
 

Journal of Advances in Mathematics and Computer Science 
  
26(3): 1-14, 2018; Article no.JAMCS.39285 
 

ISSN: 2456-9968 
(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851) 

 

 

_____________________________________ 

*Corresponding author: E-mail: arushdi@kau.edu.sa, arushdi@ieee.org; 
  
 

Design of a Digital Circuit for Integer Factorization  
via Solving the Inverse Problem of Logic 

 
Ali Muhammad Ali Rushdi1* and Sultan Sameer Zagzoog1 

 
1Department of Electrical and Computer Engineering, King Abdulaziz University, P.O.Box 80204,  

Jeddah 21589, Saudi Arabia. 
 

Authors’ contributions  
 

This work was carried out in collaboration between the two authors. Author AMAR designed the study, 
performed the analysis, solved the example and wrote the manuscript. Author SSZ managed the literature 

search and drew the figures. Both authors read and approved the final manuscript. 
 

Article Information 
 

DOI: 10.9734/JAMCS/2018/39285 

Editor(s): 

(1) Feyzi Basar, Professor, Department of Mathematics, Fatih University, Turkey.  

Reviewers: 

(1) Anuj Kumar Goel, Maharishi Markandeshwar University, India. 

(2) Fatih Başçiftçi, Selçuk University, Turkey. 

(3) Nikos Petrellis, Technological Educational Institute of Thessaly, Greece. 

Complete Peer review History: http://www.sciencedomain.org/review-history/23038 

 
 
 

Received: 9th November 2017 
Accepted: 23rd January 2018 

Published: 5th February 2018 

_______________________________________________________________________________ 
 

Abstract 
 

In standard problems of digital circuit design, a switching function (two-valued Boolean function) is 
specified declaratively as a (usually incomplete) asserted relation R(�, �), or equivalently as an 
equation R(�, �) = 1, where � and � are inputs and outputs, respectively. To obtain such a function 
constructively, one might use Boolean-function synthesis (which enlarges propositional logic to first-
order predicate logic), or use a ‘big’ Boolean algebra (which acts as an enlargement of switching algebra). 
This paper explores the utility of Boolean-equation solving in handling the hard or intractable problem of 
integer factorization by constructing a hardware circuit that achieves this purpose in real time (at least for 
reasonably large bit sizes). The feasibility of the proposed scheme is verified via the manual solution of 
the smallest possible problem. However, the results obtained are really encouraging, as they can be 
automated in a straightforward fashion. A sequel forthcoming paper will treat the scaling, complexity, 
and automation issues, and will, in particular, determine the upper limit on the bit size that can be treated 
by the current technique.   
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1 Introduction  
 
Design of digital circuits is customarily accomplished in the realm of Switching Algebra (two-valued 
Boolean Algebra B�) or equivalently in the realm of Propositional Logic (PL) [1-4]. With contemporary 
digital design increasing in sophistication and complexity, it became necessary to enlarge this realm to a 
more powerful entity including it as a special case. Fig. 1 proposes two schemes for enlarging B� or PL into 
a more powerful domain, while Table 1 compares these two schemes. The first scheme leads to Boolean-
Function Synthesis, which starts by a relational specification R(�, �) among the inputs � and outputs �,  
synthesizes each output as a function of the inputs such that the specification holds. Such a synthesis 
involves some special functions of mathematical logic called Skolem Functions [5-8]. The second 
competitive (albeit probably less well known) scheme resorts to the use of ‘big’ finite Boolean algebras, 

which are complemented distributive lattices, each with n generators (n ≥ 1), � = 2�  atoms, and 2��
= 2�  

elements. 
    

 
 

Fig. 1. The relation among various algebras and logics that might be needed in contemporary digital 
circuit design 
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Table 1. Comparison for two schemes of enlarging the domain of digital circuit design 
 
Scheme Boolean-Function synthesis Boolean-Equation solving 
Enlargement for two-valued 
Boolean algebra B� 
(propositional logic) 

Higher-order logics (e.g., first-order 
predicate logic). 

