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ABSTRACT 
 

The precision of traditional methods for estimating crop yield is a major challenge, particularly for 
large areas. To improve this process, we developed a tomato detection and localization system 
using deep learning techniques. The system uses Faster-RCNN, a cutting edge technology of 
object detection model, to detect and localize tomatoes in images. We trained the model on a 
database of 150 images, which were normalized to 100*100 pixels in RGB. The system estimates 
the real sizes of tomatoes using the Ground Sampling Distance method and predicts their masses 
using a regression model. The model produces an average absolute error of 42.365% and a 
quadratic error of 51.044%. Our system provides a more efficient and accurate way to estimate 
tomato crop yields on a large scale. 
 

 

Keywords: Tomato; object detection; convolutional neural networks; deep learning; drone; 
agricultural yield; precision agriculture; ground sampling distance; regression model; 
faster-RCNN. 
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1. INTRODUCTION 
 
Precision yield predictions help farmers to 
improve the quality of their crops. In addition, it 
makes better decisions and, in consequence, 
reduces the cost of the operation regarding the 
intensity of the harvesting and the required labor. 
In general, estimation of crop yield is done using 
past data or workers manually count fruits at 
selected sampling locations in the field [1]. This 
method needs a lot of time and labor and 
sometimes, the chosen samples are not a good 
representation of the population, especially over 
a very large plot. A solution is to use a drone 
fitted with computer vision systems. It does not 
need to be remunerated and can tick off fruits in 
hundreds of frames per second and can assess 
a whole large area. 
 

1.1 State of the Art 
 
Remote sensing techniques have been utilized to 
estimate crop yield, as demonstrated by Johnson 
et al. in their work. They use MODIS NDVI 
products and land surface temperature products, 
along with rainfall data, to estimate the yield of 
corn and soybeans in 12 US states representing 
75% of US corn and soybean production. The 
data is collected 32 times for 8-day periods from 
February to the end of October from 2006 to 
2012. Johnson creates two datasets, one for 
corn and one for soybeans, and masks the pixels 
that do not belong to the fields. The pixel values 
are then averaged for all observations per count 
and per year. Pearson's product-moment 
correlation coefficient is used to understand the 
relationship between crop yield and remote 
sensing products. Results show a strong 
relationship between NDVI values and soybean 
yield during the summer months, and an inverse 
relationship in the spring, while rainfall showed 
no relationship to soybean yield. Johnson uses 
Decision Trees (DT) to predict feed yield and 
temperature data based on his findings and 
suggests that the method should be further 
investigated to check its applicability to other 
crops or regions [2]. Other methods are based on 
computer vision. There are two general 
categories of computer vision techniques used to 
estimate crop yields, namely area-based 
methods and count-based methods. While there 
is considerable literature on regional methods, 
count-based methods have not received as much 
attention. Wang et al. [3] developed an automatic 
stereoscopic camera in an apple orchard yield 
estimation system. To mitigate the impact of 
unpredictable natural lighting during the day, they 

acquired images at nighttime. Li et al. [3] have 
developed a system for detecting cotton in a field 
based on image segmentation data based on 
semantic regions. Lu et al. [3] developed color 
modeling by region for maize crops. In the 
literature, count-based techniques for estimating 
crop yield have received relatively little attention. 
Color images were utilized to estimate the count 
of apples obtained from orchards under natural 
light, resulting in an accuracy rate of over 85% 
[4]. However, this approach has drawbacks such 
as direct lighting and color saturation, which can 
lead to a significant number of false positives. 
Park et al. [5] developed a method to segment 
apple fruit from video using background 
modeling. Yunong et al. [6] have developed 
Multi-scale Dense YOLO for small target pest 
detection by incorporating DenseNet blocks and 
an adaptive attention module (AAM) into the 
feature extraction part to enhance the utilization 
of feature maps and mitigate information loss. 
Sharma et al. [7] have proposed a Faster RCNN 
based approach to pepper leaf blight disease 
detection and multi-classification. The study’s 
findings indicate that the faster RCNN model is a 
successful method for detecting and classifying 
PLBD in pepper leaves. 
 
Computer vision algorithms face various 
challenges for fruit counting for yield estimation: 
variance of illumination during image capture, 
occlusion by foliage and tree branches or crop, 
degree of overlap between fruits to count, 
counting tomatoes that are in shadow, scale 
difference when capturing image. Counting 
objects accurately in various applications is 
challenging due to various factors, such as 
occlusion, illumination changes, and variability in 
shape and size. The task becomes even more 
complex in scenarios involving tomatoes or other 
fruits. This challenge is common in real-world 
applications, including counting cells in 
microscopic images, estimating the flora and 
fauna population in forest aerial images, 
monitoring crowds in shaded areas, and more 
[3]. The method proposed by Kim et al. [3] 
detects and tracks moving people using a single 
fixed camera. Later, Lempitsky et al. [3] 
proposed a new supervised learning framework 
for counting visual objects. Convolutional neural 
networks have been utilized to extract features 
for various image analysis tasks, including but 
not limited to object recognition and semantic 
segmentation. These characteristics can also be 
regressed to count. This method makes it 
possible to explicitly estimate the number of 
tomatoes with a single glance at the entire 
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image. In this way, it reduces the overhead of 
detecting and locating objects. The main 
advantage of this work is that thousands of real 
images of tomatoes are not needed for training. 
The network has been trained in the use of 
synthetic images and tested on real images and 
works effectively. 
 
