

Journal of Advances in Mathematics and Computer Science

26(3): 1-14, 2018; Article no.JAMCS.39285

ISSN: 2456-9968
(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851)

*Corresponding author: E-mail: arushdi@kau.edu.sa, arushdi@ieee.org;

Design of a Digital Circuit for Integer Factorization
via Solving the Inverse Problem of Logic

Ali Muhammad Ali Rushdi1* and Sultan Sameer Zagzoog1

1Department of Electrical and Computer Engineering, King Abdulaziz University, P.O.Box 80204,

Jeddah 21589, Saudi Arabia.

Authors’ contributions

This work was carried out in collaboration between the two authors. Author AMAR designed the study,
performed the analysis, solved the example and wrote the manuscript. Author SSZ managed the literature

search and drew the figures. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JAMCS/2018/39285

Editor(s):

(1) Feyzi Basar, Professor, Department of Mathematics, Fatih University, Turkey.

Reviewers:

(1) Anuj Kumar Goel, Maharishi Markandeshwar University, India.

(2) Fatih Başçiftçi, Selçuk University, Turkey.

(3) Nikos Petrellis, Technological Educational Institute of Thessaly, Greece.

Complete Peer review History: http://www.sciencedomain.org/review-history/23038

Received: 9th November 2017
Accepted: 23rd January 2018

Published: 5th February 2018

Abstract

In standard problems of digital circuit design, a switching function (two-valued Boolean function) is
specified declaratively as a (usually incomplete) asserted relation R(�, �), or equivalently as an
equation R(�, �) = 1, where � and � are inputs and outputs, respectively. To obtain such a function
constructively, one might use Boolean-function synthesis (which enlarges propositional logic to first-
order predicate logic), or use a ‘big’ Boolean algebra (which acts as an enlargement of switching algebra).
This paper explores the utility of Boolean-equation solving in handling the hard or intractable problem of
integer factorization by constructing a hardware circuit that achieves this purpose in real time (at least for
reasonably large bit sizes). The feasibility of the proposed scheme is verified via the manual solution of
the smallest possible problem. However, the results obtained are really encouraging, as they can be
automated in a straightforward fashion. A sequel forthcoming paper will treat the scaling, complexity,
and automation issues, and will, in particular, determine the upper limit on the bit size that can be treated
by the current technique.

Original Research Article

Rushdi and Zagzoog; JAMCS, 26(3): 1-14, 2018; Article no.JAMCS.39285

2

Keywords: ‘Big’ Boolean algebra; digital design; Integer factorization; Boolean function decomposition.

1 Introduction

Design of digital circuits is customarily accomplished in the realm of Switching Algebra (two-valued
Boolean Algebra B�) or equivalently in the realm of Propositional Logic (PL) [1-4]. With contemporary
digital design increasing in sophistication and complexity, it became necessary to enlarge this realm to a
more powerful entity including it as a special case. Fig. 1 proposes two schemes for enlarging B� or PL into
a more powerful domain, while Table 1 compares these two schemes. The first scheme leads to Boolean-
Function Synthesis, which starts by a relational specification R(�, �) among the inputs � and outputs �,
synthesizes each output as a function of the inputs such that the specification holds. Such a synthesis
involves some special functions of mathematical logic called Skolem Functions [5-8]. The second
competitive (albeit probably less well known) scheme resorts to the use of ‘big’ finite Boolean algebras,

which are complemented distributive lattices, each with n generators (n ≥ 1), � = 2� atoms, and 2��
= 2�

elements.

Fig. 1. The relation among various algebras and logics that might be needed in contemporary digital
circuit design

Higher = order logic
(e.g., first-order
medicate logic)

Switching
algebra B�

(two-valued
Boolean

algebra) ≡
Propositional
Logic (PL)

(0-order logic)

‘Big’
Finite Boolean
algebras (e.g., B�,
B�, B��,..)

Rushdi and Zagzoog; JAMCS, 26(3): 1-14, 2018; Article no.JAMCS.39285

3

Table 1. Comparison for two schemes of enlarging the domain of digital circuit design

Scheme Boolean-Function synthesis Boolean-Equation solving
Enlargement for two-valued
Boolean algebra B�
(propositional logic)

Higher-order logics (e.g., first-order
predicate logic).