‘big’ finite Boolean algebras 
(e.g., B�, B�, B��, …). 

Declarative specification A desired input-output relation R(�, �) 
between input variables � ∈ B�

�  and 
output variables ∈ B�

� . According to 
the Principle of Assertion, asserting this 
relation is equivalent to equating it to 1 
[10] 

An equation originally stated as 
R(�, �) = 1  but subsequently 
viewed as R(�) = 1 where R is a 
‘big’ Boolean function R =
 B� → B, and B = FB(�) is a 
‘big’ Boolean algebra of �  
generators, � = 2�  atoms, and 

2� = 2��
 elements. 

Constructive solution Synthesize a function � = B�
� → B�

�  
such that for every � if there is a value 
of � such that � = �(�)  then 
R(�, �(�)) = 1, i.e., specify outputs � 
as a function �(�) of  input � such that 
R(�, �) holds (evaluate to true). Such a 
function is refused to as a skolem 
function for � in R(�, �) [5-8] 
 

Solve the ‘big’ Boolean 
equation R(�) = 1 for � as a 
function �(�) expressing        the 
outputs � in terms of the inputs �. 

Treatment of inputs � that 
admit no outputs � 

For values of � that do not admit any 
value of � such that R(�, �) holds, the 
value of �(�) is inconsequential, i.e., 
we do not care what the function 
outputs. 

The Boolean-equation technique 
identifies � values that do not 
admit � values via a specific 
consistency condition that 
(possibly) annihilates the atoms 
in FB(�) covesponding to these � 
values which consequently forces 
FB(�) to collapse to a 
subalgebra. The technique adds 
these values as don’t-care to the 
solutions �. 

 
In passing, we stress that the two aforementioned schemes are essentially equivalent. The equivalence of the 
two schemes stems from an axiom peculiar to the Calculus of Propositions, called the Principle of Assertion 
[9,10] which states that "To say that a proposition is true is to state the proposition itself, " namely  
 

[A = 1] = A,                                                                                                                               (1) 
 
Consequently, it is possible in the Calculus of Propositions to dispense entirely with equations. 
   
One of the motivating problems for the first scheme is the problem of integer factorization, which is 
ubiquitous in scientific applications, including, in particular, the celebrated RSA Cryptosystems [11]. 
Though this problem has many sophisticated algorithms in practice, it is known to be a hard or intractable 
problem. Its best solvers in Boolean function synthesis have been able to solve only up to 12 bits [12]. 
 
The purpose of this paper is to handle the problem of integer factorization using the aforementioned second 
scheme. We demonstrate the feasibility, and expose the details, of this second scheme by manually solving a 
toy problem of 4 bits only. We point out the possibility of automating the solution, so that it might be 
applied in the design of larges factorization circuits. Such a design is expected to be limited only by the 
finiteness of the computational sources available.  
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The organization of the rest of this paper is as follows. In Section 2, we digress a little bit to give a quick 
review of the postulates of Boolean algebras and useful facts about them. Section 3 is the main contribution 
of this paper as it gives a detailed solution of the 4-bit integer factorization problem, using recently 
developed techniques for solving Boolean equations [10,13-27]. Section 4 concludes the paper. 
 

2 A Quick Review of Pertinent Concepts  
 
To make the paper self-contained, we briefly review some of the concepts and facts needed herein. The 
reader is also advised to consult the excellent texts by Rudeanu [14] and Brown [10].  More details are also 
available in [19-27]. Admittedly, the review included herein could be considered trivially warranted, but it 
hopefully saves the reader the trouble of collecting scattered (albeit well known) information. Moreover, this 
information is rendered more comprehensible via pictorial visualization.     
  

