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Abstract
We assume that the current mathematical knowledge K is a finite set of statements from both formal
and constructive mathematics, which is time-dependent and publicly available. Any formal theorem of any
mathematician from past or present forever belongs to K . Ignoring K and its subsets, sets exist formally in
ZFC theory although their properties can be time-dependent (when they depend on K ) or informal. We
explain the distinction between algorithms whose existence is provable in ZFC and constructively defined
algorithms which are currently known. By using this distinction, we obtain non-trivially true statements
on decidable sets X ⊆ N that belong to constructive and informal mathematics and refer to the current
mathematical knowledge on X . This and the next sentence justify the article title. For any empirical science,
we can identify the current knowledge with that science because truths from the empirical sciences are not
necessary truths but working models of truth about particular real phenomena.
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1 Introduction and Why Such Title of the Article
Let T denote the set of twin primes. We assume that the current mathematical knowledge K is a finite set
of statements from both formal and constructive mathematics, which is time-dependent and publicly available.
Any formal theorem of any mathematician from past or present forever belongs to K . The true statement
"There is no known constructively defined integer n such that card(T ) < ω ⇒ T ⊆ (−∞, n] " is not formal,
belongs to K , and may not belong to K in 2025 . The true statement "There exists a set X ⊆ {1, . . . , 49}
such that card(X ) = 6 and X never occurred as the winning six numbers in the Polish Lotto lottery" refers
to the current non-mathematical knowledge and does not belong to K . The set K exists only theoretically.
Ignoring K and its subsets, sets exist formally in ZFC theory although their properties can be time-dependent
(when they depend on K ) or informal. In every branch of mathematics, the set of all knowable truths is the set
of all theorems. This set exists independently of K .

Algorithms always terminate. We explain the distinction between algorithms whose existence is provable in
ZFC and constructively defined algorithms which are currently known. By using this distinction, we obtain
non-trivially true statements on decidable sets X ⊆ N that belong to constructive and informal mathematics and
refer to the current mathematical knowledge on X . These results, mainly from [1], and the next sentence justify
the article title. For any empirical science, we can identify the current knowledge with that science because truths
from the empirical sciences are not necessary truths but working models of truth from a particular context, see
[2, p. 610].

The feature of mathematics from the article title is not quite new. Observation 1 is known from the beginning
of computability theory and shows that the predicate of the current mathematical knowledge slightly increases
the intuitive mathematics.

Observation 1. Church’s thesis is based on the fact that the currently known computable functions are recursive,
where the notion of a computable function is informal.

Observation 2. There exists a prime number p greater than the largest known prime number.

In Observation 2, the predicate of the current mathematical knowledge trivially increases the constructive
mathematics.

2 Basic Definitions and Examples
Algorithms always terminate. Semi-algorithms may not terminate. There is the distinction between existing
algorithms (i.e. algorithms whose existence is provable in ZFC ) and known algorithms (i.e. algorithms whose
definition is constructive and currently known), see [3], [4], [5, p. 9]. A definition of an integer n is called
constructive, if it provides a known algorithm with no input that returns n . Definition 1 applies to sets X ⊆ N
whose infiniteness is false or unproven.

Definition 1. We say that a non-negative integer k is a known element of X , if k ∈ X and we know an
algebraic expression that defines k and consists of the following signs: 1 (one), + (addition), − (subtraction),
· (multiplication), ˆ (exponentiation with exponent in N ), ! (factorial of a non-negative integer), ( (left
parenthesis), ) (right parenthesis).
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The set of known elements of X is finite and time-dependent, so cannot be defined in the formal language of
classical mathematics. Let t denote the largest twin prime that is smaller than ((((((((9!)!)!)!)!)!)!)!)!. The
number t is an unknown element of the set of twin primes.

Definition 2. Conditions (1)-(5) concern sets X ⊆ N .

(1) A known algorithm with no input returns an integer n satisfying card(X ) < ω ⇒ X ⊆ (−∞, n] .

(2) A known algorithm for every k ∈ N decides whether or not k ∈ X .

