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Abstract

Membrane protein structure prediction and design are challenging due to the complexity of

capturing the interactions in the lipid layer, such as those arising from electrostatics. Accu-

rately capturing electrostatic energies in the low-dielectric membrane often requires expen-

sive Poisson-Boltzmann calculations that are not scalable for membrane protein structure

prediction and design. In this work, we have developed a fast-to-compute implicit energy

function that considers the realistic characteristics of different lipid bilayers, making design

calculations tractable. This method captures the impact of the lipid head group using a

mean-field-based approach and uses a depth-dependent dielectric constant to characterize

the membrane environment. This energy function Franklin2023 (F23) is built upon Frank-

lin2019 (F19), which is based on experimentally derived hydrophobicity scales in the mem-

brane bilayer. We evaluated the performance of F23 on five different tests probing (1)

protein orientation in the bilayer, (2) stability, and (3) sequence recovery. Relative to F19,

F23 has improved the calculation of the tilt angle of membrane proteins for 90% of WALP

peptides, 15% of TM-peptides, and 25% of the adsorbed peptides. The performances for

stability and design tests were equivalent for F19 and F23. The speed and calibration of the

implicit model will help F23 access biophysical phenomena at long time and length scales

and accelerate the membrane protein design pipeline.

Author summary

Membrane proteins participate in many life processes. They constitute 30% of the human

proteome and are targets for over 60% pharmaceuticals. Accurate and accessible computa-

tional tools to design membrane proteins will transform the platform to engineer mem-

brane proteins for therapeutic, sensor, and separation processes. While soluble protein

design has advanced, membrane protein design remains challenging due to the difficulties

in modeling the lipid bilayer. Electrostatics plays an intimate role in the physics of mem-

brane protein structure and function. However, accurately capturing electrostatic energies

in the low-dielectric membrane often requires expensive calculations that are not scalable.

In this work, we contribute a fast-to-compute electrostatic model that considers different
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lipid bilayers and their features, making design calculations tractable. We demonstrate

that the updated energy function improves the calculation of the tilt angle of membrane

proteins, stability, and confidence in designing charged residues.

This is a PLOS Computational Biology Methods paper.

Introduction

Electrostatic interactions are essential in membrane protein (MP) stability, structure, and

function. Such interactions determine the way macromolecules interact with membranes: for

example, adsorption and internalization of small peptides such as melittin and indolocidin are

dependent on the lipid surface charge; [1] signaling and ion-transport through ion channels

and active transporters are dependent on the electrostatic potential across the cellular mem-

brane; [2] and association of many peripheral MPs involves electrostatic interactions with the

membrane. [3, 4] Particularly, the lipid head groups can be charged, and the hydrophobic core

of the bilayer can enhance interactions between charged particles giving rise to biophysical fea-

tures that are less frequently observed in the aqueous phase. [5] Hydrophobicity scales the pro-

pensity of a given residue to be present in the hydrocarbon region. [6, 7] However, some show

unusual behavior: for example, residues Arg and Lys snorkel out of the membrane interior to

minimize the cost of inserting charged groups into the membrane; [8–10] aromatic residues

Trp and Tyr mostly interact with the head-group region, but Phe is present in both membrane

core as well as the head-group region. [11] Additionally, the non-polar bilayer increases the

strength of traditional hydrogen bonds. [5, 12] Despite the importance of membrane electro-

static interactions, they are challenging to capture computationally, primarily due to the high

computational cost incurred in sampling solvent and solute degrees of freedom.

One way for electrostatic calculations to overcome solute and solvent degrees of freedom is

to treat the solvent as a continuous medium and ignore solvent-solvent interactions. A com-

mon approach in biological systems is solving the Poisson-Boltzmann (PB) equation with

finite-difference methods representing lipids both explicitly and as continuum slabs; however,

computational costs have been a bottleneck. [13–16] To overcome the cost, the generalized

Born (GB) approximation represents the membrane environment through a switching func-

tion or heterogeneous dielectric slab. [17–19] The calculated GB energy includes a screening

radius which in turn depends on its local environment and surrounding neighbors, however,

it is still expensive and complicated. A third possibility is the heuristic Coulomb equation. In

Rosetta soluble protein calculations, this model has yielded a significant speedup relative to GB

calculations and complements explicit modeling of hydrogen bonds. [20, 21]

One approach to overcome the computational cost of lipid membrane complexity is to rep-

resent the membrane as a continuum. [22–26] To compare the computing time performances

for an implicit and explicit membrane model, Ulmschneider and Ulmschneider [27] under-

took a comprehensive analysis of sampling efficiency of WALP16 peptide folding using a GB

based implicit membrane model and, an explicit DPPC lipid bilayer and an octane slab mem-

brane mimic. A quantitative assessment of sampling efficiency, utilizing a wide range of per-

formance metrics, revealed that the implicit membrane models were at least two orders of

magnitude more efficient than the octane membrane mimic, the simplest of the two explicit
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models. Lazaridis implicit membrane model (IMM1), [28, 29] is a Gaussian solvent-exclusion

model that uses experimentally measured transfer energies for side-chain analogs in organic

solvents to emulate the transfer energy into the cell membrane. IMM1 uses a water-to-mem-

brane transition function-dependent dielectric constant to strengthen the electrostatic interac-

tions in the membrane. IMM1 has been applied to various biomolecular modeling problems,

including studies of peptides, [30] de-novo folding, [31] and de-novo design of transmem-

brane helical bundles. [32] However, organic solvent slabs differ from phospholipid bilayers

because lipids are thermodynamically constrained to a bilayer configuration, resulting in a

unique polarity gradient that influences side-chain preferences. [33, 34] Another alternative is

to directly calculate amino-acid preferences by deriving statistical potentials from a database of

known MP structures. Yet, statistical potentials do not capture varying physicochemical fea-

tures of different membranes. [35–38]

The F19 energy function, which was inspired by IMM1, included the transfer energy of

residues in the phospholipid bilayer based on the Moon and Fleming (MF) scale. [39, 40]

However, F19 omitted the electrostatic interactions of the membrane environment, leading

to errors in benchmarking tests. For example, in a test to calculate the tilt angle of adsorbed

peptide cecropin A(1 − 8)-magainin 2(1 − 12) (PDB:1f0d), F19 oriented it at 56˚ with the

membrane normal with its N-terminus Lys residues facing the aqueous phase. However,

solution NMR found the tilt angle of the peptide at 90˚, which allowed favorable attractive

electrostatic interactions between the cationic Lys residues and the anionic phosphate lipid

head groups of DLPC. A second issue in F19 energy function was an underestimated water-

to-bilayer transfer energy ΔGw,l for Asp and Glu at neutral pH. The transfer energies for Asp

and Glu derived from the MF hydrophobicity scale were measured at a pH of 3.8. [40] Since

this pH is close to the nominal pKa values of Asp and Glu side chains, the experimental

transfer energy was influenced by the presence of protonated Asp and Glu (D0, E0) residues,

which are less polar than the deprotonated residues (D−1, E−1) at neutral pH. In this paper,

our objective is to add the missing electrostatic features of the membrane to F19 energy func-

tion and test whether the new energy function, named Franklin2023 (F23), better captures

features of MPs.