2.1 Postulates of a Boolean Algebra 
 
A Boolean algebra is a quintuple B = (B, Ú, , 0, 1) in which B is a set, called the carrier; Ú and  are binary 
operations on B, and the zero (0) and unit (1) elements are distinct members of B (that are not necessarily the 
only members of B), with certain postulates on commutativity, distributivity, identities and complementation 
being satisfied. These postulates are given herein as dual pairs. 
 
1. Commutative Laws. For all a, b in B,  

� ˅ � =  � ˅ � 
�˄� =  �˄� 

 
2. Distributive Laws. For all a, b, c in B,  

�˅(�˄�) = (�˅�)˄(�˅�) �˄(�˅�) =  (�˄�) ˅ (�˄�) 
3. Identities. For all a in B,  

� ˅ � = � � ˄ � = � 

4. Complements. To any element a in B there corresponds a unique element �� in B such that  

� ˅ �� = � � ˄ �� = � 

2.2 Facts about Boolean Algebras: 

1. Every element X of B has a unique complement X . 
2. There is a partial-order or inclusion (≤ ) relation on B that is reflexive, anti-symmetric, and transitive.  

(a) reflexive:                                 � ≤ � 
(b) anti-symmetric:          {� ≤ � , � ≤ �}      ==>       � = �     
(c) transitive:                    {� ≤ � , � ≤ �}      ==>        { � ≤ � }     

 
3. A Boolean algebra B enjoys many useful properties such as associativity, idempotency, constants, 

absorption, involution, de Morgan’s, reflection, consensus, inclusion and duality. These properties 
might be detailed as follows: 

 
Property 1 (Associativity):  

� Ú (�Ú�) = (�Ú�)Ú � �˄(�˄�) = (�˄�)˄� 

Property 2 (Idempotency):  

� Ú � = �       �˄� = � 
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Property 3 (Constants): 

� ˅ � = � �˄� = � 

Property 4 (Absorption):  

� ˅ (�˄�) = � �˄(� ˅ �) = � 

Property 5 (Involution): 

 (��) = � 
Property 6 (De Morgan's Laws):  

(� ˅ �) = ��˄�� (�˄�) = �� ˅ �� 

Property 7 (Reflection): 

� ˅ (��˄�) =  � ˅ � �˄(�� ˅ �) = �˄� 

Property 8 (Consensus):  

(�˄�) ˅ (��˄�) ˅ (�˄�) =  (�˄�) ˅ (��˄�) (�˅�)˄(��˅�)˄(�˅�) = (� ˅ �)˄(�� ˅ �) 

Property 9 (Inclusion): 

  � ≤  �˅� �˄� ≤  � 

Property 10 (The principle of duality):  
 
Every identity deducible from the postulates of a Boolean algebra is transformed into another identity if (i) 
the operations ˅ and ˄ (ii) the left and right members of inclusions, and (iii) the identity-elements 0 and 1 are 
interchanged throughout. The postulates themselves, together with the foregoing properties, provide good 
examples of the duality-principle. Because of that principle, only one of each of the statement-pairs above 
need be established; the other member of the pair follows by duality. 
 

4. A Boolean algebra B is a complemented distributive lattice whose 0 and 1 values are distinct.( 
Therefore B1 does not exist in our analysis ). 

5. A nonzero element Z of B is said to be an atom of B if and only if for every X   B, the condition X ≤  
Z implies that X = Z or X = 0. 

6. Every finite Boolean algebra B is atomic, i.e. for every nonzero element X   B, there is some atom Z 
such that Z ≤  X. This viewpoint rejects the case {0 = 1} as a contradiction, and ignores the possibility 
of an atomless algebra B1 in which {0 = 1} is accepted! 

7. Examples of Boolean algebras include the algebra of classes (subsets of a set), the algebra of 
propositional functions, the arithmetic Boolean algebra, the switching or two-element Boolean 
algebra, as well as big Boolean algebras, [10]. 