In this article we introduce a new tomato 
detection model on an image coupled with a 
mass estimation model. 
 
The rest of the document is organized as follows. 
In section 2, we present the materials and 
methods based on the notions of object detection 
using neural network techniques as well as the 
techniques for obtaining the sizes of an object on 
an image. In section 3 we presented the 
hardware and methods used in the 
implementation of our system. Finally in section 4 
we present the results obtained and the 
discussions then we will conclude in section 5. 
 

1.2 Conceptual Clarification 
 
In this section, we will successively present: 
agricultural yield in part II.1, object detection in 
part II.2, deep learning in part II.3, convolutional 
neural networks in part II.4, artificial neural 
networks in part II.5, convolutional neural 
networks in part II.6, transfer learning in part II.6, 
detection model architecture of objects in part II.7 
and finally the performance metrics in part II.8. 
 

1.3 Agricultural Yield 
 
Yield can be interpreted in various ways 
depending on the field in which it is used. Yield 
qualifies the proportion between the result 
obtained and the means used for this purpose. 
Thus, the term performance is expressed in a 
concrete and general way in the form of a ratio 
between the result obtained and the means 
provided for its effectiveness. In practice, this 
definition will be declined according to different 
formulations to correspond as closely and 
faithfully as possible to the real parameters of 
each activity. In agriculture, two aspects of yield 
can be identified: financial yield, which 
represents the producer's income after the 
difference between the selling price and the cost 
of production. This return is useful for managing 
producers' finances. On the other hand, the 
agricultural yield represents the quantity of 
product harvested on a given cultivated area. 
Also referred to as average yield. It is often 
expressed in tonnes per hectare for water-rich 

products (roots and tubers, fruits, etc.). It also 
refers to the number of plants per unit area (for 
leafy crops). It is this definition of performance 
that interests us. Depending on the culture being 
studied, one or the other is preferred. Yield is 
therefore a generalized concept, but its use 
depends on the interest one has in the 
information sought. When we take the example 
of a crop such as tomato, what interests the 
grower is the mass obtained on a given surface. 
Indeed, the price of the tomato is a function of 
the mass of the latter. On the other hand, for a 
leaf crop (such as lettuce for example) the 
number of plants is useful information, because 
the mass does not influence the price (which is a 
function of other parameters most often                   
defined by the course of the market). The                  
yield that interests us here is that of the            
proposal expressed in mass in relation to the 
area. 
 
Yield estimation using a sample plot is done by 
marking a small part of a field, harvesting it 
separately from the rest, and calculating what the 
harvest would have been on one hectare. If the 
area of the field has also been measured, then 
the total production of the field can be calculated. 
The investigator can stake the sample plots at 
any time during the agricultural season, provided 
that he has finished before the start of the 
harvest. However, when the plants haven’t yet 
reached the desired height, it is easier to plot the 
different plots, and the person in charge of the 
survey is less sensitive to the behavior of the 
crop when choosing the location of the plot. 
Sample plots must be clearly identified and their 
boundaries clearly marked. The investigator 
should regularly check that the stakes are still in 
place. The choice of the number and size of the 
sampling squares in a plot is decisive for the 
credibility of the yield estimate. The reliability of 
the estimate is all the greater as the plots are 
large. When deciding on the number of sample 
plots, account should be taken of the 
investigator’s workload and the diversity of the 
crop. If several sample plots are set up, their 
position can be determined in two ways, either 
arbitrarily (which is the easiest), or 
systematically, so that all the plots are evenly 
distributed on the ground. In reality, the surveyor 
can rarely place more than one or two sample 
plots in a field. To lay the yield squares there are 
three steps to follow: 
 

— locate the plot of the crop to be assessed; 
— determine the longest diagonal of the field. 

This can be done visually; 
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— identify the diagonals of the plot and the 
laying points. 

 
After this, it is necessary to lay 5 squares per 
diagonal avoiding borders for plots of one (1) 
hectare. For plots of less than one hectare, 2 to 3 
squares must be laid per diagonal with a 
minimum of 4 squares per plot. For each square: 
 

— count the number of plants or feet per 
square of yield laid; 

— harvest the products (fruits or tubers), 
count them and place them in a container 
(bag or sachet, bucket, etc.); 

— determine the weight of harvested 
products; 

— record the data collected on the yield 
square sheet. For staggered harvests, add 
up, on the same square, the data collected 
from each harvest. 