(3) There is no known algorithm with no input that returns the logical value of the statement card(X ) = ω .

(4) There are many elements of X and it is conjectured, though so far unproven, that X is infinite.

(5) X is naturally defined. The infiniteness of X is false or unproven. X has the simplest definition among
known sets Y ⊆ N with the same set of known elements.

Condition (3) implies that no known proof shows the finiteness/infiniteness of X . No known set X ⊆ N
satisfies Conditions (1)-(4) and is widely known in number theory or naturally defined, where this term has
only informal meaning.

Let [·] denote the integer part function.

Example 1. The set X =

{
N, if [ ((((((((9!)!)!)!)!)!)!)!)!

π
] is odd

∅, otherwise
does not satisfy Condition (3) because we

know an algorithm with no input that computes [ ((((((((9!)!)!)!)!)!)!)!)!
π

] . The set of known elements of X is empty.
Hence, Condition (5) fails for X .

Example 2. ([3], [4], [5, p. 9]). The function

N 3 n h−→
{

1, if the decimal expansion of π contains n consecutive zeros
0, otherwise

is computable because h = N× {1} or there exists k ∈ N such that

h = ({0, . . . , k} × {1}) ∪ ({k + 1, k + 2, k + 3, . . .} × {0})

No known algorithm computes the function h .

Example 3. The set

X =

{
N, if the continuum hypothesis holds
∅, otherwise

is decidable. This X satisfies Conditions (1) and (3) and does not satisfy Conditions (2), (4), and (5). These
facts will hold forever.

3 Number-Theoretic Results
Edmund Landau’s conjecture states that the set Pn2+1 of primes of the form n2 + 1 is infinite, see [6], [7], [8].

Statement 1. Condition (1) remains unproven for X = Pn2+1 .

Proof. For every set X ⊆ N , there exists an algorithm Alg(X ) with no input that returns

n =

{
0, if card(X ) ∈ {0, ω}

max(X ), otherwise

This n satisfies the implication in Condition (1), but the algorithm Alg(Pn2+1) is unknown because its
definition is ineffective.
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Statement 2. The statement

∃n ∈ N (card(Pn2+1) < ω ⇒ Pn2+1 ⊆ [2, n+ 3])

remains unproven in ZFC and classical logic without the law of excluded middle.

Conjecture 1. ([9, p. 443], [10]). The are infinitely many primes of the form k! + 1 .

For a non-negative integer n , let ρ(n) denote 29.5 + 11!
3n+ 1 · sin(n) .

Statement 3. The set

X = {n ∈ N : the interval [−1, n] contains more than ρ(n) primes of the form k! + 1}

satisfies Conditions (1)-(5) except the requirement that X is naturally defined. 501893 ∈ X . Condition (1)
holds with n = 501893 . card(X ∩ [0, 501893]) = 159827 . X ∩ [501894,∞) = {n ∈ N : the interval [−1, n]
contains at least 30 primes of the form k! + 1} .

Proof. For every integer n > 11! , 30 is the smallest integer greater than ρ(n) . By this, if n ∈ X ∩ [11!,∞) ,
then n + 1, n + 2, n + 3, . . . ∈ X . Hence, Condition (1) holds with n = 11!− 1 . We explicitly know 24
positive integers k such that k! + 1 is prime, see [11]. The inequality

card({k ∈ N \ {0} : k! + 1 is prime}) > 24

remains unproven. Since 24 < 30 , Condition (3) holds. The interval [−1, 11!− 1] contains exactly three
primes of the form k! + 1 : 1! + 1 , 2! + 1 , 3! + 1 . For every integer n > 503000 , the inequality ρ(n) > 3
holds. Therefore, the execution of the following MuPAD code

m:=0:
for n from 0.0 to 503000.0 do
if n<1!+1 then r:=0 end_if:
if n>=1!+1 and n<2!+1 then r:=1 end_if:
if n>=2!+1 and n<3!+1 then r:=2 end_if:
if n>=3!+1 then r:=3 end_if:
if r>29.5+(11!/(3*n+1))*sin(n) then
m:=m+1:
print([n,m]):
end_if:
end_for:

displays the all known elements of X . The output ends with the line [501893.0, 159827] , which proves
Condition (1) with n = 501893 and Condition (4) with card(X ) > 159827 .