8. Boolean algebras with the same number of elements are isomorphic. 
9. Every finite Boolean algebra B has 2m elements, where m is the cardinality of (number of elements in) 

the set of atoms of B. We distinguish Boolean algebras larger than the two-valued one (the switching 
algebra B2, m =1) by naming them big Boolean algebras. 

10.  A Boolean function f: Bn → B,(with a domain Bn and range B) where B is a carrier of 2m elements, is 
uniquely determined by a truth table or a Karnaugh map partially representing f for the restricted 
domain {0, 1}n which is a strict subset of the complete domain Bn. 

11.  The elements of B are named in terms of a minimum number of abstract variables or generators Y = 
(Y1, Y2, …, Yk), with  the elements of B taken as the elements of the free Boolean algebra FB(Y) = 
FB(Y1, Y2, …, Yk) which  is isomorphic to the Boolean algebra of switching functions of k variables, 

and possesses 2��
 elements. The smallest big Boolean algebra B4 has a single generator a, two atoms 
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�� and �, and 4 partially-ordered elements (0 ≤  {��, �}≤ 1) that are the 4 switching functions of one 
variable. A 4-dimensional hypercube lattice can be used to visualize the big Boolean algebra B16 

which has two generators a and b, four atoms bababa ,, and ab , and 16 partially-ordered elements 

that are the 16 switching functions of 2 variables. A cubic lattice represents the big Boolean algebra 
B8 which still has two generators a and b, but only three atoms (say ���,� ���, and ���), and 8 partially-
ordered elements. Note that B8 can be obtained from B16 by nullifying, one of its atoms. 

 
Fig. 2 demonstrates many of the above postulates and facts by displaying the lowest order finite Boolean 
algebras as complemented distributive lattices or hypercubes (occasionally hypocubes! or simply cubes) 
[21]. 
 

2.3 Big Boolean Algebras are Unavoidable 
 
Big Boolean algebras cannot be avoided [10]. The use of big Boolean algebras in the analysis and design of 
switching systems is unavoidable, even if unrecognized, at least when using algebraic methods [10,28]. We 
will see shortly that to solve R(�, �) = 1 for � as a function of � necessitates the use of big Boolean algebra 
FB(�). 
 

2.4 Differences between Big Boolean Algebras and the Two-Valued One 
 
The two-valued Boolean algebra has properties not shared by big Boolean algebras. For example, Brown 
[10] points out that the following conclusions   
 

{ �� = 0 }==> { ���ℎ�� � = 0 �� � = 0 } 
{ � ˅ � = 1 }==> { ���ℎ�� � = 1 �� � = 1 } 

 
are valid only in B�. However, in B4 = {0, 1, ∝ , ∝�}  �� = 0  or � ˅ � = 1 could be satisfied by � = ∝ , � = ∝� 
and it is not necessary for � to be 0 . 
 
 
0=1 (contradiction) 
 
 
 
The Boolean algebra B1 (which is not 
allowed herein) 
 
 
 
 
 
 
 

 
0 ≤  1 

 
The lattice of 

B2 

 

 

 
 

The lattice of B4 

0 ≤  �
∝
∝�

�≤ 1 

∝  , ∝� not comparable 
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The lattice of B8, collapsed under the condition ab = 0 so 
as to represent B8. 

 

 
 

A hypercube lattice indicating the partial 
ordering among the 16 elements of B16.(for 

example 0 ≤ ���� ≤ �� ≤ ��Ú�� ≤ 1 ) 

Fig. 2. Visualization of the lattice structure of the few lowest-order Boolean algebras, including the 
atomless B1 (rejected herein), the switching algebra B2 and the ‘big’ Boolean algebras B4, B8 and B16. 