‘big’ finite Boolean algebras
(e.g., B�, B�, B��, …).

Declarative specification A desired input-output relation R(�, �)
between input variables � ∈ B�

� and
output variables ∈ B�

� . According to
the Principle of Assertion, asserting this
relation is equivalent to equating it to 1
[10]

An equation originally stated as
R(�, �) = 1 but subsequently
viewed as R(�) = 1 where R is a
‘big’ Boolean function R =
 B� → B, and B = FB(�) is a
‘big’ Boolean algebra of �
generators, � = 2� atoms, and

2� = 2��
 elements.

Constructive solution Synthesize a function � = B�
� → B�

�
such that for every � if there is a value
of � such that � = �(�) then
R(�, �(�)) = 1, i.e., specify outputs �
as a function �(�) of input � such that
R(�, �) holds (evaluate to true). Such a
function is refused to as a skolem
function for � in R(�, �) [5-8]

Solve the ‘big’ Boolean
equation R(�) = 1 for � as a
function �(�) expressing the
outputs � in terms of the inputs �.

Treatment of inputs � that
admit no outputs �

For values of � that do not admit any
value of � such that R(�, �) holds, the
value of �(�) is inconsequential, i.e.,
we do not care what the function
outputs.

The Boolean-equation technique
identifies � values that do not
admit � values via a specific
consistency condition that
(possibly) annihilates the atoms
in FB(�) covesponding to these �
values which consequently forces
FB(�) to collapse to a
subalgebra. The technique adds
these values as don’t-care to the
solutions �.

In passing, we stress that the two aforementioned schemes are essentially equivalent. The equivalence of the
two schemes stems from an axiom peculiar to the Calculus of Propositions, called the Principle of Assertion
[9,10] which states that "To say that a proposition is true is to state the proposition itself, " namely

[A = 1] = A, (1)

Consequently, it is possible in the Calculus of Propositions to dispense entirely with equations.

One of the motivating problems for the first scheme is the problem of integer factorization, which is
ubiquitous in scientific applications, including, in particular, the celebrated RSA Cryptosystems [11].
Though this problem has many sophisticated algorithms in practice, it is known to be a hard or intractable
problem. Its best solvers in Boolean function synthesis have been able to solve only up to 12 bits [12].

The purpose of this paper is to handle the problem of integer factorization using the aforementioned second
scheme. We demonstrate the feasibility, and expose the details, of this second scheme by manually solving a
toy problem of 4 bits only. We point out the possibility of automating the solution, so that it might be
applied in the design of larges factorization circuits. Such a design is expected to be limited only by the
finiteness of the computational sources available.

Rushdi and Zagzoog; JAMCS, 26(3): 1-14, 2018; Article no.JAMCS.39285

4

The organization of the rest of this paper is as follows. In Section 2, we digress a little bit to give a quick
review of the postulates of Boolean algebras and useful facts about them. Section 3 is the main contribution
of this paper as it gives a detailed solution of the 4-bit integer factorization problem, using recently
developed techniques for solving Boolean equations [10,13-27]. Section 4 concludes the paper.

2 A Quick Review of Pertinent Concepts

To make the paper self-contained, we briefly review some of the concepts and facts needed herein. The
reader is also advised to consult the excellent texts by Rudeanu [14] and Brown [10]. More details are also
available in [19-27]. Admittedly, the review included herein could be considered trivially warranted, but it
hopefully saves the reader the trouble of collecting scattered (albeit well known) information. Moreover, this
information is rendered more comprehensible via pictorial visualization.

2.1 Postulates of a Boolean Algebra

A Boolean algebra is a quintuple B = (B, Ú, , 0, 1) in which B is a set, called the carrier; Ú and  are binary
operations on B, and the zero (0) and unit (1) elements are distinct members of B (that are not necessarily the
only members of B), with certain postulates on commutativity, distributivity, identities and complementation
being satisfied. These postulates are given herein as dual pairs.

