frequency branch (HF Branch) and low-
frequency branch (LF Branch) and its structure is 
shown in Fig. 1 (e). The two identical branches 
with different respective fields to generate high-
frequency and low-frequency images. The 
complex imaging environment of underwater 
images leads to blurred edges of underwater 
images and generates a lot of noise. Therefore, 
we use high-frequency branch which 
implemented by convolution to reconstruct local 
detail information. The base feature extract block 
of the high-frequency branch can be represented 
as follows: 
 

𝑋𝑖
H = DeConv(𝐶𝑜𝑛𝑐𝑎𝑡(Conv2(Conv1((𝑋𝑖−1^)), �̅�𝑖−1))  (3) 

                              
where 𝑖 is the number of layers of high-frequency 
branch, and 𝑋0 is the water type related feature, 

and �̅�𝑖−1 = 𝐼̅  when 𝑖 = 1 . Conv(∙)  denotes 
convolutional followed by batch normalization 
and ReLU activation function. Additionally, the 
feature maps are too coarse to provide more 
accurate detail information due to multiple 
downsampling. Therefore, we incorporate skip 
connections 𝐶𝑜𝑛𝑐𝑎𝑡(∙)  between the 
corresponding sampling levels to facilitate easier 
model training. This branch helps the model 
remove noise while enhancing the sharpness of 
the edges in the enhanced results.  
 
Morever, due to the effects of underwater light 
refraction and scattering, a large amount of 
energy is lost when the light is transmitted to the 
camera, resulted in color shift and structure 
blurred global information destroyed during 
imaging Although CNN is good at processing 

images, it is weak at long-range modeling of 
features. Fortunately, it has been recently shown 
that global attention in Multi-headed Selfattention 
in Transfromer can effectively capture low-
frequency information [18]. Hence, we use low-
frequency branch embedded with attention 
operation to learn global information, as shown in 
Fig. 1 (f). The base feature extract block of the 
low-frequency branch can be represented as 
follows:  
 

𝐿𝐹𝑖(𝑋𝑖−1) = 𝐷𝑒𝐶𝑜𝑛𝑣(𝐶𝑜𝑛𝑐𝑎𝑡(𝐴𝑡𝑡(𝐿𝑁(𝐹𝐹𝐷(𝐿𝑁((𝑋𝑖−1)))), �̅�𝑖−1) (4)        
 
Where 𝐿𝑁(∙)  and 𝐹𝐹𝐷(∙)  denote layer 
normalization and feed forward network, and 
𝐴𝑡𝑡(∙)  represents attention operation. This 
branch further enhances the similarity between 
each color space of the output image and ground 
truth. 
 
The dual-layer synchronous enhancement 
network is capable of learning information at 
different frequencies, reconstructing structural 
information. The final output is created by the 
elemental addition of the outputs of the two 
branches. 
 

3.3 Train Loss 
 
Our train loss consists of two parts, one is used 
to Train the cross-entropy loss of water type, and 
the other is image enhancement loss. 
 
3.3.1 Cross-entropy loss 
 
We calculate the cross entropy between the 
predicted water type and the target water type to 
train the classifier and improve the prediction 
accuracy. The cross-entropy loss is as follows: 
 

𝐿𝐶(𝐼, 𝐶) = −∑ 𝑦𝑐𝑙𝑜𝑔𝐼𝑐
𝑀
𝑐=1                             (5) 

 
Here, 𝐼 is the output of the classifier, 𝐶 is the real 

water type and 𝑐  is the classifier predicted               
water type. 𝑦𝑐 = 1  if 𝐶 = 𝑐 , i.e., when the 
classifier predicts the correct water type, 
otherwise 𝑦𝑐 = 0. 
 