 

3 Digital Design for an Integer-Factorization Circuit 
 
The multiplication of an n-bit integer � and an m-bit integer � produces an integer � of (� + � ) bits. We 
consider the inverse of this operation which is the factorization of an integer � of 2� bits into two factors � 
and �. To avoid factoring � into a product of itself with 1, we impose the restrictions (� > 1) and (� > 1). 
To avoid duplicate factorizations due to commutativity (� ∗ � = � ∗ �), we impose the additional restriction 
(� ≥ �). Since � can be as small as 2, the integer � can be as large as (� 2⁄ ), and hence might occupy up to 
(2� − 1) bits. Since (� ≥ �), the number � should satisfy (� ≥ ��), and hence � might occupy up to n bits. 
The sizes of the integers �, �, and � are therefore 2�, (2� − 1), and � bits, respectively. 
 
The value � = 1 is not admissible since the smallest � (�.�., 2) requires 2 bits. For illustrative purposes, we 
demonstrate herein the smallest possible problem for which � = 2 so that the triple (�, �, �) is of sizes 
(4, 3, 2) bits. This problem can be initially illustrated by four 5-variable Karnaugh maps, but they will be 
grouped together as a single multi-entered Karnaugh map. 
 
With a problem of the above sizes, we need a multiplication table of inputs � ≤ 7 and � ≤ 3 that produces a 
product up to � ≤ 21. This multiplication table is rendered a Karnaugh-map representation in Fig. 3, with 
the decimal values of the inputs �, � and output � highlighted in red. The map also translates these decimal 
values into binary values distinguished in black. Since the binary values of � are given in 4 bits, the map in 
Fig. 3 is a multi-entered map and is equivalent to four different maps for the binary variables  X�, X�, X�, and 
X� of course, the representation of � > 15 in 4 bits fail. 
 
Fig. 4(a) translates Fig. 3 to an initial specification of the problem in the form of an equation 
    

��(�, �) = ��(Y�, Y�, Y�, Z�, Z�) = 1                                                                                    (2) 
 
with the function ��: B� → B constructed over the ‘big’ Boolean algebra B = FB(�), i.e., it is the free 
Boolean algebra with the four generators X�, X�, X�, and X�. This Boolean algebra is of 2� = 16 atoms and 
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2�� = 65536 elements. The function �� is characterized by discriminants or Karnaugh map entries given for 
a specific value of � and � by 
 

��(�, �) = ⋀ (X� ⊙ X�(�, �))���                                                                                                   (3) 
 

where 
 

X� ⊙ X�(�, �) = X�
��(�,�)                                                                                                                   (4) 

 
is equal to X� (uncomplemented) if X�(�, �) = 1 and equals X�

�  (complemented) if X�(�, �) = 0. Here, we 
allow a (hopefully forgivable) abuse of notation by using the same symbol X� to denote a certain variable per 
se, and also to denote a particular constant value X�(�, �) specified as an entry (0 or 1) in a particular cell 
(�, �) in the map of Fig. 3. Based on the above discussion, we obtain the Karnaugh map for �� in Fig. 4(a). 
To complete the problem specifications, we need to replace �� by � given by 
 

 �(�, �) = ��(�, �) I(� > 1) I(� > 1) I(� ≥ �) I(� ≤ 15),                                                          (5) 
 

where the symbol I(event) is a Boolean indicator for that event, i.e., it is 1 if the event occurs and 0 if it does 
not occur. We already discussed the necessity for the requirements (� > 1), (� > 1) and (� ≥ �). The extra 
condition I(� ≤ 15) is needed to ensure that X is properly represented in 4-bits (as indicated earlier, Fig. 3 
misrepresents the integers 18 and 21). It is straightforward to note that   
 

I(� > 1) I(� ≥ �) ⇒ I(� > 1)                                                                                                         (6) 
 

and hence equation (5) is simplified to  
 

�(�, �) = ��(�, �) I(� > 1) I(� ≥ �) I(� ≤ 15),                                                                           (7) 
 

The remaining parts of Fig. 4 explain the evolution of the map for � in (�, �) once the function �(�, �) in (7) 
is obtained. It is straightforward to solve it via recently developed techniques for solving Boolean equations 
(see, e.g., [21, 23-26]. First we construct the auxiliary function G(�, �, �) in Fig. 4(f) and identify the atoms 
not asserted in Fig. 4(f) in Fig. 5 to be nullified as the consistency condition  
 