1. Commutative Laws. For all a, b in B,

� ˅ � = � ˅ �
�˄� = �˄�

2. Distributive Laws. For all a, b, c in B,

�˅(�˄�) = (�˅�)˄(�˅�) �˄(�˅�) = (�˄�) ˅ (�˄�)
3. Identities. For all a in B,

� ˅ � = � � ˄ � = �

4. Complements. To any element a in B there corresponds a unique element �� in B such that

� ˅ �� = � � ˄ �� = �

2.2 Facts about Boolean Algebras:

1. Every element X of B has a unique complement X .
2. There is a partial-order or inclusion (≤) relation on B that is reflexive, anti-symmetric, and transitive.

(a) reflexive: � ≤ �
(b) anti-symmetric: {� ≤ � , � ≤ �} ==> � = �
(c) transitive: {� ≤ � , � ≤ �} ==> { � ≤ � }

3. A Boolean algebra B enjoys many useful properties such as associativity, idempotency, constants,

absorption, involution, de Morgan’s, reflection, consensus, inclusion and duality. These properties
might be detailed as follows:

Property 1 (Associativity):

� Ú (�Ú�) = (�Ú�)Ú � �˄(�˄�) = (�˄�)˄�

Property 2 (Idempotency):

� Ú � = � �˄� = �

Rushdi and Zagzoog; JAMCS, 26(3): 1-14, 2018; Article no.JAMCS.39285

5

Property 3 (Constants):

� ˅ � = � �˄� = �

Property 4 (Absorption):

� ˅ (�˄�) = � �˄(� ˅ �) = �

Property 5 (Involution):

 (��) = �
Property 6 (De Morgan's Laws):

(� ˅ �) = ��˄�� (�˄�) = �� ˅ ��

Property 7 (Reflection):

� ˅ (��˄�) = � ˅ � �˄(�� ˅ �) = �˄�

Property 8 (Consensus):

(�˄�) ˅ (��˄�) ˅ (�˄�) = (�˄�) ˅ (��˄�) (�˅�)˄(��˅�)˄(�˅�) = (� ˅ �)˄(�� ˅ �)

Property 9 (Inclusion):

 � ≤ �˅� �˄� ≤ �

Property 10 (The principle of duality):

Every identity deducible from the postulates of a Boolean algebra is transformed into another identity if (i)
the operations ˅ and ˄ (ii) the left and right members of inclusions, and (iii) the identity-elements 0 and 1 are
interchanged throughout. The postulates themselves, together with the foregoing properties, provide good
examples of the duality-principle. Because of that principle, only one of each of the statement-pairs above
need be established; the other member of the pair follows by duality.

4. A Boolean algebra B is a complemented distributive lattice whose 0 and 1 values are distinct.(
Therefore B1 does not exist in our analysis).

5. A nonzero element Z of B is said to be an atom of B if and only if for every X  B, the condition X ≤
Z implies that X = Z or X = 0.

6. Every finite Boolean algebra B is atomic, i.e. for every nonzero element X  B, there is some atom Z
such that Z ≤ X. This viewpoint rejects the case {0 = 1} as a contradiction, and ignores the possibility
of an atomless algebra B1 in which {0 = 1} is accepted!

7. Examples of Boolean algebras include the algebra of classes (subsets of a set), the algebra of
propositional functions, the arithmetic Boolean algebra, the switching or two-element Boolean
algebra, as well as big Boolean algebras, [10].

8. Boolean algebras with the same number of elements are isomorphic.
9. Every finite Boolean algebra B has 2m elements, where m is the cardinality of (number of elements in)

the set of atoms of B. We distinguish Boolean algebras larger than the two-valued one (the switching
algebra B2, m =1) by naming them big Boolean algebras.

10. A Boolean function f: Bn → B,(with a domain Bn and range B) where B is a carrier of 2m elements, is
uniquely determined by a truth table or a Karnaugh map partially representing f for the restricted
domain {0, 1}n which is a strict subset of the complete domain Bn.