T. Nagell proved in [12] (cf. [13, p. 104]) that the equation x2 − 17 = y3 has exactly 16 integer solutions, namely
(±3,−2) , (±4,−1) , (±5, 2) , (±9, 4) , (±23, 8) , (±282, 43) , (±375, 52) , (±378661, 5234) . The set⋃

(x, y) ∈ Z× Z
(x2 − y3 − 17) · (y2 − x3 − 17) = 0

{(x+ 8)8}

has exactly 23 elements. Among them, there are 14 integers from the interval [1, 2199894223892] . Let W
denote the set ⋃

(x, y) ∈ Z× Z
(x2 − y3 − 17) · (y2 − x3 − 17) = 0

{k ∈ N : k is the (x+ 8)8 − th element of Pn2+1}

72



Tyszka; Asian Res. J. Math., vol. 19, no. 12, pp. 69-79, 2023; Article no.ARJOM.110604

From [7], it is known that card(Pn2+1 ∩ [2, 1028)) = 2199894223892 . Hence, card(W ∩ [2, 1028)) = 14 and 14
elements of W can be practically computed. The inequality card(P(n2+1)) > (378661+8)8 remains unproven.
The last two sentences and Statement 3 imply the following corollary.

Corollary 1. If we add W to X , then the following statements hold:

X does not satisfy Condition (1),

159827 + 14 6 card(X ) ,

the above lower bound is currently the best known,

card(X ) < ω ⇒ card(X ) 6 159827 + 23 ,

the above upper bound is currently the best known,

X satisfies Conditions (2)-(5) except the requirement that X is naturally defined.

Analogical statements hold, if we add to X the set⋃
x ∈ N

x divides 99!

{k ∈ N : k − 501894 is the x− th element of Pn2+1}

Definition 3. Conditions (1a)-(5a) concern sets X ⊆ N .

(1a) A known algorithm with no input returns a positive integer n satisfying card(X ) < ω ⇒ X ⊆ (−∞, n] .

(2a) A known algorithm for every k ∈ N decides whether or not k ∈ X .

(3a) There is no known algorithm with no input that returns the logical value of the statement card(X ) < ω .

(4a) There are many elements of X and it is conjectured, though so far unproven, that X is finite.

(5a) X is naturally defined. The finiteness of X is false or unproven. X has the simplest definition among
known sets Y ⊆ N with the same set of known elements.

Statement 4. The set

X =
{
n ∈ N : the interval [−1, n] contains more than

6.5 +
106

3n+ 1
· sin(n) squares of the form k! + 1

}
satisfies Conditions (1a)-(5a) except the requirement that X is naturally defined. 95151 ∈ X . Condition (1a)
holds with n = 95151 . card(X ∩ [0, 95151]) = 30311 . X ∩ [95152,∞) = {n ∈ N : the interval [−1, n]
contains at least 7 squares of the form k! + 1} .

Proof. For every integer n > 106 , 7 is the smallest integer greater than 6.5 + 106

3n+1
· sin(n) . By this, if

n ∈ X ∩ (106,∞) , then n+ 1, n+ 2, n+ 3, . . . ∈ X . Hence, Condition (1a) holds with n = 106 . It is
conjectured that k! + 1 is a square only for k ∈ {4, 5, 7} , see [14, p. 297]. Hence, the inequality
card({k ∈ N \ {0} : k! + 1 is a square}) > 3 remains unproven. Since 3 < 7 , Condition (3a) holds. The interval
[−1, 106] contains exactly three squares of the form k! + 1 : 4! + 1 , 5! + 1 , 7! + 1 . Therefore, the execution of
the following MuPAD code
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m:=0:
for n from 0.0 to 1000000.0 do
if n<25 then r:=0 end_if:
if n>=25 and n<121 then r:=1 end_if:
if n>=121 and n<5041 then r:=2 end_if:
if n>=5041 then r:=3 end_if:
if r>6.5+(1000000/(3*n+1))*sin(n) then
m:=m+1:
print([n,m]):
end_if:
end_for:

displays the all known elements of X . The output ends with the line [95151.0, 30311] , which proves Condition (1a)
with n = 95151 and Condition (4a) with card(X ) > 30311 .