C = X�
��� X�

��� ∨ X�
��� X�

��� ∨ X�
���X�X� ∨ X�X�

���X� = 0                                                         (8)   
 

   
 

  
 

 
 

 

       
 

 0 1 3 2 6 7 5 4  
 

0 
0 
0000 

0 
0000 

0 
0000 

0 
0000 

0 
0000 

0 
0000 

0 
0000 

0 
0000 

 
1 
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1 
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3 
0011 

2 
0010 

6 
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7 
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5 
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4 
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0011 
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1100 
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0000 
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0010 

6 
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4 
0100 

12 
1100 

14 
1110 

10 
1010 

8 
1000 

 

    
 

   

 
 

X�(�, �) X�(�, �) X�(�, �) X�(�, �) 
  

Fig. 3. Karnaugh-map representation for � =  (�� �� �� ��)� as a product � ∗ � = ( ������) ∗
(����). Both inputs � ��� � and output � are expressed in decimal notation (red font) and in 

equivalent binary notation (black font). For the binary notation the map is a multi-entered map, and 
is equivalent to four (single-entered) maps. 
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x���� x����x�� x���� x���� x����x�� x���� x���� x����x�� x���� x���� x����x�� x���� x���� x����x�� x���� x���� x����x�� x���� x���� x����x�� x���� x���� x����x�� x���� 

 
x���� x����x�� x���� x���� x����x�� x� x���� x����x�x� x���� x����x�x���� x����x�x�x���� x����x�x�x� x����x�x�� x� x����x�x�� x���� 

 

 

x���� x����x�� x���� x���� x����x�x� x�x����x�� x� x����x�x�x���� x���� x����x�x���� x����x�x�� x� x�x�x�x� x�x�x�� x���� 

x���� x����x�� x���� x���� x����x�x���� x����x�x�x���� x����x�x�� x���� x�x�x�� x���� x�x�x�x���� x�x����x�x���� x�x����x�� x���� 
 

   
 

   

 
(�)  ��(Y�, Y�, Y�, ��, ��) 

 
   

 

  
 

 
 

       
 0 0 0 0 0 0 0 0 0 

 1 0 0 0 0 0 0 0 0 
 

 

3 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 1  

    
 

   
 
 

(�)  �(� > �) 
 

   
 

  
 

 
 

 

       
 

 0 1 3 2 6 7 5 4  
 0 1 1 1 1 1 1 1 1 
 1 0 1 1 1 1 1 1 1 

 

 

3 0 0 1 0 1 1 1 1 

2 0 0 1 1 1 1 1 1  

    
 

   
 
 

(�)  �(� ≥ �) 
 

  
 

  
 

 
       
 1 1 1 1 1 1 1 1 
 1 1 1 1 1 1 1 1 

 

 

1 1 1 1 0 0 1 1 
1 1 1 1 1 1 1 1  
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 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 

 

 

0 0 x�x����x�� x� 0 0 0 x�x�x�x� x�x�x�� x���� 
0 0 x����x�x�x���� x����x�x�� x���� x�x�x�� x���� x�x�x�x���� x�x����x�x���� x�x����x�� x����  

   
 

   

 
 

(�)  �(Y�, Y�, Y�, ��, ��) = ��(Y�, Y�, Y�, ��, ��) I(� > 1) I(� ≥ �) I(� ≤ 15) 
 
 
 

  
 

  
 

 
       
 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 

 

 

0 0 x�x����x�� x� 0 0 0 x�x�x�x� (x�x�x�� x����)p 
0 0 x����x�x�x���� x����x�x�� x���� (x�x�x�� x����)p� x�x�x�x���� x�x����x�x���� x�x����x�� x����  

   
 

   

 
(�)  �(X�, X�, X�, Y�, Y�, p) 

 
Fig. 4. Evaluation of a function g equated to 1 that represents all problem specifications, and 

subsequent evaluation of the corresponding auxiliary function G. 
 