11. The elements of B are named in terms of a minimum number of abstract variables or generators Y =
(Y1, Y2, …, Yk), with the elements of B taken as the elements of the free Boolean algebra FB(Y) =
FB(Y1, Y2, …, Yk) which is isomorphic to the Boolean algebra of switching functions of k variables,

and possesses 2��
 elements. The smallest big Boolean algebra B4 has a single generator a, two atoms

Rushdi and Zagzoog; JAMCS, 26(3): 1-14, 2018; Article no.JAMCS.39285

6

�� and �, and 4 partially-ordered elements (0 ≤ {��, �}≤ 1) that are the 4 switching functions of one
variable. A 4-dimensional hypercube lattice can be used to visualize the big Boolean algebra B16

which has two generators a and b, four atoms bababa ,, and ab , and 16 partially-ordered elements

that are the 16 switching functions of 2 variables. A cubic lattice represents the big Boolean algebra
B8 which still has two generators a and b, but only three atoms (say ���,� ���, and ���), and 8 partially-
ordered elements. Note that B8 can be obtained from B16 by nullifying, one of its atoms.

Fig. 2 demonstrates many of the above postulates and facts by displaying the lowest order finite Boolean
algebras as complemented distributive lattices or hypercubes (occasionally hypocubes! or simply cubes)
[21].

2.3 Big Boolean Algebras are Unavoidable

Big Boolean algebras cannot be avoided [10]. The use of big Boolean algebras in the analysis and design of
switching systems is unavoidable, even if unrecognized, at least when using algebraic methods [10,28]. We
will see shortly that to solve R(�, �) = 1 for � as a function of � necessitates the use of big Boolean algebra
FB(�).

2.4 Differences between Big Boolean Algebras and the Two-Valued One

The two-valued Boolean algebra has properties not shared by big Boolean algebras. For example, Brown
[10] points out that the following conclusions

{ �� = 0 }==> { ���ℎ�� � = 0 �� � = 0 }
{ � ˅ � = 1 }==> { ���ℎ�� � = 1 �� � = 1 }

are valid only in B�. However, in B4 = {0, 1, ∝ , ∝�} �� = 0 or � ˅ � = 1 could be satisfied by � = ∝ , � = ∝�
and it is not necessary for � to be 0 .

0=1 (contradiction)

The Boolean algebra B1 (which is not
allowed herein)

0 ≤ 1

The lattice of

B2

The lattice of B4

0 ≤ �
∝
∝�

�≤ 1

∝ , ∝� not comparable

Rushdi and Zagzoog; JAMCS, 26(3): 1-14, 2018; Article no.JAMCS.39285

7

The lattice of B8, collapsed under the condition ab = 0 so
as to represent B8.

A hypercube lattice indicating the partial
ordering among the 16 elements of B16.(for

example 0 ≤ ���� ≤ �� ≤ ��Ú�� ≤ 1)

Fig. 2. Visualization of the lattice structure of the few lowest-order Boolean algebras, including the
atomless B1 (rejected herein), the switching algebra B2 and the ‘big’ Boolean algebras B4, B8 and B16.

3 Digital Design for an Integer-Factorization Circuit

The multiplication of an n-bit integer � and an m-bit integer � produces an integer � of (� + �) bits. We
consider the inverse of this operation which is the factorization of an integer � of 2� bits into two factors �
and �. To avoid factoring � into a product of itself with 1, we impose the restrictions (� > 1) and (� > 1).
To avoid duplicate factorizations due to commutativity (� ∗ � = � ∗ �), we impose the additional restriction
(� ≥ �). Since � can be as small as 2, the integer � can be as large as (� 2⁄), and hence might occupy up to
(2� − 1) bits. Since (� ≥ �), the number � should satisfy (� ≥ ��), and hence � might occupy up to n bits.
The sizes of the integers �, �, and � are therefore 2�, (2� − 1), and � bits, respectively.

The value � = 1 is not admissible since the smallest � (�.�., 2) requires 2 bits. For illustrative purposes, we
demonstrate herein the smallest possible problem for which � = 2 so that the triple (�, �, �) is of sizes
(4, 3, 2) bits. This problem can be initially illustrated by four 5-variable Karnaugh maps, but they will be
grouped together as a single multi-entered Karnaugh map.

With a problem of the above sizes, we need a multiplication table of inputs � ≤ 7 and � ≤ 3 that produces a
product up to � ≤ 21. This multiplication table is rendered a Karnaugh-map representation in Fig. 3, with
the decimal values of the inputs �, � and output � highlighted in red. The map also translates these decimal
values into binary values distinguished in black. Since the binary values of � are given in 4 bits, the map in
Fig. 3 is a multi-entered map and is equivalent to four different maps for the binary variables X�, X�, X�, and
X� of course, the representation of � > 15 in 4 bits fail.

