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Abstract: Digital Holographic Microscopy (DHM) is a 3D imaging technology widely applied
in biology, microelectronics, and medical research. However, the noise generated during the 3D
imaging process can affect the accuracy of medical diagnoses. To solve this problem, we proposed
several frequency domain filtering algorithms. However, the filtering algorithms we proposed have
a limitation in that they can only be applied when the distance between the direct current (DC)
spectrum and sidebands are sufficiently far. To address these limitations, among the proposed
filtering algorithms, the HiVA algorithm and deep learning algorithm, which effectively filter by
distinguishing between noise and detailed information of the object, are used to enable filtering
regardless of the distance between the DC spectrum and sidebands. In this paper, a combination
of deep learning technology and traditional image processing methods is proposed, aiming to
reduce noise in 3D profile imaging using the Improved Denoising Diffusion Probabilistic Models
(IDDPM) algorithm.

Keywords: Digital Holographic Microscopy (DHM); Improved Denoising Diffusion Probabilistic
Models (IDDPM); noise filtering

1. Introduction

The development of three-dimensional (3D) imaging technology began with the
need for the in-depth observation of complex object shapes and structures. Early 3D
imaging relied on physical sectioning and mechanical measurements. These methods were
not only time-consuming and labor-intensive, but they also often caused damage to the
samples. As technology advanced, non-invasive 3D imaging methods began to emerge,
such as computed tomography (CT) and magnetic resonance imaging (MRI) [1–5]. While
these methods can provide 3D views of the internal structures of living bodies, they are
somewhat limited in terms of resolution and real-time imaging capabilities. The emergence
of digital holography (DH) technology has brought revolutionary changes to the field of
3D imaging [1]. Based on the principle of holography, it utilizes lasers or other coherent
light sources to record the interference patterns of light reflected or transmitted by an
object. The significant advantage of this technology is that it not only records the intensity
information of the object but also accurately captures phase information, which is crucial
for reconstructing the object’s complete 3D information [6].

Digital holographic microscopy (DHM) is the application of DH in the field of mi-
croscopy. Unlike traditional microscopes, DHM offers the capability of 3D imaging without
the need for physical sectioning [7–18]. It achieves rapid and non-destructive 3D reconstruc-
tion of samples through the image processing of holograms. This technology is particularly
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well-suited for fields such as biomedical research [7], materials science [8], and microelec-
tronics [9]. It enables the observation of details in the microscopic world, including living
cells, micro-nano structures, and material surfaces [10]. A key advantage of DHM is its
ability to capture complete 3D data in a single exposure. This significantly enhances imag-
ing efficiency and real-time performance. Additionally, DHM allows for post-processing
techniques like image enhancement, denoising, and resolution improvement [12–14], which
further enhance image quality and analytical precision [1].

Obtaining thickness information from a sample using DHM introduces noise from the
frequency domain direct current (DC) spectrum and phase errors. Applying wide-window
sidebands includes the high spatial frequency components of the sample, but worsens the
phase error. Using a narrow window reduces the phase error at the cost of losing high spatial
frequency components of the sample. Additionally, alterations in DHM interferometry
affect the positions of sidebands, consequently modifying the distance between the DC
spectrum and the sidebands [12–14]. This situation presents a trade-off between the size of
the windowed sideband and the extent of phase error. Traditional filtering methods such
as Gaussian and median filtering can reduce this noise [12]. However, traditional filtering
algorithms use the height information of pixels surrounding the target pixel. To solve this
problem, many researchers have been studied the filtering method of DHM using spatial
filtering [19,20], spiral phase filter [21], deep learning techniques [22], etc.