We explore three modifications to F19. First, we develop a fast-to-compute Coulomb-based

electrostatics method that includes a low dielectric constant of the lipid bilayer. Second, we use

a mean field-based calculation for the electrostatic potential due to the lipid membrane and

water by solving Poisson’s equation using a fast Fourier transform (FFT) based solver while

avoiding any assumption or discrepancies due to ionic strength incurred in PB or its linearized

version. [41, 42] Third, we used a modified value of ΔGw,l for Asp and Glu residues at neutral

pH.

Until very recently, the energy functions have been developed and tested for specialized

tasks, questioning their generalizability. To confront the challenge of over-fitting and a special-

ized model, our group recently developed a 12-test benchmark suite that probes (1) protein

orientation in the bilayer, (2) stability, (3) sequence, and (4) docking structures of membrane

protein. [43] These tests form a platform to evaluate the strengths of an energy function and

suggest areas of improvement. We evaluate the performance of F23 on predicting the (1) ori-

entation of peptides in the membrane environment, (2) thermal stability due to point muta-

tion, (3) transfer energy of peptides and (4) design evaluations. Our results have shown

significant improvement. Relative to F19, F23 improves the calculation of the tilt angle of

membrane proteins for 90% of WALP peptides of different lengths, 15% of transmembrane

(TM)-peptides, and 25% of the adsorbed peptides. The performances for stability and design

tests are equivalent to F19 and F23. Finally, we conclude the paper with perspectives on further

improvements for implicit membrane energy functions.
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Methods

Implicit model development

Electrostatic energy term based on lipid type. We calculate the electrostatic effect of

lipid bilayers based on all-atom molecular dynamics (MD) simulation of lipid molecules and

solvents alone. We derive the electrostatic potential C(x, y, z) by solving Poisson’s equation

using a 3D-grid based FFT solver:

r � rεC ¼
Xl¼lipid

l¼1

rl þ
Xw¼water

w¼1

rw þ
Xs¼salt

s¼1

rs; ð1Þ

where ρw, ρl and ρs is the position-dependent charge densities of water, lipid, and salt averaged

over MD trajectories, [44] and ε = 8.854 × 10−12 CV−1m−1 is the dielectric constant of vacuum.

To extract the depth-dependent C, we use non-linear regression to fit the piece-wise function

~Cw as shown in Fig 1a. We derived the fitting parameters for all simulated lipid bilayers

(Table A in S1 Text) as:

~Cw ¼

A1 þ
A1 � A2

f1þ exp
jzj � A3

A4

� �

g

for jzj >¼ zc

C1jzj
4
þ C2jzj

3
þ C3jzj

2
þ C4jzj þ C5 for jzj < zc

8
>>>><

>>>>:

where zc is the maximum of the critical points for the function ~Cw for |z| < zc. The fitting

parameters of different lipid types are listed in Table A in S1 Text. The reference state of C = 0

in water is set at depth z� 40 Å and the potential difference ΔC is obtained (as shown by the

dashed lines in Fig 1a). We compare the electrostatic potential due to salt and no salt in Fig 1b.

As expected, the potential difference is found to be lower due to the presence of salt. The elec-

trostatic energy due to the protein is then:

DGlipid ¼
XNres

r¼1

XN
r
atom

a¼1

DCðzÞqr;a; ð2Þ

where the sums are over all residues and all atoms in each residue, qr,a is the charge of a protein

atom, and C(z) is the electric potential of the empty water-bilayer system as a function of

membrane depth. C(z) is an average of C(x, y, z) in the other directions.

Following our previous work, [44] the MD trajectories used in this analysis were generated

from all-atom molecular dynamics simulations of phospholipids, water, and salt. The simula-

tions were performed using the NAMD molecular dynamics engine at a constant pressure of 1

atm and a temperature of 37˚C. The CHARMM36 force field was used for lipids, and TIP3

model for water. See the methods section of Alford et al., [44] for further details.

Bilayer depth-dependent dielectric constant. Due to the hydrophobic environment

within the membrane, the dielectric constant is lower than that in the isotropic soluble region.

To account for the dielectric variation, in IMM1 a water-to-membrane transition-function-

dependent dielectric constant is substituted in EEF. [28]

Inspired by IMM1 in F23, for structure prediction and design, we use a membrane hydra-

tion fhyd dependent dielectric constant. Membrane hydration (fhyd) is a proxy of the membrane

depth and is capable of capturing water cavity effects. [44] In the center of the membrane,

when an atom is exposed to lipids, fhyd = 0; whereas when an atom is fully exposed to water,

fhyd = 1.0. When an atom is in the membrane yet faces a water cavity, 0.0< fhyd < 1.0. For an
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atom pair, we define the hydration fraction fhyd,ij as the geometric mean of fhyd,i and fhyd,j.

Rosetta uses a distance-dependent dielectric constant for soluble proteins with sigmoidal func-

tion εsol(rij) to transition between the protein core (εcore = 6) and surface (εsurface = 80). [46]

To define the distance-dependent dielectric constant within the membrane, we use the same

sigmoidal function εmemb(rij) to transition between protein core (εcore = 3) and surface (εsurface

= 10) as summarized in Fig 2a. [47, 48] To combine the effect of distance dependence and

membrane hydration, we use a linear mixture equation:

εðrij; fhyd;ijÞ ¼ fhyd;ijεsolðrijÞ þ ð1 � fhyd;ijÞεmembðrijÞ ð3Þ

Fig 2b shows ε(rij, fhyd,ij) as a function of fhyd,ij and atom pair distance rij. Based on the modi-

fied dielectric constant, the Coulomb energy is:

Edielectric
elec;ij ¼

C0qiqj

εðrij; fhyd;ijÞ
1

rij
�

1

rmax

" #

; ð4Þ

Fig 1. Features of electrostatic potential due to the lipid bilayers in the membrane. (a) Electrostatic potential as a function of depth and analytical fit.