Fig. 4(a) translates Fig. 3 to an initial specification of the problem in the form of an equation

��(�, �) = ��(Y�, Y�, Y�, Z�, Z�) = 1 (2)

with the function ��: B� → B constructed over the ‘big’ Boolean algebra B = FB(�), i.e., it is the free
Boolean algebra with the four generators X�, X�, X�, and X�. This Boolean algebra is of 2� = 16 atoms and

Rushdi and Zagzoog; JAMCS, 26(3): 1-14, 2018; Article no.JAMCS.39285

8

2�� = 65536 elements. The function �� is characterized by discriminants or Karnaugh map entries given for
a specific value of � and � by

��(�, �) = ⋀ (X� ⊙ X�(�, �))��� (3)

where

X� ⊙ X�(�, �) = X�
��(�,�) (4)

is equal to X� (uncomplemented) if X�(�, �) = 1 and equals X�

� (complemented) if X�(�, �) = 0. Here, we
allow a (hopefully forgivable) abuse of notation by using the same symbol X� to denote a certain variable per
se, and also to denote a particular constant value X�(�, �) specified as an entry (0 or 1) in a particular cell
(�, �) in the map of Fig. 3. Based on the above discussion, we obtain the Karnaugh map for �� in Fig. 4(a).
To complete the problem specifications, we need to replace �� by � given by

 �(�, �) = ��(�, �) I(� > 1) I(� > 1) I(� ≥ �) I(� ≤ 15), (5)

where the symbol I(event) is a Boolean indicator for that event, i.e., it is 1 if the event occurs and 0 if it does
not occur. We already discussed the necessity for the requirements (� > 1), (� > 1) and (� ≥ �). The extra
condition I(� ≤ 15) is needed to ensure that X is properly represented in 4-bits (as indicated earlier, Fig. 3
misrepresents the integers 18 and 21). It is straightforward to note that

I(� > 1) I(� ≥ �) ⇒ I(� > 1) (6)

and hence equation (5) is simplified to

�(�, �) = ��(�, �) I(� > 1) I(� ≥ �) I(� ≤ 15), (7)

The remaining parts of Fig. 4 explain the evolution of the map for � in (�, �) once the function �(�, �) in (7)
is obtained. It is straightforward to solve it via recently developed techniques for solving Boolean equations
(see, e.g., [21, 23-26]. First we construct the auxiliary function G(�, �, �) in Fig. 4(f) and identify the atoms
not asserted in Fig. 4(f) in Fig. 5 to be nullified as the consistency condition

C = X�
��� X�

��� ∨ X�
��� X�

��� ∨ X�
���X�X� ∨ X�X�

���X� = 0 (8)

 0 1 3 2 6 7 5 4

0
0
0000

0
0000

0
0000

0
0000

0
0000

0
0000

0
0000

0
0000

1

0
0000

1
0001

3
0011

2
0010

6
0110

7
0111

5
0101

4
0100

3
0
0000

3
0011

9
1001

6
0110

18
0010

21
0101

15
1111

12
1100

2
0
0000

2
0010

6
0110

4
0100

12
1100

14
1110

10
1010

8
1000

X�(�, �) X�(�, �) X�(�, �) X�(�, �)

Fig. 3. Karnaugh-map representation for � = (�� �� �� ��)� as a product � ∗ � = (������) ∗
(����). Both inputs � ��� � and output � are expressed in decimal notation (red font) and in

equivalent binary notation (black font). For the binary notation the map is a multi-entered map, and
is equivalent to four (single-entered) maps.