To solve this trade-off, we proposed a high variance pixel average (HiVA) algo-
rithm [13], which outperforms traditional methods in denoising effectiveness. However,
this algorithm relies on the windowing of the sidebands and imposes specific requirements
on the distance between the sidebands and the DC spectrum, limiting its applicability to
holographic images in certain contexts. In this paper, we introduce a novel approach that
integrates deep learning algorithms with the HiVA filtering algorithm, aiming to broaden
the scope of denoising while preserving its denoising efficacy. Our proposed method
utilizes the Improved Denoising Diffusion Probabilistic Models (IDDPM) deep learning
algorithm to overcome the noise from the DC spectrum [23,24]. The method proposed in
this paper is proceeded with the following steps. First, we obtain 3D profiles from the
acquired hologram images. At this time, the interference pattern of the acquired hologram
images should be narrowed and adjusted so that the HiVA algorithm can be applied. Next,
the other 3D profiles are obtained from the same hologram image using the HiVA algorithm
and a training dataset is created. This training dataset is trained on the IDDPM algorithm.
Finally, we adjust the experimental setup to obtain hologram image with wide interference
patterns and apply it to the IDDPM algorithm to check the filtering results. In addition,
we also presents the results of relevant experiments and assessments of image quality in
this paper.

This paper is organized as follows. In Section 2, we describe the principles of DHM,
and the algorithm of the IDDPM and HiVA. Then, image processing and the experimental
setup are described in Section 3. To verify our proposed method, we show the experimental
results with a discussion in Section 4. Finally, we conclude with a summary in Section 5.

2. Theory
2.1. Principle of Digital Holographic Microscopy (DHM)

When a hologram undergoes Fourier transformation, the interference fringes are
converted into their frequency spectrum. Interference fringes typically exhibit periodic
variations, manifesting as sinusoidal waves in the frequency domain. Furthermore, the
Fourier transform solution for the sine function consists of two symmetric delta functions.
This can be expressed mathematically as [25]

F{sin(k0x)} = π[δ(k + k0)− δ(k − k0)] (1)

where F{} is the Fourier transform operator. The resulting two peaks obtained are called
sidebands. Besides, in the recorded hologram, an object wave O(x, y) and reference wave
R(x, y) with complex amplitudes can be represented as [15]



Sensors 2024, 24, 1950 3 of 15

O(x, y) = Ao(x, y)e−jϕo(x,y), (2)

R(x, y) = Ar(x, y)e−jϕr(x,y), (3)

where Ao(x, y), Ar(x, y), and ϕo, ϕr are the amplitude and phase of the object and reference
waves, respectively. On the image sensor, the object wave and the reference wave are
coherently superimposed to form a recorded hologram Iholo(x, y). This is expressed as
Iholo(x, y) = |R(x, y) + O(x, y)|2. This can be expanded as [15]

Iholo(x, y) = |R(x, y)|2 + |O(x, y)|2 + R∗Oejϕ + RO∗e−jϕ (4)

where ∗ represents the complex conjugate, and ϕ is the phase information of the recorded
hologram image. Furthermore, the |R(x, y)|2 + |O(x, y)|2 term is the DC spectrum, and the
R∗Oejϕ + RO∗e−jϕ term represents the positive and negative sidebands of the Fourier do-
main, respectively. Here, when an object is located in the object wave path of the recorded
hologram image, it is called an object image, and when there is no object, it is called a
reference image. The phase information of the recorded hologram is obtained from the side-
bands. Typically, the extraction of phase information is achieved by applying windowing
followed by an inverse Fourier transform, as expressed by Equation (4). Therefore, phase
difference information can be obtained from the difference in phase information between
the reference image and object image, and can be expressed as follows:

∆ϕ(x, y) = ϕO(x, y)− ϕR(x, y) (5)

where ϕO(x, y) and ϕR(x, y) are the phase information of the object and reference image,
respectively, and ∆ is the difference symbol. Therefore, ∆ϕ is the phase difference between
the phase information of the object image and reference image.

By using this phase difference, the height information of the specimen can be obtained,
making 3D reconstruction possible. The height information of the specimen, denoted as h,
can be derived as the following [12–14]

h(x, y) =
∆ϕ(x, y)

K∆n
(6)

where K is the wavenumber, ∆n is the constant refractive index difference between the
object and the surrounding medium.

A wavefront (object image) deformed by variations in the refractive index is captured
by the image sensor as shown in Figure 1. By comparing it with the wavefront that has not
been deformed (reference image), the 3D information of the object can be obtained [12–14].
The 3D information of the hologram is further refined by applying the magnification data
of the objective lens for the micro-object to the acquired height information.