(b) Comparison of electrostatic potential in a 0.1 M salt solution and that calculated by Yu et al. in pure water. [45] Comparison of electrostatic

potential as a function of membrane depth for (c) different lipid head groups and (d) lipid tail lengths.

https://doi.org/10.1371/journal.pcbi.1011296.g001

PLOS COMPUTATIONAL BIOLOGY Implicit model to capture electrostatic features of membrane environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011296 January 22, 2024 5 / 24

https://doi.org/10.1371/journal.pcbi.1011296.g001
https://doi.org/10.1371/journal.pcbi.1011296


where qi, qj are partial charges of protein atoms, C0 is Coulomb’s constant (322 Å kcal/mol

e−2), where e is the elementary charge and the electrostatic energy is truncated at rmax = 5.5 Å.

[39] To isolate the excess electrostatic energy due to the membrane, in this energy term, we

subtract the electrostatic energy from the solution. In addition, nullifying the electrostatic

energy ensures the reference energy of the unfolded protein in the soluble region remains

unaffected. [49] The modified energy is given as:

DEdielectric
elec;ij ¼ C0qiqj

1

rij
�

1

rmax

" #
1

εðrij; fhyd;ijÞ
�

1

εðrijÞ

" #

ð5Þ

Fig 2c presents the electrostatic energy due to the membrane as a function of pair fraction of

hydration fhyd,ij and atom pair distance.

Modifying ΔGw,l for Asp and Glu at neutral pH. F19 included the hydrophobicity of res-

idues as per the Moon and Fleming (MF) hydrophobicity scale, [40] which reflects the water-

to-bilayer partitioning of side chains in the context of a native transmembrane protein span-

ning a phospholipid bilayer. The MF hydrophobicity scale is linearly correlated to Wimley

White (WW) scale with a higher slope, which is based on side-chain water-to-octanol transfer

energies (as seen in Fig 3a). [40, 50] The two exceptions are Asp and Glu since the MF partition

energy is measured at a pH close to their pKa. The question arises, how do we calculate the val-

ues of Asp and Glu at neutral pH (D−1, E−1)? To determine the MF-scale transfer energy of

D−1, E−1, we use the linear best fit of MF and WW hydrophobicity scales and extrapolate the

WW transfer energy of D−1 and E−1.

Based on the MF scale transfer energy of D−1, E−1, we used linear regression to calculate the

transfer energy of atoms DGatom
w;l by solving ½Aaa;atom� � ΔG

atom
w;l ¼ ΔGaa

w;l, where [Aaa,atom] is a

matrix of atom type stoichiometry coefficients and the ΔGatom
w;l and ΔGaa

w;l represent the vectors

of ΔGw,l for different atom and amino acid types. We append [Aaa,atom] and ΔGaa
w;l to include

the stoichiometry of D−1 and E−1 to recalculate ΔGatom
w;l . Table B in S1 Text shows all the equa-

tions and values of ΔGaa
w;l we have used. Fig 3b compares ΔGatom

w;l calculated with and without

ΔGaa
w;l for D−1 and E−1 used in F23 and F19 respectively. The additional rows for D−1 and E−1

led to renewed values of DGCOO
w;l and DGOOC

w;l as seen in Fig 3a and 3b.

Fig 2. Coulomb electrostatic energy due to the lipid bilayers in the membrane. (a) Membrane-dependent electrostatics potential: The energy

increases when entering the bilayer and at close atom pair distances. Green arrows indicate the direction of increasing energy. (b) Dependence of the

dielectric constant ε on fraction of hydration fhyd and atom-pair distance ri,j. The different dielectric constants are colored from low (dark blue) to high

(yellow). (c) Variation of the membrane dielectric-dependent electrostatics energy as a function of fractional hydration fhyd and atom-pair distance ri,j.
Each grid point corresponds to an energy calculated for point charges with opposing signs, and the energy varies from strong (dark blue) to weak

(yellow).

https://doi.org/10.1371/journal.pcbi.1011296.g002
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Integration of new terms into F23

We integrate two new energy terms (ΔGlipid and DEdielectric
elec;ij ) to F19 through linear combination

of terms.

F23 ¼ Ref2015þ ww;lDGw;l þ wlipidDGlipid þ wdielecDE
dielectric
elec;ij ; ð6Þ

where Ref2015 is Rosetta’s standard energy function for soluble proteins, [46]ΔGw,l add the

transfer energy from water to bilayer, [44] and ΔGlipid and DEdielectric
elec;ij are the energies due to the

lipid head group and the membrane dielectric constant. We can recover the energy function

F19 by setting ww,l = 0.5, wlipid = 0 and wdielec = 0. We solved the simultaneous equations for

the three unknown positive weights to maximize the correlation coefficient for the experimen-

tally measured ΔΔGmut for amino acids at the center of OmpLA protein [40] and mutations to

aromatic side chains (Phe, Trp, Tyr) [51]. The resulting weights were ww,l = 1, wlipid = 0.128

and wdielec = 0.01, achieved using L-BFGS-B algorithm within bounds of [0, 1]. Our choice of

these bounds was to avoid negative weights and extremely large positive weights while recog-

nizing potential biases due to the bounds and more data points at the center of the membrane.

We omitted the matrix rows for Ala due to its role as a host residue for all experimental muta-

tions, Pro to avoid steric clashes resulting in large values, Asp and Glu residues because the

experimental values were measured at low pH.

Results and discussion

Biologically realistic membrane features

F23 captures the effects of the diverse lipid bilayer. We first investigate the effect of the

lipid head and tail group (Fig 1c and 1d) by examining the electrostatic potential of the empty

Fig 3. Values of DGatom
w;l and DGaa

w;l with different scales. (a) Comparison of DGaa
w;l calculated using F19 and F23 relative to the experimental values from

MF and WW scales. The MF DGaa
w;l for D−1 and E−1 are estimated by extrapolation of a linear fit of the other WW data points. (b) Comparison of DGatom

w;l

calculated using F23 and IMM1 relative to F19.

https://doi.org/10.1371/journal.pcbi.1011296.g003
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lipid layer in the presence of counter-ions and salt solution. While this implicit method cannot

capture the interface deformation or interaction of lipids with the residues, this electrostatic

potential will be sensitive to different lipid types. Fig 1c shows the ΔC for three different lipid

head groups (DLPE, DLPC, and DLPG) with the same tail group, i.e. Lauric acid(12: 0) acyl

chains (DL). Phosphatidylethanolamine (PE) and phosphatidylcholine (PC) have neutral head

groups with the same overall composition, except that PE has a N+H3 and PC has a N+(CH3)3

atom. Relative to PC, the smaller head group of PE increases the local charge density leading to

higher electrostatic potential. [52, 53] Phosphatidylglycerol (PG), on the other hand, has

anionic lipid head groups known to adsorb counterions to the bilayer interface strongly,

screening the net electrostatic potential relative to PC. [54, 55] Fig 1d shows the ΔC for four

different lipid tail groups (DLPC, DPPC, DOPC, and POPC) with the constant head group PC

and different length and degree of unsaturation. These calculated results match chain length

trends observed in experimentally measured surface potential. [56] Using these different pro-

files, F23 can approximate different homogeneous lipid environments through the potential

ΔC, and parameters for other mixed lipid compositions can be added with a short MD run.