 
Qualitative approaches used by some countries 
are based on field information from specialists 
who, based on the agro-meteorological survey 
and taking into account the course of the 
campaign and the physiognomy of the crops and 
referring to the production and yields of previous 
years , issue an opinion that they are encrypted. 
They are also useful in determining losses 
caused by natural disasters. Other means relate 
to the prediction of yields and involve modeling 
using agro-meteorological, agronomic and 
remote sensing variables and indicators. The 
indicators generally used by these models relate 
to water balance, vegetation index, precipitation, 
temperature, agricultural inputs, etc. The 
indicators used in these models are water 
balance, vegetation index, precipitation, 
temperature, agricultural inputs, etc. 
 

1.4 Object Detection 
 
In computer vision, to fully understand an image, 
one must not only focus on classifying the 
different images, but also attempt to accurately 
estimate the concepts and locations of the 
objects contained in the image. This task is 
called object detection. 
 
Object detection is a computational technique 
related to computer vision and image processing 
that deals with the detection of instances of 
semantic objects of a certain class (such as 
human beings, buildings or cars) in digital 
images and videos. Object detection is able to 

provide valuable information for the semantic 
understanding of images and videos, and is 
related to many applications, such as image 
classification, human behavior analysis, facial 
recognition, autonomous driving, etc. 
 
The definition of the object detection problem is 
to determine where objects are located in a given 
image (object localization) and to which category 
each object belongs (object classification). 
Generally, the pipeline of traditional object 
detection models can be divided into three 
stages: 

 
1. Informative region selection: As different 

objects may appear in all positions of the 
image and have different aspect ratios or 
sizes, it is natural to scan the entire image 
using a multi-scale sliding window. 

2. Feature extraction: To recognize different 
objects, we need to extract visual features 
that can provide robust semantics and 
representation. SIFT [8], HOG [9] and 
Haar-like [10] are some of these 
representative features. This is because 
these features can produce 
representations associated with complex 
cells in the human brain [8]. However, due 
to the variety of appearances, lighting 
conditions and backgrounds, it is difficult to 
manually design a robust feature 
descriptor that can perfectly describe all 
kinds of objects. 

3. Classification: Additionally, a classifier is 
needed to distinguish a target object from 
all other categories and to make the 
representations more hierarchical, 
semantic, and informative for visual 
recognition. Usually, Supported Vector 
Machine (SVM), AdaBoost and 
Deformable Parts Model (DPM) are good 
choices [11]. 

 
Thanks to the emergence of the Deep Neural 
Network (DNN), a more significant gain is 
obtained with the introduction of the Regions 
endowed with the characteristics. DNNs have the 
ability to learn more complex features than 
shallow networks. Moreover, the robust learning 
algorithms allow us to learn the informative 
representations of objects without the need to 
characterize them manually. Since the proposal 
of the R-CNN, a lot of progress in improving 
models have been suggested such as the Fast 
R-CNN which jointly optimizes the bounding box 
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Fig. 1. Illustrations of some objects detections [11] 
 

classification and regression tasks, Faster R-
CNN which takes a sub -additional network to 
generate region proposals and YOLO which 
performs object detection via fixed-grid 
regression. All provide different degrees of 
improvement in detection performance over 
primary R-CNN and make real-time and accurate 
detection of smaller objects. We will present in 
the following the concepts that support the basis 
of object detection. 

 

1.5 Deep Learning 
 

Deep Learning is a special type of Machine 
Learning that achieves tremendous power and 
flexibility by learning to represent the world as a 
nested hierarchy of concepts or abstractions. 
Deep Learning is inspired by the functionalities of 
our brain cells, most often with the models of 
artificial neural networks. This model takes data 
connections between all the artificial neurons and 
adjusts them according to the data model. If the 
data size is large, the greater the number of 
neurons needed. It automatically incorporates 
learning at multiple levels of abstraction, thus 
allowing a system to learn the mapping of 
complex functions without depending on any 
specific algorithm. Deep learning techniques are 
a class of machine learning algorithms that: 
 

● use various layers of non-linear processing 
units for the extraction and the 
transformation of features. Each layer uses 
the output of the preceding layer as input 
(exception for the first layer). The 
algorithms can be supervised or 
unsupervised, and their applications 
include shape matching and statistical 
clustering; 

● Learning occurs at multiple levels of data 
detail or data representation; through the 
various layers, we move from low-level to 

higher-level metrics, corresponding to 
different levels of data abstraction. 