Figure 1. Wavefront scattering in the specimen. (a) the wavefront of the reference image and (b) the
wavefront of the object image, where na: refractive index of air, nM: refractive index of the surrounding
medium, nS: refractive index of the object.
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2.2. Image Processing of DHM

Figure 2 depicts a cell object image recorded by using a Mach–Zehnder interferometer
alongside a reference image without a sample. The target sample intended for imaging is
cropped at the same position in both images, followed by Fourier transform to obtain the
frequency domain image as shown in Figure 3a.

Figure 2. Acquired object and reference holograms of the red blood cells (RBCs).

Figure 3. Fourier shift process of DHM. (a) Fourier domain of the recorded hologram and (b) the
windowed sideband from (a), where H: horizontal resolution, V: vertical resolution.

The phase information of the hologram is obtained by the inverse Fourier transform
of the windowed sidebands. However, as the size of the windowed sidebands is reduced,
the resolution of the obtained phase information image also decreases. This is because
the resolution of the windowed sidebands is directly proportional to the resolution of the
phase information image after inverse Fourier transform as shown in Figure 3. In order
to avoid phase errors affected by the distribution of the DC spectrum and the position
of the sidebands, the size of the windowed sidebands must be minimized. This scenario
raises the issue that the resolution of the resulting phase information image is too small. To
address this, a zero matrix with the same resolution as the original hologram is needed as
shown in Figure 3b. Then, by placing the windowed sidebands at the center of this matrix
and performing an inverse Fourier transform, phase information with the same resolution
as the original hologram is obtained. This image processing technique is called as zero
padding or Fourier shift [12].

Inverse Fourier transform is performed on the windowed sideband. This step re-
verts the hologram from the frequency domain back to the spatial domain, but now it
encompasses more refined phase information. The result of inverse Fourier transform is
a complex image, with its real and imaginary spectrum representing the amplitude and
phase information of the sample, respectively. By extracting the imaginary part of the
image post inverse Fourier transform, the phase information map of the sample can be
obtained. This phase information map reveals the sample’s 3D morphology and variations
in optical thickness as shown in Figure 4.
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Figure 4. Phase information of (a) the reference image and (b) the object image after inverse
Fourier transform.

Finally, the phase difference between the object image and the reference image can be
calculated as depicted in the Figure 5.

Figure 5. Phase difference.

As shown in Figure 5, phase wrapping is observed. This occurs because phase values
are typically derived by calculating the arctangent, limiting phase range to −π to π.
When the phase shifts beyond this range, it wraps back into this interval, leading to a
loss of information. In numerous practical applications, particularly when the accurate
measurement of an object’s height profile is required, the absolute value of the phase is
essential. Consequently, a method to unwrap these phase values is necessary. In this paper,
we used a Goldstein phase unwrapping algorithm [26] to obtain the phase information
of the object. After phase unwrapping, the 3D profile of the sample can be obtained as
shown in Figure 6. However, the 3D profile in Figure 6 contains noise, which may interfere
with diagnosing the disease. From the next subsection, we describes algorithms for solving
this problem.

Figure 6. 3D profile of the red blood cell.
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2.3. Improved Denoising Diffusion Probabilistic Models (IDDPM)

IDDPM is a generative model used for data denoising and generation. The denoising
nature of the model relies on a probabilistic framework that combines diffusion and denois-
ing processes. Its core idea is to gradually transform the data from their original distribution
into a simple and known distribution (usually a Gaussian distribution) through a random
diffusion process, and then reconstruct the original data through a reverse diffusion process,
as shown in Figure 7 [23,24].

Figure 7. Concept of the Diffusion Model.