Benchmark performance of F23

We evaluate the performance of F23 using five benchmark tests. The tests are designed to eval-

uate an energy function’s ability to replicate measured membrane protein stability and per-

form structure prediction and design. We compare the performance of F23 to two other

existing implicit models: (1) F19 and (2) M12, which is based on IMM1. [39, 57] We chose

these models for their low computational cost which allows evaluation with structure predic-

tion and design tests.

Test 1: Orientation of polyalanine and WALP peptides. MPs are thermodynamically

stable in the bilayer because of favorable orientation and insertion energy. Thus, a key chal-

lenge for energy function and the focus for our first and second tests is to recapitulate this low-

est energy orientation of membrane peptides. Following our prior work [43, 44, 58], we used a

protocol that samples all possible orientations of the peptide relative to the implicit membrane

within ±60Å of the bilayer center (d), tilt angles relative to the membrane normal (θ) between

±180˚, rotation angles relative to the principal helical axis (ϕ) between 0 − 360˚. The global

energy minimum of all sampled positions is defined as the most stable predicted orientation.

In this first test, we test the effect of the length of repeating helical peptides on the tilt angle.

Polyalanine. To test the effect of peptide length, we predict the tilt angle of polyalanine pep-

tides with a varying number of alanine residues (ranging from 20–40). Polyalanine peptides

have been shown to adopt predominantly helical conformations in lipid bilayers. We model

the residues as α–helices with ψ = −47˚ and ϕ = −57˚ with charged ends. We compare our

results with orientations calculated using Sengupta et al.’s 5-slab continuum dielectric model

with CHARMM36 force field [59] as shown in Fig 4a. Due to the lack of any lipid type men-

tioned in the 5-slab model, in this test, we calculated the tilt angles using DLPC for both F19

and F23. Similar to that in Sengupta et al., [59] the tilt angles calculated by F23 and F19 are

proportional to the length of the peptide. However, relative to the 5-layer slab model, F19 and

F23 over-predict the tilt angle by about 10–15˚. Irrespective of the size of the polyalanine, M12

places the peptides outside the membrane at a tilt near 90˚.

WALP peptides. WALP peptides typically comprise two Trp residues at each end with a

helical core composed of alternating Leu and Ala residues: GWW(LA)nLWWA. They have

proven to be opportune models for experimentally investigating lipid and peptide interactions.

[60] The WALP peptides are modeled as ideal α-helices with ψ = −47˚ and ϕ = −57˚. In this

test, we calculate the tilt angle of WALP peptides of different lengths in DMPC lipid layers
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(using M12, F19, and F23). We compare the results with experimental solid-state NMR

(ssNMR) and spectroscopic measurements available for WALP19–31 (shown in Fig 4b by

filled markers) and the rest of the results predicted by Sengupta et al.’s 5-slab model (shown in

Fig 4b by unfilled markers). [59, 61, 62] Sengupta et al. calculated the tilt angle of fixed back-

bone peptide by determining the energy landscape as a function of depth and tilt angle that

included the peptide energy using CHARMM potential and membrane solvation energy using

electrostatics and non-polar terms.

Similar to ssNMR, F19 calculated the tilt angle of WALP to be directly proportional to the

number of residues (Fig 4b). For shorter peptides, the tilt angle is in good agreement with the

experiment; however, for the peptides longer than WALP31, F19 buries the peptides at the

center of the membrane (tilt angle 90˚). For longer peptides, F19 is unable to compensate the

net hydrophobicity due to the non-polar residues by the energy due to polar residues, resulting

in burying the peptide at the center of the membrane (see examples of WALP35 and WALP39

in Fig A(a-b) and A(d-e) in S1 Text). To demonstrate the impact of lipid composition, Fig E in

S1 Text displays calculated WALP tilt angles using F23 in three different lipid compositions.

Relative to F19, F23 computed the tilt angle for WALP peptides closer to the experimental

measures and those predicted by the 5-slab model. Particularly, F23 increased the accuracy of

tilt angle prediction due to two factors: (a) lower hydrophobicity of the polar residues at the

terminal (Fig A(c) in S1 Text), and (b) the additional membrane electrostatic energy. However,

F23 still buried WALP39 with a tilt angle much higher than the angle predicted by the 5–slab

model (Fig A(d) in S1 Text). Contrary to F23 and F19, M12 calculated the tilt angle of all pep-

tides close to those by the 5–slab model (Fig 4b) because both the models use the WW hydro-

phobicity scale, which has a lower slope than the MF hydrophobicity scale used by F19 and

F23 (Fig 3a). [40, 43] However, hydrophobicity alone cannot be the reason, as otherwise, the

tilt angles for polyalanines would have been similar. M12 uses a knowledge term based on the

Fig 4. Test1: Orientation of polyalanine and WALP peptides. (a) Predicted tilt angle of polyalanine as a function of the number of residues. The

polyalanine is named AAx, where x represents the number of residues. (b) Predicted tilt angle of WALP peptides as a function of the number of

residues. The WALP peptides are presented as WALPx, where x represents the number of residues. Peptides for which experimental results are available

are presented by filled markers, and those for which simulated data is available are shown by unfilled markers.

https://doi.org/10.1371/journal.pcbi.1011296.g004
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probability of finding a residue at a given depth of the membrane, which penalizes the Trp res-

idues in the membrane but not the Ala residues. This heuristic term correlates well with the

location of energy minima of the total energy Fig B(a-b) in S1 Text.

In summary, with the combination of hydrophobic transfer energy and electrostatic inter-

action energy with the membrane relative to F19, F23 improves the accuracy of tilt angle calcu-

lation. However, F23 buries long WALP peptides due to higher hydrophobic energy relative to

M12 (IMM1).