Subsequently, the desired solution is read from the map of G(�, �, �) as [19, 24] 
 

Y� = X�X�
��� ∨ X�X�X� ∨ �(C)                                    (9a) 

 
Y� = X�X�X�

��� ∨ X�
���X�X�

���  ∨ X�X�
��� X�

���X� ∨ X�X�X�
��� X�

��� p� ∨ �(C)                                             (9b) 
 
Y� = X�X�X�

��� ∨ X�X�X� ∨ X�X�X�
��� ∨ X�X�

��� X�
���X� ∨ �(C)                    (9c)    

 
Z� = X�X�

��� ∨ X�X�
��� ∨ X�X�X� ∨ X�X�

��� X�
���X� ∨ �(C)                   (9d) 

 
Z� = X�X�

��� X�
���X� ∨ X�X�X�X� ∨ X�X�X�

��� X�
��� p ∨ �(C)               (9e) 

    
Equations (9) constitute a faithful (albeit incompletely specified) solution. They can be used to produce a 
completely-specified solution of desired features (such as compactness). The single parameter p in (9) can 
be either considered belonging to the underlying Boolean algebra or to the two-valued Boolean algebra [19, 
23, 24]. Therefore, the parametric solution (9) is equivalent to two particular solutions. Fig. 6 displays these 
two particular solutions in compact form. These two solutions are in agreement with Fig. 5. In fact, the 
particular solutions can be directly deduced from Fig. 5 for our current toy problem. However, extensions to 
Fig. 5 cannot be used to construct general parametric solutions for lager problems. 
 
If we have as input (X)�� = 13, i.e. , X�X�X�X� = 1101 , our circuit will check to find that X�X�

���X� = 1 and 
hence � = 1 . This means that the consistency condition is not satisfied (i.e., it is a contradiction 1 = 0) 
which indicates that 13 is a prime number that cannot be factored (other than to a product of 1 and itself). 
When C is found to be 1, the circuit refrains from reporting values for Y and Z (since such values are 
meaningless).  
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Fig. 5. Identification of atoms not asserted in Fig. 4(f) for nullification as a consistency condition. Cells 
representing composite numbers (4, 6, 8, 10, 12, 14, 15) are painted green, while cells depicting 0 or 1 
together with the prime number (2, 3, 5, 7, 11, 13) are colored red. These red cells have don't cares n 

the maps of Fig. 6. 
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Fig. 6. The two particular solutions for the factorization problem (in agreement with Fig. 5) 
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4 Conclusions 
 
This paper explores a novel technique for hardware implementation of the task of integer factorization. Such 
an implementation has the promise of achieving this hard task for reasonably large bit sizes in real time. The 
technique offered herein is an alternative for a technique already in use that employs predicate logic to 
achieve Boolean-function synthesis. By contrast, our technique employs Boolean-equation solving over ‘big’ 
Boolean algebra, i.e., an algebra larger than the two-valued Boolean algebra. Though the example solved 
herein is only a 4-bit toy problem, it suffices to demonstrate the success of the technique and to set the stage 
for its automated implementation.  
 
Our paper is the first exploration of the use of Boolean-solving techniques in integer factorization. This 
paper must be supplemented with a study of the scaling issue (whether the used technique can handle large-
size problems) and the complexity issue (how much time and memory are needed for such large-size 
problems). A sequel forthcoming paper will treat the scaling, complexity, and automation issues, and will, in 
particular, determine the upper limit on the bit size that can be treated by the current technique. We reiterate 
that the problem of integer factorization is definitely a hard intractable problem, and that its best solvers 
using Boolean function synthesis is known to have handled only up to 12 bits. Our forthcoming work is 
required to decide whether our novel technique can surpass this bit size or not. 
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