 

1.6 Artificial Neural Networks 
 
Neural networks are a family of Machine 
Learning models inspired by neuroscience 
research. They attempt to do the same thing as 
any other models, but with higher performance. 
Neural networks are multi-layer networks               
that are used to make prediction, to classify 
objects, etc. 
 

Fig. 2. shows a simple neural network with five 
entries, five exits and two concealed layers of 
neurons. From right to left we have: 
 

● the model's input layer in orange. 
● the first hidden layer of neurons in blue. 
● the second hidden layer of neurons in 

brown. 
● the output layer (prediction layer) of the 

model in green. 
 

The connecting arrows show the way all neurons 
are interlinked and the way the data flows from 
the entry layer to the exit layer. As can be seen, 
the fundamental unit of an artificial neural 
network is a node (neuron). These are 
mathematical models inspired by biology. The 
idea from the start was to model the functioning 
of a biological neuron. 

 
1.7 Convolutional Neural Networks 

(CNNs) 
 
Nowadays, the convolutional neural network 
(CNN) is the most representative model of deep 
learning. It is inspired by the functioning of the 
human visual cortex system. Convolutive neural 
networks have a similar approach to traditional 
supervised learning methods: they receive input 
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Fig. 2. Neural network with two hidden layers [12] 
 
images, detect the features (characteristics) of 
each of them, and then train a classifier on them. 
The features are learnt systematically. CNNs 
carry out the time-consuming task of extracting 
and describing the features themselves: during 
the training phase, the classification error is 
minimized in order to optimize the classifier 
settings and the features. Furthermore, the 
specific network architecture enables the 
retrieval of different complexity features, from the 
most simple to the most advanced ones. 
However, unlike supervised learning techniques, 
convolutional neural networks learn the features 
of each image. 
 
CNNs represent a sub-category of neural 
networks: they therefore have all the 
characteristics. However, CNNs are particularly 
suitable for image processing. Their configuration 
is then more specific: it is composed of two main 
blocks: the feature extractor and the classifier 
[13]. 
 
As with ordinary neural networks, the layer 
parameters are determined by gradient 
backpropagation. In CNN, these parameters 
designate in particular the characteristics of the 
images. CNNs are generally composed of 4 
layers (which can be repeated): 
 

● The Convolutional Layer (CONV): It is an 
important component of convolutional 
neural networks and is usually the first 
layer. Its main function is to identify a set of 
features in the input images. This is 
accomplished through convolution 

filtration, where a window representing the 
feature is dragged over the image, and the 
convoluted product is calculated from the 
feature to each part of the scanned image. 
The filters are acting as characteristics that 
we want to detect in the images, and the 
convolution layer gets several images as 
input and computes the convolution of 
each with each filter. For each pair (image, 
filter), an activation map or feature map is 
produced, which shows where the features 
are in the image. The larger the value of 
the map, the more similar the 
corresponding location in the picture is to 
the characteristic. 

● the pooling layer (POOL): This type of 
layer is often placed between two 
convolution layers: it receives several 
feature maps as input, and applies the 
pooling operation to each of them.  

● The pooling operation is employed to 
shrink the size of the images while 
retaining their significant properties. The 
process involves dividing the image into 
uniform cells and preserving the maximum 
value in each cell. In practical applications, 
small square cells are used to minimize 
information loss. Common options include 
non-overlapping adjacent cells measuring 
2x2 pixels or cells of size 3x3 pixels with a 
2-pixel separation. The output contains the 
same number of feature maps as the input, 
but in a much smaller size. This layer helps 
reduce the number of parameters and 
computations in the network, thus 
enhancing efficiency and preventing 
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overfitting. The feature maps produced 
after pooling are less precise compared to 
the input, which is an advantage since 
precise feature localization is not always 
necessary in image recognition tasks. 
Therefore, the pooling layer makes the 
network less sensitive to the position or 
orientation of features, and slight variations 
should not result in significant changes in 
image classification. 

● the ReLU correction layer: ReLU (Rectified 
Linear Units) designates the nonlinear real 
function defined by ReLU(x) = max(0, x). 
 

The ReLU correction layer therefore replaces all 
the negative values received as inputs with 
zeros. It acts as an activation function. 
 