Test 2: Orientation of TM- and adsorbed peptides. Our second test also concerns the tilt

angle for peptides. However, unlike Test 1, which explored related families in a membrane,

these peptides are of diverse sequences and in different lipid environments, with some that

adsorb on the surface of the membrane and some that pass through it. The different lipid types

used for experiments and the parameters used for this test are listed in Table C in S1 Text. The

objective here is to see if the lowest energy orientation of the membrane peptides identified by

the energy function corresponds to the native orientation. This test is the cornerstone of our

benchmark because it was used for the validation of early implicit membrane models. [43, 63]

The tilt angles of TM-peptides were measured previously using solid-state NMR experiments

using different lipid compositions, including DPC micelles, DMPC vesicles, mixed DOPC:

DOPG bilayers, and pure DOPC bilayers. [43, 63] While the experimental uncertainty is not

available for all measurements, tilt angle measurements have a typical error range of ±3–5˚.

The tilt angle for absorbed peptides is measured by solution NMR in dodecyl phosphocholine

micelles or trifluoroethanol with an uncertainty of ±6–12˚. [64] Since our previous publica-

tions have already reported a comparison of F19 with M12 and other energy functions, we

focus here on the comparison of F23 with F19 (Fig 5a and 5b). [43]

F19 calculated the tilt angle within ±20˚ of the experimentally measured values for three

out of four peptides. F23 improved the tilt angle calculation for WALP23 by 20˚ and NR1 sub-

unit of the NMDA receptor (2nr1) peptides by 5˚ to result in tilt angles within ±20˚ of the

Fig 5. Test2: Orientation of TM and adsorbed peptides. (a) Predicted tilt angle of TM peptides compared with experimental measurements. (b)

Predicted tilt angle of adsorbed membrane peptides and compared with experimental measurements.

https://doi.org/10.1371/journal.pcbi.1011296.g005
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experimentally measured values for all the four peptides (as seen in Fig 5a. F23 worsened the

tilt angle for influenza A M2 (1mp6) peptides.

To understand the deviation between the experiment and calculated tilt angles of WALP23

and 1mp6, we examine the energy landscape under F23 and F19. F23 improved the tilt angle

of WALP23 due to the lower hydrophobicity of the C-terminus. To illustrate the reasons for

the difference in tilt angle for 1mp6, we present the energy landscape under F23 and F19 in Fig

C(a-g) in S1 Text. F19 calculated the tilt angle at z = −5 Å as 48˚. Due to the lower hydropho-

bicity of C-terminus Asp and Leu residues, F23 further improved the tilt angle of 1mp6 at z =

−5 Å(Fig C(f) in S1 Text). However, electrostatic interactions between arginine and the lipid

layer reduced the energy of F23 further by 0.1 REU and led to a worsening of the calculated tilt

angle (Fig C(f-g) in S1 Text).

For four out of seven adsorbed membrane proteins, F19 calculated the tilt angle within

±20˚ of the experimentally measured values. F23 significantly improved calculation resulting

in tilt angles within ±20˚ of the experimentally measured values for six out of seven peptides

(Fig 5b). F23 reduced the error in tilt angle of magainin-cecropin hybrid (pdb:1f0d) and novis-

pirin G10 (pdb:1hu6) by 21˚ and 16˚ respectively.

We compare the F23 per-residue energy of the magainin-cecropin hybrid (pdb:1f0d) at

configurations predicted by F19, F23, and the native state (Fig 6b). F23 penalizes Lys residues

at the tilt angle calculated by F19 and allows favorable attractive electrostatic interactions

between the cationic side chains and the anionic phosphate lipid headgroups of DLPC. In

addition, F23 assigned higher energy to the polar Lys residues present near the center of the

membrane in the F19 configuration relative to the surface absorbed native state. To further

establish the importance of the electrostatic interaction, we recalculate the residue with a spe-

cial version of F23 (shown in Fig D(d-f) in S1 Text as dashed lines) in which the DGatom
w;l param-

eters are reverted back to those of F19. Indeed, higher electrostatic repulsion at the center

results in the magainin-cecropin hybrid peptide (pdb:1f0d) being placed near the surface of

the membrane and obtaining a near-native tilt angle, confirming that the ΔGlipid and DEdielectric
elec;ij

terms are responsible for the improvement.

Fig 6. Per-residue F23 energy calculated at native, F23 and F19 calculated tilt angles. (a) F23 per-residue total energy (REU), (b) per-residue transfer

energy to the bilayer, and (c) per-residue electrostatic energy due to the lipid layer at native (black hashed), F23 (red) and F19 (blue) calculated tilt

angles. Right: Sum of all residues.

https://doi.org/10.1371/journal.pcbi.1011296.g006
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To summarize, the tilt angle calculation by F23 for several TM-peptides and adsorbed pep-

tides has improved due to the addition of the new electrostatic terms and the renewed values

of DGCOO
w;l and DGOOC

w;l .

Test 3: ΔΔGmutation. Our third test evaluates how a change in the sequence of a membrane

protein affects its overall thermostability. ΔΔGmutation is the change in Gibbs free energy of

folding from water to the lipid bilayer of each mutant relative to the native sequence.

DDGmutation ¼ ½Gmutant
bilayer � Gmutant

water � � ½G
native
bilayer � Gnative

water �; ð7Þ

To design MPs, ΔΔGmutation is crucial in evaluating the effect of genetic mutations on protein

functions. To evaluate ΔΔGmutation, we use a Rosetta fixed-backbone and fixed-orientation pro-

tocol. [44] We use two sets of ΔΔGmutation measurements from the Fleming lab taken at equi-

librium in DLPC vesicles and in the context of a β-barrel protein scaffold. The two datasets are

mutations from Ala to all 19 remaining canonical amino acids at position 210 on outer mem-

brane phospholipase A (OmpLA), [40] and at position 111 on an outer membrane palmitoyl

transferase (PagP). [51] The experimental uncertainty of the measured ΔΔGmutation values is

±0.6 kcal mol−1.

Fig 7a and 7b compares the experimental and calculated ΔΔGmutation from Ala to all other

residues for OmpLA and PagP proteins at a fixed height in the membrane. We also included

D−1 and E−1 to emulate these residues at neutral pH. While F19 linearly correlates well for

both OmpLA and PagP, F23 predicts the ΔΔGmutation closer to the experimental values (e.g. in

OmpLA H improves from 7.2 to 5.2 REU, K from 6.4 to 5.2 REU, N from 6.2 to 4.7 REU; in

PagP R improves from 5.9 to 3.8 REU and K from 8.5 to 7 REU), evident from the slope of the

Fig 7. Test3: ΔΔGmutation of alanine to all other residues. Predicted ΔΔGmutation and experimental measurements for (a) OmpLA and (b) Pagp protein.