The diffusion process, which elucidates the stepwise transformation of data from its
original distribution to a Gaussian noise distribution, typically incorporates conditional
probability distributions. Given a data distribution x0 ∼ q(x0), we define a forward noise
process q that adds Gaussian noise at time t with variance βt ∈ (0, 1) to generate potential
x1 through xT as follows:

q(x1, ..., xT |x0) =
T

∏
t=1

q(xt|xt−1) (7)

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βt I) (8)

Given sufficiently large T and a suitable schedule of betat, the potential xT is nearly an
isotropic Gaussian distribution. Therefore, if we know the exact inverse distribution (about
the inverse process of reconstructing the original data from noisy data) q(xt−1|xt), we can
sample xT ∼ N (0, I) and run the process in reverse to take a sample from q(x0). However,
since q(xt−1|xt) depends on the distribution over the data, the neural network used is
approximately as follows:

pθ(xt−1|xt) = N (xt−1; µθ(xt), Σθ(xt)) (9)

The combination of q and p is a variational autoencoder [23], which is the original noise
formula, and the variational lower bound (VLB) can be expressed as follows:

Lvb = L0 + L1 + . . . + LT−1 + LT (10)

L0 = − log pθ(x0|x1) (11)

LT−1 = DKL(q(zT−1|xT−1, x0)||pθ(zT−1|xT)) (12)

LT = DKL(q(zT |x0)||p(zT)) (13)

Except for L0, each term in Equation (10) is the KL (Kullback–Leibler) divergence
between two Gaussian distributions, so it can thus be evaluated in closed form, used to
measure the model performance. As pointed out in [23], the noise processing defined in
Equation (8) allows us to sample an arbitrary step of the noised patients directly conditioned
on the input x0. With αt := 1 − βt and , we can drive the marginal distribution as follow:

q(xt|x0) = N (xt;
√

ᾱtx0, (1 − ᾱt)I) (14)
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Here, 1 − ᾱt indicates us the variance of the noise for an arbitrary time step. This can be
used equivalently to define a noise schedule instead of βt. The network can predict x0,
and this output can then be fed through Equation (10) to produce µθ(xt, t). The network
can also predict the noise ϵ added to x0, and this noise can be used to predict x0 in the
following way:

x0 =
1√
αt

(
xt −

βt√
1 − αt

ϵ

)
(15)

Ho et al. (2020) [23] found that ϵ prediction performs best, especially when combined
with a reweighted loss function:

Lsimple = Ex0,ϵ

[
∥ϵ − ϵθ(x0, t)∥2

]
(16)

In conclusion, within this model, the predictor of x0 noise is the reconstruction loss.
This loss function evaluates the model’s performance in the denoising procedure, specifi-
cally its ability to reconstruct the original data from noisy data. This loss function is defined
as the difference between the reconstructed image and the original image, utilizing the
mean square error (MSE). To ensure that the model’s stochastic generation process can
produce reasonable noise, the KL divergence loss function is incorporated. Consequently,
the loss functions employed in this model consist of LKL + LMSE.

2.4. High-Variance Pixel Averaging (HiVA)

In the context of 3D imaging performed by DHM, during the reconstruction of the 3D
phase information of the sample, a trade-off arises. When a narrow area of the sideband is
windowed in the frequency domain, it leads to a reduction in the phase error of the DC
spectrum but results in the loss of high spatial frequency portions. This leads to the loss of
high-frequency details in the sample. If a wide area is windowed, the 3D profile includes
high spatial frequency components, but at the expense of increased phase error. To address
this challenge, the HiVA method was devised. This approach leverages the variance map
of the reconstructed depth profile in the frequency domain, utilizing window sidebands of
varying sizes to distinguish between phase errors and high spatial frequency components.
This methodology enables the retrieval of high-frequency detailed information from the
sample while simultaneously mitigating noise stemming from phase errors. The following
provides a description of the HiVA principle [13].

The HiVA approach involves segmenting the 2D spatial frequency domain of both
the reference image and object image, transitioning from a narrower region to a wider
region at regular intervals. A variance map is generated using phase reconstruction. The
average of high-variance pixels is computed. This is because high-variance pixels contain
noise originating from the DC spectrum. In addition, for the nonaveraged pixels, the
reconstructed phase data generated by the spatial frequency components of the widest
window is used. The HiVA formulation is expressed as follows [13]:

S(x, y) =
1

Nd
×

Nd

∑
i=1

∆ϕi(x, y)
K × ∆n

(17)