3.3.2 Reconstruction loss 
 
To ensure that the rendering effect of the 
generated image is closer to ground truth, we 
propose an aggregation loss. The proposed 
reconstruction loss is defined as follows:  
 

𝐿𝑅(𝑌, 𝑌𝐺) = 𝛼𝐿SSIM(𝑌, 𝑌𝐺) + 𝛽𝐿𝐶𝑜𝑙𝑜𝑟(𝑌, 𝑌𝐺) +

𝛾𝐿𝑀𝑆𝐸(𝑌, 𝑌𝐺)                                                      (6) 
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where 𝛼 , 𝛽 , 𝛾  represent the proportional 
coefficients of each loss component, we set them 
to 0.4, 0.4, and 0.2. 𝐿SSIM , 𝐿𝐶𝑜𝑙𝑜𝑟  and 𝐿𝑀𝑆𝐸  are 
describle as follows.  
 
Structual similarity (SSIM) loss function is able to 
evaluate well the brightness, contrast and 
structure of the generated image, so it is used to 
learn both of high- and low-frequency information. 
The loss function is as follows:  
 

𝐿𝑆𝑆𝐼𝑀(𝑌, 𝑌𝐺) = 1 −
(2𝜇𝑌𝜇𝑌𝐺+𝐶1)(𝜎𝑌𝑌𝐺+𝐶2)

(𝜇𝑌
2+𝜇𝑌𝐺

2 +𝐶1)(𝜎𝑌
2+𝜎𝑌𝐺

2 +𝐶2)
    (7)   

                          
Where 𝑌  is the enhancement image, 𝑌𝐺  is the 

ground truth image. 𝜇𝑌  and 𝜎𝑌  denote the 
enhanced result mean and standard deviation, 
𝜇𝑌𝐺  and 𝜎𝑌𝐺  denote the ground truth mean and 

standard deviation. 𝜎𝑌𝑌𝐺  is the covariance 

between the enhanced image and the ground 
truth. In this study, we set 𝐶1 = 𝐶2 = 1𝑒 − 5 , 
which is used to prevent the denominator from 
being zero. 
 
Inspired by Muwei yet al. [8], we calculate the 
color difference of different channels between the 
lowfrequency feature image and ground truth, 
which is used to learn color information, the loss 
function is given as  
 

𝐿𝑐𝑜𝑙𝑜𝑟(𝑌, 𝑌𝐺) = ‖0. ∆𝑅2 + 0. ∆𝐺2 + 0.2∆𝐵2‖2   (8) 
 

where ∆𝑅, ∆𝐺, ∆𝐵 represents the color difference 
between different channels in RGB color space.  
 

MSE loss is used to calculate the reconstruction 
loss between the clear image and the enhanced 
image. It is defined as follows: 
  

𝐿𝑀𝑆𝐸(𝑌, 𝑌𝐺) = ‖𝑌 − 𝑌𝐺‖2
2                              (9) 

 

4. EXPERIMENT 
 

Our model is implemented by the PyTorch 
framework on a Windows 10 workstation 
equipped with an NVIDIA GTX2070 GPU. We 
train the proposed model on real world dataset [4] 
and synthetic dataset [19] with a total of 10K 
pairs of underwater images and 300 epoches of 
training. We conduct extensive experiments in 

various dataset to explore the effectiveness of 
the proposed model. we compare the proposed 
model with several representative approach, 
including IBLA [17], UDCP [20], ULAP [21], 
RGHS [22], CycleGAN [23], SESR [3], DAL [5]. 
Besides, ablation studies are conducted to 
demonstrate the advantages of each component 
in our model. 
 
We use two evaluation metrics, SSIM [24] and 
Peak Signal to Noise Ratio (PSNR) [25-27], to 
objectively assess the enhancement 
performance of the model. SSIM is defined as: 
 

𝑆𝑆𝐼𝑀(𝑌, 𝑌𝐺) =
(2𝜇𝑌𝜇𝑌𝐺+𝐶1)(𝜎𝑌𝑌𝐺+𝐶2)

(𝜇𝑌
2+𝜇𝑌𝐺

2 +𝐶1)(𝜎𝑌
2+𝜎𝑌𝐺

2 +𝐶2)
          (10) 

 
here, the means of each symbol in this formula 
are the same as in Eq. (7). The formula of PSNR 
is detailed as follows: 
 