Y�

Y� Y�
Y

Z

Z�

Z�

Y�

Rushdi and Zagzoog; JAMCS, 26(3): 1-14, 2018; Article no.JAMCS.39285

9

x���� x����x�� x���� x���� x����x�� x���� x���� x����x�� x���� x���� x����x�� x���� x���� x����x�� x���� x���� x����x�� x���� x���� x����x�� x���� x���� x����x�� x����

x���� x����x�� x���� x���� x����x�� x� x���� x����x�x� x���� x����x�x���� x����x�x�x���� x����x�x�x� x����x�x�� x� x����x�x�� x����

x���� x����x�� x���� x���� x����x�x� x�x����x�� x� x����x�x�x���� x���� x����x�x���� x����x�x�� x� x�x�x�x� x�x�x�� x����

x���� x����x�� x���� x���� x����x�x���� x����x�x�x���� x����x�x�� x���� x�x�x�� x���� x�x�x�x���� x�x����x�x���� x�x����x�� x����

(�) ��(Y�, Y�, Y�, ��, ��)

 0 0 0 0 0 0 0 0 0

 1 0 0 0 0 0 0 0 0

3 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1

(�) �(� > �)

 0 1 3 2 6 7 5 4
 0 1 1 1 1 1 1 1 1
 1 0 1 1 1 1 1 1 1

3 0 0 1 0 1 1 1 1

2 0 0 1 1 1 1 1 1

(�) �(� ≥ �)

 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1

1 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1

(�) I(� ≤ 15)

Y�

Y�

Y�

Z�

Z�

Y�

Y�

Y� Y�
Z

Z�

Z�

Y�

Y�

Y�

Y�

Y
Z

Z�

Z�

Y�

Y�

Y� Y�

Z�
Z�

Y�

Rushdi and Zagzoog; JAMCS, 26(3): 1-14, 2018; Article no.JAMCS.39285

10

 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

0 0 x�x����x�� x� 0 0 0 x�x�x�x� x�x�x�� x����
0 0 x����x�x�x���� x����x�x�� x���� x�x�x�� x���� x�x�x�x���� x�x����x�x���� x�x����x�� x����

(�) �(Y�, Y�, Y�, ��, ��) = ��(Y�, Y�, Y�, ��, ��) I(� > 1) I(� ≥ �) I(� ≤ 15)

 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

0 0 x�x����x�� x� 0 0 0 x�x�x�x� (x�x�x�� x����)p
0 0 x����x�x�x���� x����x�x�� x���� (x�x�x�� x����)p� x�x�x�x���� x�x����x�x���� x�x����x�� x����

(�) �(X�, X�, X�, Y�, Y�, p)

Fig. 4. Evaluation of a function g equated to 1 that represents all problem specifications, and

subsequent evaluation of the corresponding auxiliary function G.

Subsequently, the desired solution is read from the map of G(�, �, �) as [19, 24]

Y� = X�X�
��� ∨ X�X�X� ∨ �(C) (9a)

Y� = X�X�X�

��� ∨ X�
���X�X�

��� ∨ X�X�
��� X�

���X� ∨ X�X�X�
��� X�

��� p� ∨ �(C) (9b)

Y� = X�X�X�

��� ∨ X�X�X� ∨ X�X�X�
��� ∨ X�X�

��� X�
���X� ∨ �(C) (9c)

Z� = X�X�

��� ∨ X�X�
��� ∨ X�X�X� ∨ X�X�

��� X�
���X� ∨ �(C) (9d)

Z� = X�X�

��� X�
���X� ∨ X�X�X�X� ∨ X�X�X�

��� X�
��� p ∨ �(C) (9e)

Equations (9) constitute a faithful (albeit incompletely specified) solution. They can be used to produce a
completely-specified solution of desired features (such as compactness). The single parameter p in (9) can
be either considered belonging to the underlying Boolean algebra or to the two-valued Boolean algebra [19,
23, 24]. Therefore, the parametric solution (9) is equivalent to two particular solutions. Fig. 6 displays these
two particular solutions in compact form. These two solutions are in agreement with Fig. 5. In fact, the
particular solutions can be directly deduced from Fig. 5 for our current toy problem. However, extensions to
Fig. 5 cannot be used to construct general parametric solutions for lager problems.

If we have as input (X)�� = 13, i.e. , X�X�X�X� = 1101 , our circuit will check to find that X�X�

���X� = 1 and
hence � = 1 . This means that the consistency condition is not satisfied (i.e., it is a contradiction 1 = 0)
which indicates that 13 is a prime number that cannot be factored (other than to a product of 1 and itself).
When C is found to be 1, the circuit refrains from reporting values for Y and Z (since such values are
meaningless).