V(x, y) =
1

Nd
×

Nd

∑
i=1

(
∆ϕi(x, y)
K × ∆n

− S(x, y)
)2

(18)

hHiVA(x, y) =


∆ϕNd

(x,y)
K×∆n V(x, y) < mV ,

1
Nd

× ∑Nd
i=1

∆ϕi(x,y)
K×∆n V(x, y) ≥ mV ,

(19)

where S and V are the mean and variance, respectively. Moreover, hHiVA(x, y) is the height
information of the specimen, mV is the average of the variance, Nd is the number of phase
reconstruction data for windowed sidebands of different sizes. The average of the variance
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mV is used as the threshold to segment the high-variance pixels and the other pixels in
Equation (19).

hHiVA(x, y) =


∆ϕNd

(x,y)
K×∆n logV(x, y) < mLV ,

1
Nd

× ∑Nd
i=1

∆ϕi(x,y)
K×∆n logV(x, y) ≥ mLV ,

(20)

However, due to the substantial disparity between the maximum value and other
values in the variance plot, conventional thresholding methods cannot be applied for
segmentation. A new threshold for segmentation is established based on the mean of the
logarithmic variance (mLV), as depicted in the Equation (20). Pixels below this threshold
are substituted with zeros to eliminate noise.

2.5. Problem of the HiVA and the Proposed Method

HiVA windows the spatial frequency domain from the narrow region to the wide one
at regular intervals and then creates a variance map using phase reconstruction. Therefore,
HiVA can be used for filtering and denoising only when there is sufficient distance between
the DC spectrum in the hologram and the sidebands on both sides, as illustrated below.

In Figure 8a, it is evident that the distance between the DC spectrum and the sideband
is sufficient to compute the HiVA variance diagram. Figure 8b lacks the necessary distance
to calculate the variance map. Hence, a proposition has been advanced to amalgamate
the deep learning IDDPM algorithm with HiVA. This integration aims to extend the
high-quality denoising capabilities of HiVA to the scenario illustrated in Figure 8b. The
conceptual diagram of our proposal is presented below.

Figure 8. Frequency domain that (a) can be filtered with HiVA (b) cannot be filtered with HiVA.

In Figure 9, we describe the model principles and the proposed methodology. The
noise data serves as the conditional input, while non-noise data (representing the target
data after denoising using HiVA) is utilized for loss function computation. This entails in-
corporating both noisy and clean data throughout the model training process. To elaborate,
during the model training phase, the noise data is employed as the model’s conditional
input. A noise image is generated, and a comparison is made between the generated noise
image and its corresponding non-noise counterpart to calculate the loss. This process
facilitates the model’s learning to effectively eliminate noise, thereby ensuring that the
generated image closely resembles the noise-free target image. The following section will
validate the proposed method and conduct an assessment of image quality.



Sensors 2024, 24, 1950 9 of 15

Figure 9. Concept of the proposed method. (a) The original 3D profile and (b) the filtered 3D profile
by HiVA algorithm.

3. Experimental Setup

Figure 10 illustrates the experimental setup for this section. The dataset used in the
model training process of this paper is a hologram image recorded using the experimental
setup shown in Figure 10. The modified Mach–Zehnder interferometer using two spherical
waves is utilized in this paper. We adjusted the spacing of the fringe pattern by changing
the angle of BS2 to distinguish between zero order and side orders in the Fourier domain
and to create an environment in which it is difficult to apply the HiVA algorithm. In
Figure 10, L represents the lens, P denotes the pinhole, M stands for the mirror, and OL and
BS correspond to the objective lens and the beam splitter, respectively. The setup includes a
Mach–Zehnder interferometer equipped with a spatial filter positioned in front of a laser. A
532 nm green semiconductor laser was utilized. The laser, after passing through the spatial
filter, traversed a collimating lens (L2) to produce a parallel wavefront. The final diameter
of the laser beam through L2 was 2 mm, with an output power of approximately 3 mW. The
two objective lenses employed in this setup were 40 × (0.65 NA) with a working distance
of 0.6 mm. Additionally, the exposure time was set to 35 µs. For the experiment, 10 µm
polystyrene microspheres (02706–AB, SPI Supplies, West Chester, PA, USA) were placed
and spread on a slideglass. To record the hologram, we use a CMOS sensor (acA2500–14uc,
Basler, Ahrensburg, Germany) with a pixel resolution of 2588(H) × 1940(V).