Statement 5. The set
X = {k ∈ N : card([−1, k] ∩ Pn2+1) < 1010000}

satisfies the conjunction

¬(Condition 1a) ∧ (Condition 2a) ∧ (Condition 3a) ∧ (Condition 4a) ∧ (Condition 5a)

For a non-negative integer n , let θ(n) denote the largest integer divisor of 1010
10

smaller than n . Let
κ : N→ N be defined by setting κ(n) to be the exponent of 2 in the prime factorization of n+ 1 .

Statement 6. ([1, p. 250]). The set

X = {n ∈ N : (θ(n) + κ(n))2 + 1 is prime}

satisfies Conditions (1)-(5) except the requirement that X is naturally defined. Condition (1) holds with

n = 1010
10

.

Statement 7. There exists a naturally defined set C ⊆ N which satisfies the following
conditions (6)-(11).

(6) A known and simple algorithm for every k ∈ N decides whether or not k ∈ C .

(7) There is no known algorithm with no input that returns the logical value of the statement
card(C) = ω .

(8) There is no known algorithm with no input that returns the logical value of the statement
card(N \ C) = ω .

(9) It is conjectured, though so far unproven, that C is infinite.

(10) There is no known algorithm with no input that returns an integer n satisfying
card(C) < ω ⇒ C ⊆ (−∞, n] .

(11) There is no known algorithm with no input that returns an integer m satisfying
card(N \ C) < ω ⇒ N \ C ⊆ (−∞,m] .

Proof. Conditions (6)-(11) hold for

C = {k ∈ N : 22
k

+ 1 is composite}
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It follows from the following three observations. It is an open problem whether or not there are infinitely

many composite numbers of the form 22
k

+ 1 , see [15, p. 159] and [16, p. 74]. It is an open problem whether

or not there are infinitely many prime numbers of the form 22
k

+ 1 , see [15, p. 158] and [16, p. 74]. Most

mathematicians believe that 22
k

+ 1 is composite for every integer k > 5 , see [17, p. 23].

4 A Consequence of the Physical Limits of Computation
Statement 8. No set X ⊆ N will satisfy Conditions (1)-(4) forever, if for every algorithm with no input, at
some future day, a computer will be able to execute this algorithm in 1 second or less.

Proof. The proof goes by contradiction. We fix an integer n that satisfies Condition (1). Since Conditions
(1)-(3) will hold forever, the semi-algorithm in Figure 1 never terminates and sequentially prints the following
sentences:

n+ 1 6∈ X , n+ 2 6∈ X , n+ 3 6∈ X , . . . (T)

Fig. 1. Semi-algorithm that terminates if and only if X is infinite

The sentences from the sequence (T) and our assumption imply that for every integer m > n computed by a
known algorithm, at some future day, a computer will be able to confirm in 1 second or less that (n,m]∩X = ∅ .
Thus, at some future day, numerical evidence will support the conjecture that the set X is finite, contrary to
the conjecture in Condition (4).

The physical limits of computation ([18]) disprove the assumption of Statement 8.

5 Satisfiable Conjunctions which Consist of Conditions (1)-(5)
and their Negations

Open Problem 1. Is there a set X ⊆ N which satisfies Conditions (1)-(5)?

Open Problem 1 asks about the existence of a year t > 2023 in which the conjunction

(Condition 1) ∧ (Condition 2) ∧ (Condition 3) ∧ (Condition 4) ∧ (Condition 5)
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will hold for some X ⊆ N . For every year t > 2023 and for every i ∈ {1, 2, 3} , a positive solution to Open
Problem i in the year t may change in the future. Currently, the answers to Open Problems 1–5 are negative.