Y�
Y�

Y�

Z�
Z�

Y�

Y�

Y� Y�

Z�
Z�

Y�

Rushdi and Zagzoog; JAMCS, 26(3): 1-14, 2018; Article no.JAMCS.39285

11

Fig. 5. Identification of atoms not asserted in Fig. 4(f) for nullification as a consistency condition. Cells
representing composite numbers (4, 6, 8, 10, 12, 14, 15) are painted green, while cells depicting 0 or 1
together with the prime number (2, 3, 5, 7, 11, 13) are colored red. These red cells have don't cares n

the maps of Fig. 6.

Y� = X�X� ∨ X�X�
���

Y� = X�
��� ∨ X�

���X� for p=1 X�X�
��� ∨ X�

���X�
for p=0

Y� = X� ∨ X�

Z1 = 1 Z0 = X0 ∨ p X3X2X1
����

Fig. 6. The two particular solutions for the factorization problem (in agreement with Fig. 5)

0

4 = 2 ∗ 2
12 = 6 ∗ 2
 = 4 ∗ 3

8 = 4 ∗ 2

1

5

13 9 = 3 ∗ 3

3 7 15 = 5 ∗ 3 11

 2 6 = 3 ∗ 2 14 = 7 ∗ 2 10 = 5 ∗ 2

��
������ X�

����
������

*

X�

* *

*

X�

X�

��
���� ��

���� ��
��������

Rushdi and Zagzoog; JAMCS, 26(3): 1-14, 2018; Article no.JAMCS.39285

12

4 Conclusions

This paper explores a novel technique for hardware implementation of the task of integer factorization. Such
an implementation has the promise of achieving this hard task for reasonably large bit sizes in real time. The
technique offered herein is an alternative for a technique already in use that employs predicate logic to
achieve Boolean-function synthesis. By contrast, our technique employs Boolean-equation solving over ‘big’
Boolean algebra, i.e., an algebra larger than the two-valued Boolean algebra. Though the example solved
herein is only a 4-bit toy problem, it suffices to demonstrate the success of the technique and to set the stage
for its automated implementation.

Our paper is the first exploration of the use of Boolean-solving techniques in integer factorization. This
paper must be supplemented with a study of the scaling issue (whether the used technique can handle large-
size problems) and the complexity issue (how much time and memory are needed for such large-size
problems). A sequel forthcoming paper will treat the scaling, complexity, and automation issues, and will, in
particular, determine the upper limit on the bit size that can be treated by the current technique. We reiterate
that the problem of integer factorization is definitely a hard intractable problem, and that its best solvers
using Boolean function synthesis is known to have handled only up to 12 bits. Our forthcoming work is
required to decide whether our novel technique can surpass this bit size or not.

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Muroga S. Logic design and Switching theory, Wiley, New York, NY, USA; 1979.

[2] Gregg JR. Ones and Zeros: Understanding Boolean algebra, Digital Circuits, and the Logic of Sets,

IEEE PRESS, New York, NY, USA; 1998.

[3] Crama Y, Hammer PL. Boolean Functions: Theory, Algorithms, and Applications, Cambridge

University Press, Cambridge, United Kingdom; 2011.

[4] Brown SD, Vranesic Z. Fundamentals of digital logic with Verilog Design, 3rd Ed., McGraw-Hill, New

York, NY, USA; 2014.

[5] John AK, Shah S, Chakraborty S, Trivedi A, Akshay S. Skolem functions for factored formulas.

In Proceedings of the 15th Conference on Formal Methods in Computer-Aided Design. FMCAD Inc.
2015;73-80.

[6] Fried D, Tabajara LM, Vardi MY. BDD-based Boolean functional synthesis. In International

Conference on Computer Aided Verification. 2016;402-421. Springer International Publishing.

[7] Akshay S, Chakraborty S, John AK, Shah S. Towards parallel Boolean functional synthesis.

In International Conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, Berlin, Heidelberg. 2017;337-353.

[8] Tabajara LM, Vardi MY. Factored Boolean Functional Synthesis. Formal Methods in Computer-

Aided Design, FMCAD 2017, Vienna, Austria, October 2-6; 2017.