Figure 10. Experimental setup. (L : Lens, P: pinhole, M: mirror, BS: beam splitter, and OL: objective lens).



Sensors 2024, 24, 1950 10 of 15

In this experiment, an initial noisy dataset devoid of any filtering or denoising is
employed as the input. Noise images are generated through the utilization of a pretrained
IDDPM model using PyTorch, and the loss function is computed during the generation
of these noise images. This process involves the incorporation of the target image, which
represents a clean 3D profile denoised using HiVA. The objective is to fine-tune the model,
facilitating its acquisition of the correct data reconstruction and denoising procedures.

Following the Table 1, the 3D profile, which has not undergone filtering or denoising, is
utilized as input, and the 3D profile is generated using the frequency domain representation
as depicted in Figure 8b. During the dataset creation process, adjustments are made to
the spacing of interference fringes to regulate the distance from the DC spectrum to the
sideband. In the generation of a 3D profile, varying sideband window sizes are also adapted
to acquire diverse types of noise and profile images featuring different frequency domain
information. Additionally, image rotation is applied as part of the preprocessing techniques.
These methods collectively aim to enhance the diversity of the training data and serve as
data augmentation measures, effectively guarding against overfitting.

Table 1. Training information.

Hyperparameter Value

Number of image 2000
Image resolution 875 (H) × 656 (V)

Optimizer Adam
Number of iterations 80,000
Number of batch size 8

GPU RTX 3090 12 GB

4. Experimental Result

Figure 11 presented below provides a comparison of denoising outcomes achieved
through three different methods: without filtering, employing HiVA filtering, and utilizing
the conventional Gaussian filtering approach. The reason why Gaussian filtering was
selected as the comparison target is that the efficiency of Gaussian filtering was the highest
in the results when the 3D profile of DHM was filtered using Gaussian, Wiener, average,
median, and bilateral filters in [12]. Moreover, in [12,13], it can be seen that the HiVA
algorithm shows higher filtering efficiency than Gaussian filtering. It does not seem to be
much difference in the filtering results shown in Figure 11b,c. However, we can recognize
that HiVA result removes noise better in the background of the enlarged part. As evident
from Figure 11b,c, it is discernible that HiVA algorithm yields superior denoising outcomes
compared to Gaussian filtering. The higher the Sigma value of Gaussian filtering, the
higher the filtering effect will be, but since high frequency information is lost, a similar
Sigma value was applied. For the training phase, the HiVA-filtered image in Figure 11c is
utilized. However, during testing, images that cannot be effectively filtered by HiVA are
employed, as exemplified in Figure 8b.

The training results are depicted in the Figure 12 presented below. As observed in
the magnified section of the Figure 12c, the proposed method effectively mitigates noise.
Furthermore, within the circled area, it becomes evident that the filtering result achieved
by the proposed method as shown in Figure 12c outperforms Gaussian filtering in terms of
denoising efficacy while preserving the original profile information of the sample.

Table 2 represent numerical results for the unfiltered image, the Gaussian-filtered
image, and the image by our proposed method, respectively. These results are compared
to the ideal microsphere image created which height and width are equal to the height of
the microsphere [14], and the results of quality assessment in terms of peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) are presented [27,28]. Figures 13 and 14
show the graph schematizing Table 2. In Figures 13 and 14, each horizontal line shows the
average value of each evaluation value. It is evident that the proposed method surpasses



Sensors 2024, 24, 1950 11 of 15

the conventional Gaussian filter algorithm and exhibits a closer resemblance to the ideal
microsphere image.

Figure 11. Comparison of filtering results. (a) Unfiltered image, (b) Gaussian filtering (σ = 2), and
(c) HiVA filtering.

Table 2. Numerical comparison by calculating SSIM and PSNR.