● The fully-connected layer (FC): The fully-
connected layer always constitutes the last 
layer of a neural network, convolutional or 
not; it is therefore not characteristic of a 
CNN. This type of layer receives a vector 
as input and produces a new vector as 
output. To do this, it applies a linear 
combination and then possibly an 
activation function to the values received 
as input. The last fully-connected layer is 
used to classify the input image of the 
network: it returns a vector of size N, 
where N is the number of classes in our 
image classification problem. Each 
element of the vector indicates the 
probability for the input image to belong to 
a class. For example, if the problem 

consists in distinguishing cats from dogs, 
the final vector will be of size 2: the first 
element (respectively, the second) gives 
the probability of belonging to the class 
"cat" (respectively "dog"). Thus, the vector 
[0.9, 0.1] means that the image has a 90% 
chance of representing a cat. Every entry 
array value "votes" in favor of a class. The 
votes do not all have the same weight: the 
layer gives them weights that are 
dependent on the array item and the 
cluster. To compute the likelihoods, the 
entirely linked layer multiplies each entry 
by a weight, calculates the sum, then 
applies an enabling function ( logistic if 
N=2, softmax if N>2) : This process is 
equivalent to multiply the entry vector by 
the matrix that contains the weights. The 
fact that each entry value is linked to all the 
exit values explains the term "entirely 
linked". 

 

1.8 Transfer Learning 
 

A convolutional neural network is very expensive 
to train: the more layers are stacked, the larger 
the number of convolutions and parameters to be 
optimized. The machine must be able to store 
many gigabytes of information and carry out the 
computations in an efficient way. This is the 
reason why hardware makers are increasing 
their efforts to supply powerful graphics 
processing units (GPUs) capable of quickly train 
a deep neural network by parallelizing the 
computations.

 

 
 

Fig. 3. ReLU function appearance [13] 
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Fig. 4. Example of convolutional neural network allowing five (5) recognition on an image [14] 
 
Transfer learning is a technique of machine 
learning in which a trained model for one job is 
re-used for another associated job. Transfer 
learning is linked to such issues as multi-tasking 
and concept drift and is not solely an area of 
deep learning research. Transfer learning has 
several benefits in addition to accelerating the 
training of networks. One of these benefits is the 
capability to avoid overfitting. When operating 
with a small collection of input images, it is not 
advisable to train a neural network from scratch, 
as the number of parameters to be learnt is much 
higher than the number of images, leading to a 
high potential for overfitting. Based on the size 
and the similarity of the input dataset to the 
pretrained set, we can use the pretrained neural 
network in various ways. 
 

● Strategy 1: Total fine-tuning 
 

It involves replacing the last fully-connected layer 
of a pre-trained network with a randomly 
initialized classifier that is adapted to the new 
problem, such as SVM or logistic regression. All 
layers of the pre-trained network are then trained 
on the new images. This approach is suitable 
when the new collection of images is large 
enough, as it can avoid the risk of overfitting. In 
addition, since the parameters of all the layers 
(except the last) are initialized with those of the 
pre-trained network, the learning phase can be 
faster than starting from a random initialization. 
 

● Strategy 2: feature extraction 
 

In order to represent the images of a new 
problem, we can utilize the features of a pre-
trained network. This involves removing the last 
fully-connected layer and setting all other 
parameters, allowing the truncated network to 
calculate the representation of each input image 

using previously learned features. Next, a 
classifier initialized randomly is trained on these 
representations to address the new problem. 
This approach is recommended for a small new 
image collection that is similar to the pre-training 
images, as there is a significant risk of overfitting 
when training the network on a small number of 
images. Additionally, if the new images are 
similar to the old ones, they can be represented 
by the same features. 
 

● Strategy 3: partial fine-tuning 
 

This approach combines strategies 1 and 2, 
where the last fully-connected layer is replaced 
with a new classifier that is randomly initialized, 
and certain layers of the pre-trained network are 
fixed. Therefore, in addition to training the new 
classifier, the unfixed layers are also trained on 
the new images, which typically correspond to 
the highest layers of the network. 
 
When dealing with a small and significantly 
different collection of images than the pre-
training images, we employ this strategy: 
replacing the last fully-connected layer with a 
new classifier that is randomly initialized, while 
also fixing the parameters of certain layers of the 
pre-trained network. This is because strategy 1, 
which involves training the whole network, is not 
feasible due to the high risk of overfitting, and 
strategy 2, which utilizes the pre-trained 
network's features to represent the new images, 
is not suitable because of the dissimilarities 
between the two image sets. Nonetheless, it's 
worth noting that the lower layers' features are 
generally simple and generic, whereas the higher 
layers' are complex and specific to the problem. 
Consequently, fixing the lower layers and training 
the classifier and upper layers is a reasonable 
compromise.
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Fig. 5. IoU illustration [15] 
 

1.9 Object Detection Architectures 
Models 

 

There are currently several object detection 
models. Each model presents a different but 
sometimes complementary and useful 
architecture for various operations: better 
performance, better inference time, real-time 
use, etc. 
 

1.10 Performance Metrics 
 

A common evaluation metric used in many object 
recognition and detection tasks like Faster R-
CNN, SSD, etc is the COCO standard "mAP", 
short for "mean average precision". from 0 to 
100; the higher the value, the better. 
 

1.10.1 Precision and recall 
 

❖ Precision measures how accurate your 
predictions are, that is, the percentage of 
your predictions that are correct. 