𝑃𝑆𝑁𝑅(𝑌, 𝑌𝐺) = 10 × 𝑙𝑜𝑔10
2552

𝐸𝑀𝑆(𝑌,𝑌𝐺)
             (11) 

 

𝐸𝑀𝑆(𝑌, 𝑌𝐺) =
1

𝑚𝑛
∑ ∑ ‖𝑌(𝑖, 𝑗) − 𝑌𝐺(𝑖, 𝑗)‖

2𝑛−1
𝑛=0

𝑚−1
𝑖=0   (12) 

 
where 𝐸𝑀𝑆  represents the mean square error 
between the enhanced image 𝑌 and clear image 

𝑌𝐺  mean square error. Higher values of SSIM 
and PSNR indicate that the image quality is 
closer to the clear image. 

 

4.1 Evaluation on Real-World Underwater 
Images 

 
We evaluate the proposed network and other 
methods in underwater images from UIEB [4]. 
The enhancement results of different methods 
are shown in Fig. 2, which shows the comparison 
results of underwater images with different 
watercolor tones. According to the comparison 
results, our model has favorable visual 
perception, and independent of water type. Table 
1 lists the PSNR and SSIM values of comparison 
methods. The proposed method has the most 
competitive results in these metrics, indicating 
that our method is effective, can deal with the 
effects of underwater image degradation caused 
by different water types. 

 
Table 1. Underwater image quality evaluation of different variants of the presented method. 

Bold values show the best performer 
 

Metric Raw UDCP ULAP RGHS IBLA CycleGAN SESR DAL Ours 

PSNR 16.54 12.47 15.60 18.81 15.81 21.25 17.22 16.47 25.00 
SSIM 0.78 0.57 0.70 0.81 0.71 0.85 0.78 0.75 0.91 
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Fig. 2. Qualitative comparisons of results on real-world underwater images 
 

Table 2. Underwater image quality evaluation of different variants of the presented method. 
The three rows of each dataset from top to bottom denote PSNR and SSIM scores, 

respectively. Bold values show the best performer 
 

Dataset Raw UDCP ULAP RGHS IBLA CycleGAN SESR DAL Ours 

UFO 
20.30 
0.77 

14.55 
0.57 

19.07 
0.73 

17.84 
0.74 

17.70 
0.65 

20.01 
0.82 

25.17 
0.83 

19.33 
0.76 

26.55 
0.84 

SC 
15.54 
0.73 

12.28 
0.54 

17.46 
0.73 

15.82 
0.72 

15.85 
0.65 

18.84 
0.78 

20.52 
0.79 

19.23 
0.77 

27.85 
0.87 

IGN 
20.91 
0.77 

14.34 
0.55 

19.83 
0.74 

18.30 
0.75 

18.58 
0.66 

19.85 
0.78 

25.67 
0.86 

19.35 
0.75 

28.31 
0.87 

 
To further validate the generality of the model, 
we use the UFO-120 [8], EUVP-Imagenet [9] and 
EUVP-Scenes [9] datasets (denoted by UFO, 
IGN and SC, respectively) as test evaluations. 
The visual results are shown in Figure. 3, and the 
PSNR and SSIM values are shown in Table 2. 
Compared with other methods, the proposed 
method shows excellent performance in terms of 
contrast enhancement and detail recovery. Both 
quantitative and qualitative results are sufficient 
to show that our method has good perceptual 
properties with high quality recovery results, and 
the trained model is capable of good 
generalization performance. 
 

4.2 Evaluation on Synthetic Underwater 
Images 

 
In this experiment, we evaluate the performance 
of synthetic underwater images for different 
water types. Fig. 4 presents the visual 
comparison for different methods. Compared 
with other methods, the proposed method 
effectively enhances the visibility of                
multiple water types, restores relatively realistic 
colors and details in very low visibility, and the 
processing results of the model are visually 

closer to clear images. Table 3. lists the average 
values of PSNR and SSIM in the                       
synthetic underwater data set for eight water 
types. These quantitative results show               
that our proposed network achieves satisfactory 
results. 
 