The set X = Pn2+1 satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ (Condition 3) ∧ (Condition 4) ∧ (Condition 5)

The set X = {0, . . . , 106} ∪ Pn2+1 satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ (Condition 3) ∧ (Condition 4) ∧ ¬(Condition 5)

Let f(1) = 106 , and let f(n+ 1) = f(n)f(n) for every positive integer n . The set

X =

{
N, if 22

f(99)
+ 1 is composite

{0, . . . , 106}, otherwise

satisfies the conjunction

(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ ¬(Condition 5)

Open Problem 2. Is there a set X ⊆ N that satisfies the conjunction

(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ (Condition 5)?

The numbers 22
k

+ 1 are prime for k ∈ {0, 1, 2, 3, 4} . It is open whether or not there are infinitely many

primes of the form 22
k

+ 1 , see [15, p. 158] and [16, p. 74]. It is open whether or not there are infinitely many

composite numbers of the form 22
k

+ 1 , see [15, p. 159] and [16, p. 74]. Most mathematicians believe that

22
k

+ 1 is composite for every integer k > 5 , see [17, p. 23]. The set

X =


N, if 22

f(99)
+ 1 is composite

{0, . . . , 106}∪

{n ∈ N : n is the sixth prime number of the form 22
k
+ 1}, otherwise

satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ ¬(Condition 5)

Open Problem 3. Is there a set X ⊆ N that satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ (Condition 5)?

It is possible, although very doubtful, that at some future day, the set X = Pn2+1 will solve Open Problem 2.
The same is true for Open Problem 3. It is possible, although very doubtful, that at some future day, the set

X = {k ∈ N : 22
k

+ 1 is composite} will solve Open Problem 1. The same is true for Open Problems 2 and 3.

Table 1 shows satisfiable conjunctions of the form

#(Condition 1) ∧ (Condition 2) ∧#(Condition 3) ∧ (Condition 4) ∧#(Condition 5)

where # denotes the negation ¬ or the absence of any symbol.
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Table 1. Five satisfiable conjunctions

(Cond. 2) ∧ (Cond. 3) ∧
(Cond. 4)

(Cond. 2) ∧ ¬(Cond. 3) ∧ (Cond. 4)

(Cond. 1) ∧
(Cond. 5)

Open Problem 1 Open Problem 2

(Cond. 1) ∧
¬(Cond. 5)

X = {n ∈ N : the interval
[−1, n] contains more than
29.5 + 11!

3n+1 · sin(n) primes
o f the f orm k! + 1}

X =

N, i f 22 f (99)

+ 1 is composite
{0, . . . , 106}, otherwise

¬(Cond. 1) ∧
(Cond. 5)

X = Pn2+1 Open Problem 3

¬(Cond. 1) ∧
¬(Cond. 5)

X = {0, . . . , 106} ∪ Pn2+1 X =



N, i f 22 f (99)
+ 1 is composite

{0, . . . , 106} ∪ {n ∈ N : n is
the sixth prime number o f

the f orm 22k
+ 1}, otherwise

6 Subsets of N and their Threshold Numbers
Definition 4. We say that an integer n is a threshold number of a set X ⊆ N , if card(X ) < ω ⇒ X ⊆ (−∞, n] .

If a set X ⊆ N is empty or infinite, then any integer n is a threshold number of X . If a set X ⊆ N is non-empty
and finite, then the all threshold numbers of X form the set [max(X ),∞) ∩ N .

Example 4. The set

X = {k ∈ N : any proof in ZFC of length k or less does not show that ∅ 6= ∅}

conjecturally equals N . No effectively computable integer n is a threshold number of X .

Open Problem 4. Is there a known threshold number of Pn2+1 ?

Open Problem 4 asks about the existence of a year t > 2023 in which the implication card(Pn2+1) < ω ⇒
Pn2+1 ⊆ (−∞, n] will hold for some known integer n . We recall that T denote the set of twin primes.

Open Problem 5. Is there a known threshold number of T ?

Open Problem 5 asks about the existence of a year t > 2023 in which the implication
card(T ) < ω ⇒ T ⊆ (−∞, n] will hold for some known integer n .
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