SSIM PSNR

Data
Number Unfiltered Gaussian

Filter
Proposed
Method Unfiltered Gaussian

Filter
Proposed
Method

1 0.7144 0.7301 0.7429 8.844 8.923 9.556
2 0.7258 0.7306 0.7345 8.626 8.827 8.856
3 0.7194 0.7269 0.7375 8.677 8.941 8.996
4 0.7188 0.7233 0.7341 9.181 9.369 9.408
5 0.7196 0.7243 0.7368 8.587 9.113 9.314
6 0.7264 0.7298 0.7368 8.202 8.804 8.927
7 0.8186 0.8232 0.8349 8.945 9.135 9.265
8 0.7749 0.7986 0.8241 9.235 9.352 9.399
9 0.7956 0.8199 0.8254 8.658 8.843 9.026

10 0.7750 0.7964 0.8197 8.653 8.921 9.190
11 0.8011 0.8254 0.8346 9.053 9.124 9.265
12 0.7988 0.8027 0.8146 8.657 8.862 9.035
13 0.7747 0.7835 0.7899 8.674 9.024 9.352
14 0.8334 0.8372 0.8456 8.399 8.923 9.068
15 0.7684 0.7797 0.7854 9.156 9.284 9.305
16 0.7328 0.7597 0.7863 8.355 8.659 8.953
17 0.7155 0.7358 0.7446 8.851 9.025 9.278
18 0.7119 0.7255 0.7298 9.014 9.208 9.293
19 0.7615 0.7862 0.7913 8.676 8.933 9.019
20 0.8143 0.8220 0.8301 8.443 8.952 9.108

Average 0.7600 0.7730 0.7839 8.744 9.011 9.181
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Figure 12. Reconstructed microsphere 3D profile of (a) the unfiltered image, (b) images filtered with
the Gaussian method and (c) images filtered with the proposed method.

Figure 13. Peak signal-to-noise ratio (PSNR) value of the reconstructed 3D profiles of the unfiltered
image, the Gaussian-filtered image, and the image filtered by our proposed method.
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Figure 14. Structural similarity (SSIM) value of the reconstructed 3D profiles of the unfiltered image,
the Gaussian-filtered image, and the image filtered by our proposed method.

5. Conclusions

In this paper, the 3D profile quality of DHM imaging has been improved using a deep
learning algorithm. The improvement involves the integration of the IDDPM algorithm
with the HiVA filtering algorithm. This integration expands the applicability of HiVA
filtering while retaining its denoising capabilities, surpassing traditional algorithms in
denoising effectiveness. To assess this approach, image quality evaluations have been
conducted using microspheres.

HiVA demonstrates superior denoising capabilities compared to traditional filtering
methods, but its applicability is limited. To overcome this limitation, the IDDPM denois-
ing algorithm has been introduced in conjunction with HiVA, extending the range of its
application while preserving HiVA’s denoising proficiency. Evaluations have been con-
ducted using microsphere samples that have been resistant to denoising with HiVA, and
the results have been assessed for quality. The proposed method yielded higher SSIM and
PSNR values compared to traditional filtering algorithms. As a result, we can say that
our proposed method can be used even when the sidebands are close to the DC spectrum.
This can contribute to improved precision in medical disease diagnosis. Furthermore, it
has been envisaged that holographic digital microscopes can find broader applications
across various fields, including biomedicine, materials science, microelectronics, and other
high-precision imaging domains.

In terms of future considerations, certain challenges need to be addressed. Due to the
intricacy involved in creating cell datasets, their utilization for training purposes is currently
unfeasible. The existing 3D profile denoised images lack comprehensive 3D observations
from all angles, necessitating the acquisition of more extensive and meticulous datasets
for training. Furthermore, the application of advanced image segmentation algorithms,
such as the segment anything model (SAM) [29], is imperative for processing a substantial
volume of cell datasets to obtain either 3D or 2D images. These challenges lie ahead in our
research endeavors.
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Abbreviations
The following abbreviations are used in this manuscript:

3D Three-dimensional
CT Computed tomography
DC Direct current
DH Digital holography
DHM Digital holographic microscopy
HiVA High-Variance Pixel Averaging
IDDPM Improved Denoising Diffusion Probabilistic Models
KL Kullback–Leibler
MSE Mean square error
MRI Magnetic resonance imaging
NA Numerical aperture
PSNR Peak signal-to-noise ratio
SAM Segment anything model
SSIM Structure similarity
VLB Variational lower bound
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