4.3 Ablation Experiments 
 
We performed ablation experiments on key 
components of the model in the UIEB underwater 
image dataset, and the visual comparison results 
are shown in Fig. 5. As shown in Fig. 5 (b), after 
removing the adaptive module, the watercolor 
effect is still present although the model 
improves the contrast to some extent. Significant 
edge sharpening and loss of detail can be 
observed after removing the high-frequency 
branch, as shown in Fig. 5 (b). As shown in Fig. 
5 (c), after removing the low-frequency branch, 
enhancement result shows blurring and color 
shift. As shown in Fig. 5 (d), the results of the full 
model are closest to the ground truth. The 
average scores of PSNR and SSIM are 
presented in Table 4. These experiments 
validate the effectiveness of each component of 
the model. 
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Fig. 3. Qualitative comparisons of results on test real-world underwater images 

 

 
 

Fig. 4. Qualitative comparisons of results on synthetic underwater images 
 

Table 3. Quantitative comparisons of results on synthetic underwater images. The two lower 
rows of each type denote PSNR and SSIM scores, respectively. Bold values show the best 

performer 
 

Type Raw UDCP ULAP RGHS IBLA CycleGAN SESR DAL Ours 

Type-1 
13.24 
0.68 

14.50 
0.70 

13.97 
0.69 

13.74 
0.74 

15.02 
0.68 

14.64 
0.65 

15.85 
0.70 

22.98 
0.82 

26.39 
0.90 

Type-3 
12.86 
0.62 

11.86 
0.61 

12.40 
0.60 

11.30 
0.66 

12.97 
0.63 

14.07 
0.64 

13.95 
0.60 

21.92 
0.78 

22.59 
0.85 

Type-5 
10.44 
0.48 

9.23 
0.42 

11.02 
0.53 

9.72 
0.59 

10.87 
0.50 

13.07 
0.63 

11.93 
0.45 

21.08 
0.73 

23.51 
0.82 

Type-7 
8.11 
0.28 

7.74 
0.22 

9.89 
0.42 

8.41 
0.51 

8.82 
0.30 

19.52 
0.59 

9.58 
0.30 

19.73 
0.66 

18.59 
0.67 

Type-9 
7.59 
0.19 

7.68 
0.18 

8.99 
0.29 

6.86 
0.44 

7.71 
0.18 

10.93 
0.45 

8.57 
0.22 

15.80 
0.58 

17.49 
0.59 

Type-I 
15.72 
0.81 

17.87 
0.83 

14.61 
0.76 

14.69 
0.78 

9.06 
0.20 

17.10 
0.74 

15.28 
0.75 

24.23 
0.85 

29.41 
0.94 

Type-II 
15.23 
0.79 

17.10 
0.81 

14.61 
0.76 

14.22 
0.76 

15.00 
0.65 

15.86 
0.73 

16.32 
0.74 

23.59 
0.84 

27.64 
0.93 

Type-III 
14.06 
0.72 

14.57 
0.73 

13.60 
0.70 

14.74 
0.75 

15.00 
0.77 

15.20 
0.68 

15.92 
0.71 

15.83 
0.75 

26.80 
0.91 
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Table 4. Ablation experiments for each key component. Bold values show the best performer 
 

Metric -AM -HF branch -LF branch Full 

PSNR 23.81 22.27 22.06 25.00 
SSIM 0.90 0.88 0.90 0.91 

 

 
 

Fig. 5. Ablation experiments for each key component 
 

5. CONCLUSION 
 
We propose a novel underwater image 
enhancement network that can adaptively handle 
the negative effects of different water types on 
the enhanced images, thus providing a 
generalized enhancement network. In addition, 
the proposed dual-layer synchronized 
enhancement network can learn the feature 
information of different frequencies underwater, 
which leads to a more realistic sensory effect of 
the enhanced image. Meanwhile, extensive 
experimental results on real underwater images 
and synthetic images with different water types 
show that the method is competitive and 
generalizable. 
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