For the experimental values of ΔΔGmutation for D−1 and E−1 for OmpLA, we have used their extrapolated MF scale values as described in Methods

section. Since the experimental DGaa
w;l based on the MF hydrophobicity, was measured at a pH of 3.8, where some of the Asp and Glu are in their

protonated states, we removed them while calculating the slope and correlation coefficient of the best-fit lines (dashed lines) for the predictions relative

to experimental values. The black line is the y = x line. The red and blue dashed lines are linear best-fit lines for values predicted by F23 and F19,

respectively. The equations for the best-fit lines for F23 and F19 are shown in red and blue, respectively.

https://doi.org/10.1371/journal.pcbi.1011296.g007
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best-fit line (the fit excludes Asp and Glu, see the caption for further details). To assess the

uncertainty of the predicted ΔΔGmutation, we conducted 10 repeated calculations, resulting in

standard deviations of 0.008 (F23, OmpLA), 0.016 (F23, PagP), 0.086 (F19, OmpLA) and 0.009

(F19,PagP).

Test 4: ΔΔGins. Next, we asked whether the energy function can recapitulate the thermo-

dynamics of protein insertion into the membrane. This test set includes five poly-Leu peptides

designed by Ulmschneider et al., [65] four of which follow a GLXRLXG motif, where X = 5, 6,

7, 8. The fifth follows a different pattern by adding a flanking Trp: GWL6RL7G. We compare

our results against transfer energies from MD simulations in POPC bilayers, which were vali-

dated against intrinsic fluorescence measurements. The experimental uncertainty of the mea-

sured ΔΔGins values was ±1.4 kcal mol−1. [65]

To evaluate the performance of energy functions, we compute the ΔΔGins (Eq 8) as the

energy difference between the lowest energy orientation of the peptide in the lipid bilayer

phase and in the aqueous phase:

DDGins ¼ ½Glipid � Gref � � ½Gwater � Gref �; ð8Þ

where Gref is the Gibbs free energy of an unfolded protein in solution.

Fig 8 compares ΔΔGins calculated by F19 and F23 to that by MD simulation. The correlation

coefficient for F23 is 0.01 higher than F19, which is insignificant. However, the slopes for the

best-fit lines are about double for F23 relative to F19. Relative to F19, the additional electro-

static terms in F23 increased favorable energy due to insertion. F19 and F23 recognize the rela-

tive ΔΔGins among the design peptides; however, the energy of insertion is overestimated

Fig 8. Test4: ΔΔGins of polyleucines. ΔΔGins is the energy difference between the lowest energy orientation of the

peptide in the lipid bilayer phase and that in the aqueous phase. ΔΔGins is a measure of the affinity of a folded protein

to be in the membrane phase relative to the aqueous phase. Predicted ΔΔGins are compared with experimental and

values calculated by MD simulations.

https://doi.org/10.1371/journal.pcbi.1011296.g008

PLOS COMPUTATIONAL BIOLOGY Implicit model to capture electrostatic features of membrane environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011296 January 22, 2024 13 / 24

https://doi.org/10.1371/journal.pcbi.1011296.g008
https://doi.org/10.1371/journal.pcbi.1011296


compared to the calculations from MD. As in many other Rosetta-based calculations, these

energy functions reproduce trends but not the exact values.

Test 5: Sequence recovery. Finally, for the design applications, we evaluate the ability of

an energy function to recover native MP sequences. We perform redesign using Rosetta’s

Monte Carlo fixed-backbone protocol that samples possible sequences using a full protein

rotamer-and-sequence optimization and a multicool-simulated annealing. [66] Each protein is

initialized and fixed in the orientation from the OPM database. [67] For each backbone con-

formation, we generate 50 designed sequences and chose the lowest scoring sequence for fur-

ther analysis. We compute three metrics: (1) sequence recovery, which measures the fraction

of native amino acids recovered in the redesigned sequence, (2) Kullback–Leibler (KL) diver-

gence (DKL), which measures the difference in the probability distribution of design and native

residues, and (3) perplexity, which measures the confidence of a model in the designed

sequences. To extract features relevant to the membrane, we compute these metrics for subsets

of amino acids exposed to the aqueous phase (outside of membrane or pore facing), lipid

phase, and interface region. The dataset for the test includes 204 MPs, including both α-helical

bundles and β-barrels, with all entries having a resolution of 3.0 Å or better and less than 25%

sequence identity. The native and host lipid compositions for these proteins vary widely and

include compositions not yet covered by the F23 lipid parameters; thus, for simplicity, we per-

form all design calculations in the DLPC bilayer.

High sequence recovery has long been correlated with strong energy function performance

for soluble proteins. [49] F19 designed sequences are 31.8% identical to their native sequences

(Fig 9a). With the new electrostatics terms, F23 recovered 30.8% of native residues. To estimate

the variation of designed sequences for a given backbone, Fig F(a-b) in S1 Text shows the

mean and standard deviation of sequence recovery and total score of all 50 designs for top 20

performing PDB backbones. The soluble protein energy function (R15 [46]) and other previ-

ous implicit membrane energy function, which was parameterized from the behavior of side-

chain analogs in organic solvents (M07 [31]), lagged in sequence recovery. To compare the

influence of different solvent environments, we calculated sequence recovery over subsets of

residues. First, we compare buried vs. solvent-exposed side chains (Fig 9b). Among buried

side chains, F19 recovered 3.4% higher native residues than F23. On the surface, sequence

recovery for M12 and F23 was 3% higher than F19. This improvement in the sequence recov-

ery of surface-exposed residues in contrast to those buried by F23 may indicate a potential

path for improvement that might include higher weights of the dielectric constant term. F23

recovered a higher fraction and more variety of native residues (above random selection) rela-

tive to F19 for both water-facing and lipid-facing residues (Fig 9c and 9d).

Amino acid distribution in design proteins is similar to that in native proteins. To eval-

uate the distribution of amino acid types in the designed proteins relative to that in native pro-

teins, we calculated DKL as:

DKL ¼
X

s2AA20

pdes
s log

pdes
s

qnat
s

� �

; ð9Þ

where pdes
s , qnat

s are the probabilities of amino acid type s in the design and native sequences

respectively and AA20 is the set of all 20 canonical amino acids. ps is calculated as:

ps ¼

PNbb
i¼1

PNres
i

j¼1 1xi;j
ðsÞ

PNbb
i¼1

Nres
i

ð10Þ

where Nbb is the total number of protein backbones in our design set, Nres
i is the length of the
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ith protein, xi,j is the amino acid type of the jth residue in the ith protein and, 1xi;j
ðsÞ≔1 if xi;j ¼

s or 0 otherwise.

For residue level understanding, we calculate Ds ¼ log pdess
qnats

� �
, which is the difference in log-

likelihood of amino acid type s in designed and native sequences, and their sum

D ¼
P

s2AA20
Ds. A negative Ds indicates that the amino acid s is under-enriched in designed

sequences, and a positive Ds indicates that s is over-enriched. An ideal energy function will

have DKL = Ds = D = 0.