❖ Recall measures the quality of all positives. 
For example, we can find 80% of the 
possible positive cases in our main 
predictions. 

 
Here are their mathematical definitions: 
 
That is: 
 

VP: true positive 
VN: true negative 
FP: false positive 
FN: false negative 

 
precision = VP/ (VP + FP) 
recall = VP/ (VP + FN) 

1.10.2 IoU (Intersection over union) 
 
The IoU measures the overlap between two 
borders. We use it to measure the degree of 
overlap between the intended boundary and the 
actual object boundary. In some datasets, we 
pre-define a unit threshold (e.g. 0.5) to determine 
if the prediction is a true positive or a false 
positive. 
 

2. MATERIALS AND METHODS 
 
In this section we will present the R-CNN model 
in part III.1, then follow the Faster R-CNN model 
in part III.2, then the YOLO model in part III.3 
and finally part III.4 will expose the method of 
determining the actual sizes of objects in an 
image. 
 

2.1 R-CNN Models 
 
R-CNN is short for “Region-Based Convolutional 
Neural Networks”. The main idea is composed of 
two steps. First, using a Selective search 
algorithm, it identifies a manageable number of 
candidate regions (2000) to the enclosing object 
area (“region of interest” or “RoI”). And then it 
extracts the CNN features of each region 
independently for classification. 
 
The operation of R-CNN can be summarized as 
follows: 
 

— Pre-training a CNN network on image 
classification tasks (e.g. VGG or ResNet 
which have been trained on the ImageNet 
dataset). The classification task involves N 
classes. 
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— Proposal of regions of interest independent 
of the category by selective search 
(approximately 2,000 candidates per 
image). These regions can contain target 
objects and are of different sizes. Region 
candidates are warped to have a fixed size 
as required by CNNs. 

— Continue to refine the CNN on the 
deformed proposition regions for K+1 
classes. For each image region, forward 
propagation through the CNN generates a 
feature vector. This feature vector is then 
consumed by a binary SVM formed 
independently for each class. Positive 
samples are proposed regions with IoU 
overlap threshold (intersection on union) 
>= 0.3, and negative samples are 
irrelevant. To reduce localization errors, a 
regression model is trained to correct the 
predicted detection window on the 
bounding box correction offset using CNN 
functions. 

 

2.2 Problems with R-CNN 
 
It still takes a long time to train the network, 
because 2000 region proposals would have to be 
classified per image. 
 
It cannot be implemented in real time because it 
takes around 47 seconds for each test image. 
 
The selective search algorithm is a fixed 
algorithm. Therefore, no learning takes place at 
this stage. This could lead to the generation of 
bad candidate region proposals. 
 

2.3 Faster R-CNN model 
 
The R-CNN algorithm (as well as its optimized 
version Fast R-CNN) [11] use selective search to 
find proposed regions. Selective searching is a 

slow and tedious process that affects network 
performance. Therefore, some researchers in 
[11] have developed an object detection 
algorithm which eliminates the selective search 
algorithm and allows the network to learn the 
region proposals. As with the Faster R-CNN, the 
image is provided as input to a convolutional 
network which provides a convolutional feature 
map. Instead of using a selective feature map 
search algorithm to identify region proposals, a 
separate network is used to predict region 
proposals. The proposed predicted regions are 
then reshaped using a resolution pooling layer 
which is then used to classify the image into the 
proposed region and predict offset values for the 
bounding boxes. 
 

2.4 YOLO model (You Only Look Once) 
 
Previously, object detection algorithms used 
regions to locate objects within an image. These 
algorithms examined specific portions of the 
image that were most likely to contain the object, 
rather than analyzing the entire image. In 
contrast, YOLO is a unique object detection 
algorithm that operates differently from these 
region-based methods. YOLO uses a single 
convolutional network to predict both the 
bounding boxes and the class probabilities for 
those boxes. The YOLO approach involves 
dividing an image into an S * S grid, with each 
grid containing m bounding boxes. The network 
produces a class probability and offset values for 
each bin, and bounding boxes with class 
probabilities exceeding a certain threshold are 
chosen to locate the object (of that class) within 
the image. YOLO is faster than other object 
detection algorithms, achieving 45 frames per 
second. However, the YOLO algorithm                
struggles to detect small objects in the               
image, such as a flock of birds, due to spatial 
limitations.