[9] Couturat L. L'algebre de la Logique. Paris: Scientia, 1905. English translation (by Lydia G. Robinson):

Open Court Pub. Co., Chicago & London; 1914.

Rushdi and Zagzoog; JAMCS, 26(3): 1-14, 2018; Article no.JAMCS.39285

13

[10] Brown FM. Boolean reasoning: The logic of Boolean equations, Kluwer Academic Publishers,
Boston, USA; 1990.

[11] Crandall R, Pomerance C. The Ubiquity of prime numbers, Chapter 8, In Prime Numbers A

Computational Perspective Second Edition Springer, New York, NY, USA; 2005.

[12] Akshay S, Shah S, John A, Chakraborty S. Going beyond verification: Boolean function synthesis,

Power Point presentation; 2017.
Available:http://www.cfdvs.iitb.ac.in/workshop17/synthesis.pdf (Accessed on December 24, 2017)

[13] Hammer PL, Rudeanu S. Boolean methods in operations research and related areas. Springer Verlag,

Berlin, Germany; 1968.

[14] Rudeanu S. Boolean Functions and Equations, North-Holland Publishing Company & American

Elsevier, Amsterdam, the Netherlands; 1974.

[15] Rushdi AM. Using variable-entered Karnaugh maps to solve Boolean equations. International Journal

of Computer Mathematics. 2001;78(1):23-38.

[16] Rudeanu S. Algebraic methods versus map methods of solving Boolean equations. International

Journal of Computer Mathematics. 2003;80(7):815-817.

[17] Rushdi AM. Efficient solution of Boolean equation using variable-entered Karnaugh maps. Journal of

King Abdulaziz University: Engineering Sciences. 2004;15(2):21-29.

[18] Baneres D, Cortadella J, Kishinevsky M. A recursive paradigm to solve Boolean relations. IEEE

Transactions on Computers. 2009;58(4):512-527.

[19] Rushdi AM, Amashah MH. Using variable–entered Karnaugh maps to produce compact parametric

general solutions of Boolean equations. International Journal of Computer Mathematics. 2011;88(15):
3136-3149.

[20] Rushdi AM. A comparison of algebraic and map methods for solving general Boolean equations.

Journal of Qassim University: Engineering and Computer Sciences. 2012;5(2):147-173.

[21] Rushdi AMA, Amashah MH. Purely-algebraic versus VEKM methods for solving big Boolean

equations. Journal of King Abdulaziz University: Engineering Sciences. 2012;23(2):75-85.

[22] Rushdi AMA, Albarakati HM. Prominent classes of the most general subsumptive solutions of

Boolean equations. Information Sciences. 2014;281:53-65.

[23] Rushdi AMA, Al-Qwasmi. Formal derivation of a particular input of a single AND (OR) gate in terms

of its output and other inputs. Journal of King Abdulaziz University: Engineering Sciences.
2015;26(2):51-64.

[24] Rushdi AMA, Ahmad W. A novel method for compact listing of all particular solutions of a system of

Boolean equations. British Journal of Mathematics & Computer Science. 2017;22(6):1-18.

[25] Rushdi AMA, Ahmad W. Satisfiability in Big Boolean algebras via Boolean-equation solving. Journal

of King Abdulaziz University: Engineering Sciences. 2017;28(1).

[26] Ahmad W, Rushdi AMA. A new cryptographic scheme utilizing the difficulty of big Boolean

satisfiability. International Journal of Mathematical, Engineering and Management Sciences.
2018;3(1):47-61.

Rushdi and Zagzoog; JAMCS, 26(3): 1-14, 2018; Article no.JAMCS.39285

14

[27] Rushdi AMA, Ahmad W. Digital circuit design utilizing equation solving over ‘big’ Boolean
algebras. International Journal of Mathematical, Engineering and Management Sciences. 2018;3(3).

[28] Rushdi AMA. Handling generalized type-2 problems of digital circuit design via the variable-entered

Karnaugh map, International Journal of Mathematical, Engineering and Management Sciences
(IJMEMS). 2018;3(3).

© 2018 Rushdi and Zagzoog; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)
http://www.sciencedomain.org/review-history/23038