F19 outperforms Ref15 and other implicit energy functions M12 and M07 with a low and

negative divergence D = −2.7 and DKL = 0.06. F23, on the other hand, under-performed F19

with a D = −4.8 and DKL = 0.27, which is still lower than previous energy functions (Fig 10a

and 10b). Both F19 and F23 can design proteins with amino acid distribution comparable to

native MPs. However, with the additional electrostatic terms, F23 over-enriched charged resi-

dues and under-enriched polar and aromatic residues.

Residue level probability distribution of designed sequences and perplexity. Natural

protein sequences are constrained by evolution and explore only a part of the possible

sequence space. De novo design methods, on the other hand, may explore all possible combina-

tions guided by the energy functions to generate new proteins. With sequence recovery and

divergence measurements, we have explored similarities between designed and native

sequences. However, the question arises, for a given native residue, what is the range of resi-

dues the model considers plausible? Does the designed residue imitate the physicochemical

Fig 9. Test 5: Sequence recovery of membrane proteins. Plots show the fraction of native amino acids recovered on the y-axis and the fraction of

amino acid types with individual recovery rates greater than 0.05 on the x-axis. An accurate energy function would have a high sequence recovery rate

both overall and for the individual amino acid types. The results are shown for all positions in panel (a), buried (in filled circles) vs. surface-exposed(in

open circles) positions in (b), lipid-exposed positions in (c), and water exposed in (d).

https://doi.org/10.1371/journal.pcbi.1011296.g009
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properties of the native residue? And how confident is the model in its design prediction? To

do so, we explored the probability distribution of designed amino acids at all positions with a

given native residue (Fig 11). To measure the model’s confidence in the prediction, we calcu-

lated perplexity per residue type (Fig 11d–11f):

ppr ¼ 2

P
s2AA20

� pðsjrÞlog2pðsjrÞ ð11Þ

where, ppr is the perplexity for a native amino acid type r, p(s|r) is the probability of amino

acid s being designed to replace a native residue r. The probability p(s|r) is given as:

p sjrð Þ ¼

PNbb
i¼1

PNres
i

j¼1 1
des
xi;j
ðs; rÞ

PNbb
i¼1

PNres
i

j¼1 1
nat
xi;j
ðrÞ

ð12Þ

where the superscripts des and nat denote designed and native sequences. The indicator func-

tion in the numerator counts native residues r that convert to s : 1des
xi;j
ðs; rÞ≔1 if ðxdesi;j ¼

s ^ xnat
i;j ¼ rÞ and 0 otherwise, and the denominator indicator function counts native residues

of type r : 1nat
xi;j
ðrÞ≔1 if xnat

i;j ¼ r and 0 otherwise. When a model assigns a high probability to a

given residue, imply its confidence in the decision (meaning less perplexed). To elaborate, a

perplexity of 20 means the model is confused with 20 residue choices for design, and a perplex-

ity of 2 means the model is confused with 2 residue choices. However, low perplexity alone can

be misleading, and it is important for the designed residue choices to be of the right kind.

Thus, an ideal energy function will have a confusion matrix of residue types on design out-

comes with a high probability for diagonal elements (near diagonal elements represent the

native residue or of similar chemical properties) and low perplexity.

Fig 10. Distribution of residue divergence in the redesigned membrane proteins. Plots show the difference in log-likelihood (D) and KL-divergence

(DKL) of designed residue distribution relative to the native sequences. 204 MPs are redesigned with fix-bb and membrane orientation using the (a) F19

and (b) F23 energy functions. A positive divergence indicates that an amino acid is over-enriched, whereas a negative indicates that an amino acid is

under-enriched. Values are given on a logarithmic scale. An amino acid composition pie chart for the sequence designed by each energy function is also

shown in the bottom left-hand corner of the divergence plots. The color red is for non-polar, blue is for aromatic, violet is for polar, yellow is for charge,

and green is for special residues.

https://doi.org/10.1371/journal.pcbi.1011296.g010

PLOS COMPUTATIONAL BIOLOGY Implicit model to capture electrostatic features of membrane environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011296 January 22, 2024 16 / 24

https://doi.org/10.1371/journal.pcbi.1011296.g010
https://doi.org/10.1371/journal.pcbi.1011296


Fig 11. Redesigned membrane proteins exhibit native-like sequences. (a-c) Confusion matrices presenting probability distribution (pi|r) of

design residues i replacing a native residue r by F23 energy function. (d-f) Confusion matrices presenting probability distribution (pi|r) of design

residues i replacing a native residue r by F19 energy function. (g-i) Per-residue perplexity (ppr) by F19 and F23 energy functions. In the

confusion matrices, black denotes the highest (1.0), and light peach denotes the lowest (0.0) probabilities respectively. The criteria to distinguish

between the membrane region is based on relative hydration in the membrane (fhyd) and geometry of the water-exposed pore of the protein

(fpore). [44] Lipid: fhyd < 0.25, fpore < 0.50; Interface: fhyd 2 [0.25, 0.75), fpore < 0.50; Aqueous: fhyd > 0.75, fpore > 0.50.

https://doi.org/10.1371/journal.pcbi.1011296.g011
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F19 has low perplexity for designing non-polar and special residues and higher perplexity

for charged and polar residues (Fig 11g–11i). F23 follows the trends of F19; however, it

improved (reduced) the perplexity of the charged residues significantly for the aqueous region.

For other polar residues, F23 has low perplexity; however, it often selects charged residues in

place of other polar residues.

To sum, F19 can capture native protein-like features slightly better than F23. The perplexity

and confusion matrix of F23 shows higher confidence and accuracy for designing charged

residues.

Conclusion

We developed a new implicit energy function Franklin2023 (F23) by adding electrostatic

energy terms to the existing energy function Franklin2019 (F19) and evaluated its performance

based on five different tests calculating structure, stability, and design calculations. F23 has

three modifications relative to F19. First is the fast-to-compute Coulomb-based electrostatic

energy, including the low dielectric constant of the lipid bilayer. Second is the mean-field-

based electrostatic energy term capturing the effect of the lipid head group in the membrane

environment. Third is the modified value of DGaa
w;l for Asp and Glu residues at neutral pH. As a

result, F23 captures electrostatic and non-polar properties of diverse homogeneous lipid layers

of variable thickness, distinguishes between zwitterionic and anionic lipid head groups, and

identifies pores in MP structures.