 

 
 

Fig. 6. R-CNN model [11] 
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Fig. 7. Faster R-CNN model [11] 
 

 
 

Fig. 8. YOLO model [11]
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2.5 Methods for Determining the Actual 
Sizes of Objects in an Image 

 
To allow us to have the real dimensions of an 
object captured in image (by drone for example), 
we need to determine the GSD. The Ground 
Sampling Distance (GSD) refers to the distance 
between the centers of two adjacent pixels 
measured on the ground surface. A higher GSD 
value indicates a lower spatial resolution of the 
image, which means fewer details are visible. 
Generally, the GSD value is inversely 
proportional to the flight height, meaning that as 
the flight altitude increases, the GSD value also 
increases. For the calculation of the GSD: 
 

GSDx = (H * Sh)/( Fr * imgH) 
 
GSDy = (H * Sw)/( Fr * imgW) 
 
GSD = max(GSD x , GSD y )(cm/pixel)) 
 
So to calculate the width of the object for 
example: 
GSD = W' = GSD * Wpixel 

 
— H: the distance between the camera and 

the target (the ground) 
— S h: the length of the sensor (camera); 
— S w: the width of the sensor (camera); 
— F r: the focal length (in mm); 
— imgH: the length of the image (in pixels); 

— imgW: the width of the image (in pixels); 
— GSD x: GSD along the x axis; 
— GSD y: GSD along the y axis; 
— W pixel: the dimension (length or width) in 

image (in pixel); 
— W’: the actual dimension (length or width) 

(in cm); 
 

2.6 Database Design for Detection 
 
For the constitution of the database, we used a 
total set of 150 images distributed as follows: 
 

- 25 images taken in a tomato field with a 
drone; 

- 30 images from various online sources; 
- 95 images from the official fruit-360 

database [16]. 
 
We notice a certain heterogeneity of the images. 
The goal is to allow our model to learn the 
characteristics of our tomatoes under various 
hazards both in the natural environment and in 
controlled environments. All images have been 
normalized to a resolution of 100*100 pixels. 
Since we are doing supervised learning, we have 
labeled each object contained in each image 
ourselves. This was done with the labelImage 
tool. We obtained the annotations in XML file in 
PASCAL VOC format. Fig. 10 shows the use of 
the LabelImage tool which allows to have the 
labels.

 

 
 

Fig. 9. Informations for GSD computation [17] 
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Fig. 10. Labeling of tomatoes with the labelimage tool 
 

2.7 System Architecture 
 
The architecture of the system revolves around: 
 

1. Tomato detection on the image: we use 
the tomato detection model that we had 
previously trained to detect and locate the 
tomatoes contained in the image. 

2. This image is then processed to extract 
each detected tomato in isolation. 

3. Each of the tomatoes is then segmented to 
detect only the tomato in the image. Using 
a real size estimation technique from the 
image, we determined the air of the 
projected area of the captured tomato. 

4. From this value of the surface of the 
tomato, we used a model of estimation of 
weight by the projected surface. This 
model is based on the studies of Amin 
Taheri-Garavand et al. [18]

 

 
 

Fig. 11. Mass estimator by the projected surface [18]
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The main mass estimation models from the 
projected surface of a tomato are given in           
linear and non-linear form by the following 
equations: 
 

y = 0.009 * PA + 64.80 (1) with R² = 0.94 
 
y = 0.001*PA² + 0.006*PA + 70 (2) with R² = 
0.94 
 
y = 36.52ln(PA) - 201.0 (3) with R² = 0.936 

 
with PA the projected area. PA is determined by 
 

 PA = π * H * W (2) 
 

 H: the length of the tomato detection box 
 W: the width of the tomato detection box. 

 
After several tests we opted for model (2) 
because it gave results closer to our test sample. 
 

3. RESULTS AND DISCUSSION 
 
We used, for the training of our detection model, 
100 annotated images which contain on average 
5 tomatoes. These images have been 
downloaded from the internet in various image 
banks, others taken on a field with a DJI 
Phantom 4 drone and the main part of the Fruit-
360 database. In addition, we used 20 other 
images for verification. We therefore used the 

model trained on the 20 images of which it is not 
aware to verify its performance. MaP (Average 
Accuracy) is a commonly used metric to measure 
the accuracy of object detectors such as Faster 
R-CNN, SSD, etc. Average Precision calculates 
the average precision value for the recall value 
between 0 and 1 (or as a percentage). 
 
For training, we used 10000 iterations saving the 
model every 500 iterations. We can observe on 
the learning graph of the model that the model 
has its high performance point from the 6500 
iteration. At this level the mAp is close to 0.84 or 
84% accuracy. 
 
In Fig. 13, we can see that almost all of the 
tomatoes are identified. However, some 
deviations in the detection boxes are identified. 
This could introduce bias when extracting the 
actual dimensions of each tomato. However, the 
shifts observed are of the order of a millimeter. 
Similarly, we notice that partially covered 
tomatoes are partially identified. Their estimate 
will then be more biased. On the other hand, 
tomatoes that are covered by leaves are not 
identified. This is a limitation that must be taken 
into account when making a decision. 
 