Fig 12 summarizes the performance of F19 and F23 on the diverse benchmark test set. Rela-

tive to F19, F23 has improved the calculation of the tilt angle of membrane proteins for 90% of

WALP peptides of different lengths, 15% of TM-peptides, and 25% of the adsorbed peptides.

To calculate the tilt angles, we used a fixed backbone for the peptides. Experimental results

have shown that the peptide backbone is quite flexible; we hypothesize allowing backbone flex-

ibility will further improve the tilt angle calculation. F19 and F23 predicted stability equally

well in ΔΔGmutation and ΔΔGins. F19 identifies native protein-like residues better than F23.

Fig 12. Summary of F19 and F23 performance on MP benchmark tests. Darker boxes show better performances.

https://doi.org/10.1371/journal.pcbi.1011296.g012
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However, F23 significantly improved the confidence and accuracy of designing charged resi-

dues. For simplicity and lack of exact lipid types, we performed all design calculations in the

DLPC bilayer; this is a broadly simplifying assumption that can be addressed by using the pro-

tein-matched membrane types.

The results of the benchmark tests show that, relative to F19, F23 has improved the ability

of implicit membrane models to capture more relevant features of MPs. However, F23 did not

improve predictions of stability and design performance as expected, possibly due to an

incomplete representation of the membrane environment in the model. There are now several

future steps that can be taken to improve the implicit models. Some potential steps are adding

the effect of pH to account for membrane-induced pKa shifts, [68, 69] using robust optimiza-

tion techniques to ameliorate double counting of physical effects due to use of empirical func-

tions, [70] adding mixed and asymmetric lipid layers, [71, 72] and adding deformation of the

lipid interface as it is perturbed by charged amino acids [73, 74]. F23 can serve as a good foun-

dation model for including pH or lipid mixtures, as it includes additional electrostatic features

and more characteristics of the lipid features. To capture the interface deformation or interac-

tion of lipids with the residues, we have to move beyond the slab-like rigid representation of

the membrane. Approaches such as those that include a defined curvature [75] or elastic bend-

ing constants of lipid membranes [76] along with other robust models can serve as foundation

models for this purpose. We hypothesize that adding the above-mentioned features will cap-

ture the characteristics of realistic membranes. Configurations generated by implicit models

can be used as an input or a filter for further investigations, including all-atom models to study

phenomena mediated by lipid and water interaction. With continued improvement in MP fea-

ture representation, we anticipate that the implicit membrane model will enable reliable, high-

throughput, and high-resolution MP structure prediction and design.

Supporting information

S1 Text. Implicit model to capture electrostatic features of membrane environment. Fig A.

WALP35 peptide at the center of the lipid membrane. (a) The total energy by F23 and DGaa
w;l

using F19 and F23 calculated as a function of tilt angles. (b) The net energy components due to

the presence of the lipid membrane as a function of tilt angle calculated using F19(including

ΔGw,l), F23 (including DGaa
w;l,DG

aa
lipid and M12 (including hydrophobicity, solvation, and knowl-

edge terms). WALP39 peptide in the lipid membrane. (c) The per-residue DGaa
w;l calculated

using F23 and F19 for WALP39 at a depth = 10Å, tilt-angle = 90˚ and azimuthal-angle = 0˚.

(d) The total energy by F23 and DGaa
w;l using F19 and F23 for WALP39 calculated as a function

of tilt angles. (e) The net energy components due to the presence of the lipid membrane at

depth = 0Å and as a function of tilt angle calculated using F19, F23 and M12. The arrows show

the corresponding axes for the plot. The ones for which arrows are not shown have values rep-

resented in the other direction. Fig B. Comparing the energy landscape for WALP25 and

WALP35 by M12 at the center of the lipid membrane. The M12 total energy and other mem-

brane-based energy terms were calculated for WALP25 and WALP35 peptides as a function of

tilt angle at a depth = 0Å and minimized over rotation angle. The different score terms are as

follows: (a) The total energy due to the membrane environment includes hydrophobicity, sol-

vation, and knowledge terms. (b) the knowledge term is a statistical measure of the propensity

of a residue to be at a particular membrane depth. (c) hydrophobicity energy and (d) solvation

energy. Fig C. Energy landscape of influenza A M2 peptide (pdb: 1mp6). (a) Comparing the

native tilt angle (gray) with that calculated by F19 (blue) and F23(magenta and light pink). The

Asp and c-term Leu for which the DGaa
w;l is modified by F23 are shown in sticks. The total

energy landscape of 1mp6 is shown as calculated by (b) F19 and (c) F23 as a function of depth
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in the membrane and tilt angle. The energy at each tilt angle is minimized over all azimuthal

angles. (d) The per residue DGaa
w;l of 1mp6 calculated using F19 and F23 at membrane depth

d = 10Å, tilt-angle = 0˚ and azimuthal-angle = 0˚. The trend of (e) total energy, (f) DGaa
w;l, and

(g) DGaa
lipid as a function of tilt angles as calculated by F19 at membrane depth d = 5Å and F23

at membrane depths d = 5 and 9Å. Fig D. Energy landscape of magainin-cecropin hybrid

peptide (pdb: 1f0d). (a) Comparing the native tilt angle (gray) with that calculated by F19

(blue) and F23(magenta). The total energy landscape of 1f0d is shown as calculated by (b) F19

and (c) F23 as a function of depth in the membrane and tilt angle. The energy at each tilt angle

is minimized over all azimuthal angles. The trend of (d) total energy, (e) DGaa
w;l, and (f) DGaa

lipid

as a function of membrane depth as calculated by F19 and F23 minimized over all tilt-angle

and azimuthal-angle. Fig E. Test1:Orientation of WALP in different lipid layers. Predicted

tilt angle of WALP peptides as a function of the number of residues. The WALP peptides are

represented as WALPx, where x is the number of residues. The different markers indicate tilt

angles calculated using F23 and different lipid types. The experimental tilt angles are measured

in the DMPC lipid types. Filled markers present peptides for which experimental results are

available, and those for which simulated data is available are shown by unfilled markers. Fig F.

Test6: Variation in the Rosetta designs for a given PDB backbone. (a) Comparing the

sequence recovery for a PDB backbone. The bar shows the mean and the error bar shows the

variation in the sequence recovery of 50 Rosetta designs for a given PDB. (b) Comparing the

total Rosetta score (REU) for a PDB backbone. The bar shows the mean and the error bar

shows the variation in the total score of 50 Rosetta designs for a given PDB. Table A. Electro-

static potential parameters fit from all-atom molecular dynamics data. Table B. Equation to

calculate the DGatom
w;l transfer energy. Table C. Lipid composition parameters for α-helical pep-

tide tilt-angle calculations.
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