We used each tomato detection box from the 
tomato detection model for the estimation of the 
mass of each tomato. We can see some results 
in the table below:

 

 
 

Fig. 12. Learning loss curve 
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Table 1. Some mass estimates from the estimator 
 

𝐍∘ Masse réelle (𝐠) Masse estimée (g) Taux de precision (%) 

1 200 235,55 81,10 

2 100 110,98 90.10 

3 100 128,15 78,03 

4 250 312,44 80,12 

5 200 305,02 65,53 

 

   
 

Fig. 13. Examples of tomato detection with our model 
 

Various statistical indicators for estimating errors 
were also used to assess the relationship 
between estimated and actual fruit masses in 
grams (g). In particular, we used Mean Absolute 
Error (MAE), Root Mean Squared Error (MSE), 
Root Mean Squared Deviation (RMSE) for our 
results. 
 

MAE=i=1ny1-yn (3) 
 
MSE=1n(y1-y)2 (4) 
 
RMSE =1ni=1ny1 - ŷ² (5) 

 

We thus obtain after experiment: 
 

AEM = 42.365 
 
MSE = 2605.534 
 
RMSE = 51.0444 

 

The Fig.14 presents the distribution of the 
estimates. We notice that we obtain a certain 
linearity in our model. 
 

Given the amount of variation in the training data 
samples and the error in the geometry modulus, 
we can consider these results acceptable. 

Similarly, we can say that the error of mass 
estimates is related to the quality of the detection 
box of each tomato by the detection model as 
well as the efficiency of the detection system of 
the real dimensions. In addition, the polynomial 
mass estimator used gives good results in 
general but was implemented with a very large 
quantity of tomato of various species. Therefore, 
the study of a particular species will not be as 
effective. The model seems too generic, which 
adds a certain discrepancy to the results of the 
tomato crop used during the experiments. 
Because, in fact, the density of a tomato is 
strongly linked to the species [14]. To overcome 
this problem, studies are underway to set up a 
mass estimation model based on certain 
morphological characteristics (extracted from a 
2D image of the tomato) for a particular tomato 
species [19-21]. 
 

3.1 Advantages of Such System 
 
The integration of an agricultural yield estimation 
support system based on a deep learning 
technique, specifically applied to tomato 
cultivation, could have significant implications in 
the field of precision agriculture. Here are some 
potential practical applications: 
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Fig. 14. Comparison of the estimated mass and the actual mass of each tomato 
 

● Production Optimization: by providing 
accurate yield estimates, farmers can 
optimize their farming practices, adjusting 
irrigation, fertilization and treatment levels, 
which can lead to better use of resources 
and increased productivity. 

● Resource management: The judicious 
use of agricultural resources such as 
water, nutrients and pesticides is essential. 
An accurate yield estimation system would 
enable more efficient management of 
these resources, reducing waste and 
minimizing environmental impact. 

● Informed decision-making: Farmers can 
make informed decisions on crop rotation, 
variety selection and other farming 
practices based on reliable data generated 
by the yield estimation system. 

● Reduced financial risk: Accurate yield 
estimation enables farmers to better 
anticipate their harvest results, thereby 
reducing the financial risks associated with 
yield fluctuations. 

● Integration into Farm Management 
Systems: The system could be integrated 
into broader farm management platforms, 
offering a holistic solution for planning, 
monitoring and optimizing farming 
activities. 

 

4. CONCLUSION AND PROSPECTS 
 

During our work, we first developed an object 
detection model to identify tomatoes on an image 
and then used the morphological characteristics 
of tomatoes identified earlier in a mass estimator 
by AI projected to estimate the mass of each 

tomato. The operation is carried out on each 
tomato in each field in order to have an 
approximation of the final yield. Detection and 
localization gave good results with a mAp of 
84%. The trained model is also effective in 
detecting and locating multiple tomato fruit 
occurrences in complex environmental 
scenarios. However, fruits that contain leaves or 
other tomatoes will not be accurately detected. 
There will be some loss of precision in the 
detection boxes. The mass estimator used has a 
coefficient of determination R² of 0.94 for all 
kinds of tomatoes. However, the use in our 
system during the experiments gave a MAE of 
42.365, 2605.534 for the MSE and 51.0444 for 
the RMSE. These results show that the mass 
estimator is too generic and that a model specific 
to a particular tomato species should be put in 
place. In addition to detecting and estimating the 
mass of individual fruits, this approach can be 
effective in identifying and estimating the mass of 
multiple types of fruit. Moreover, this method is 
appropriate for systems where data collection is 
calibrated using a single camera positioned 
perpendicular to the object surface. While this 
setup reduces costs, it also results in lower 
accuracy in estimating fruit masses. 
Nonetheless, this proposed system shows 
promise as a foundation for creating computer 
vision-based technologies for automatic sorting, 
grading, and measuring. 
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