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Abstract

We present an unsupervised outlier detection method for galaxy spectra based on the spectrum autoencoder
architecture SPENDER, which reliably captures spectral features and provides highly realistic reconstructions for
SDSS galaxy spectra. We interpret the sample density in the autoencoder latent space as a probability distribution,
and identify outliers as low-probability objects with a normalizing flow. However, we found that the latent-space
position is not, as expected from the architecture, redshift invariant, which introduces stochasticity into the latent
space and the outlier detection method. We solve this problem by adding two novel loss terms during training,
which explicitly link latent-space distances to data-space distances, preserving locality in the autoencoding process.
Minimizing the additional losses leads to a redshift-invariant, nondegenerate latent-space distribution with clear
separations between common and anomalous data. We inspect the spectra with the lowest probability and find
them to include blends with foreground stars, extremely reddened galaxies, galaxy pairs and triples, and stars that
are misclassified as galaxies. We release the newly trained SPENDER model and the latent-space probability for the
entire SDSS-I galaxy sample to aid further investigations.

Unified Astronomy Thesaurus concepts: Galaxies (573); Spectroscopy (1558); Astrostatistics (1882)

1. Introduction

Spectroscopy is a critical tool to probe the physical
mechanisms that drive the formation and evolution of galaxies.
Despite the vast amount of available galaxy spectra provided
by large spectroscopic surveys, extracting physical knowledge
from them is still a difficult task. Ideally, one would infer
galaxy properties by directly fitting the observed spectrum to a
theoretical model, but analytical models are not yet sophisti-
cated enough to reproduce typical individual high S/N galaxy
spectra, especially the strong emission lines (Tojeiro et al.
2007, 2011). The physical processes contributing to the
observed spectral features may be still poorly understood, thus
using oversimplified models could lead to a biased interpreta-
tion of the data.

Alternatively, one may construct a fully data-driven model
via unsupervised learning. The main challenge in this approach
is to properly disentangle the intrinsic physical spectra from
redshift (causing a stretching of the spectra), noise level, and
artifacts such as telluric contamination. Linear models, i.e., a
combination of empirical or theoretical templates (Polletta
et al. 2007; Brown et al. 2014), are commonly used for redshift
estimation and spectral classification (Bolton et al. 2012; Pace
et al. 2019; Ross et al. 2020). The reconstruction power of
linear models is limited by template quality, and often requires
many components to achieve a good fit. On the other hand,
machine-learning (ML) techniques, such as unsupervised
random forest (Baron & Poznanski 2017) and self-organizing
maps (Hoyle et al. 2015), are used for outlier detection without
producing a reconstruction.

Autoencoders (AE) can yield models with good fidelity and
small latent dimensionality (Portillo et al. 2020). But for

conventional AEs (and other unsupervised ML methods), all
galaxy spectra needed to be deredshifted and resampled to a
common rest frame, restricting either redshift or wavelength
ranges that can be probed. In an earlier work, we showed that
by explicitly adding a redshift transformation to the decoder
path, one can utilize the entire spectrum for galaxies at all
redshifts (Melchior et al. 2023). This new architecture called
SPENDER effectively compresses SDSS spectra into a low-
dimensional latent space, where positions should be invariant
under changes of the redshift because they are meant to encode
galaxy “types,” with the redshift transformation only affecting
the last stage of the generator (see Figure 1). In Section 3, we
demonstrate this expectation to be naïve. The generator
network’s flexibility enables it to map different latent-space
positions to strikingly similar rest-frame spectra, allowing the
autoencoder to adopt multiple solutions for representing the
same galaxy spectrum, with no penalty in case it chooses a
different one at a different redshift. This observation demon-
strates the importance of constraining the model capacity to
prevent overfitting and improve the model’s generalization
capabilities.
We then propose a strategy to lift this degeneracy with

training on augmented spectra, whose redshifts we have
altered, and a similarity metric that relates latent-space
distances to distances between reconstructed spectra. At very
minor reduction in fidelity, minimizing the additional losses
makes the latent space robustly invariant to changes in redshift,
observation windows, and noise levels. The encoded para-
meters become directly interpretable—the spectra of physically
similar galaxies cluster in latent space, and positions in the
same neighborhood reconstruct similar-looking spectra.
The interpretability of the latent space enables the discovery

of trends and clusters in high-dimensional data, and the
characterization of individual objects in a meaningful context
(Section 4). It further allows for the identification of rare or
extreme objects in the sample that could potentially reveal new
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physics, which we will investigate in Section 5. We also point
out, but do not explore in this work, that our new latent space
representation supports the creation of realistic mock spectra
through sampling from the latent space. We conclude in
Section 6 with a discussion of the potential uses of this method
and the prospects of extending it to future surveys.

2. Data

We select ∼500,000 galaxy spectra spanning redshift z ä [0,
0.5] from Sloan Digital Sky Surveys Data Release 16
(Ahumada et al. 2020). Our sample includes all optical spectra
that are classified as galaxies and have redshift error
zerr< 10−4. Approximately 70% of the samples are used for
training, 15% for validation, and 15% is held for testing. All
spectra are zero padded to a homogeneous wavelength
λobs= 3784...9332 Å. We use inverse-variance weights and
masks provided by SDSS Data Release 16 as flux uncertainties.
Additionally, we mask out telluric contamination by assigning
zero weights to within 5 Å of the top ∼100 telluric lines,
amounting to 12% of the data vectors. All spectra are
normalized by the median flux over rest-frame wavelengths
λrest= 5300...5850 Å. The rest-frame normalization is chosen
to be relatively quiet and accessible at all redshifts to avoid
redshift-dependent amplitudes.

3. Method

Our model architecture is taken from Melchior et al. (2023; see
Figure 1 for an overview and the aforementioned paper for details).

Let Î x M denote an input spectrum with M= 3921 elements. It
gets encoded, by a modified version of the CNN encoder from
Serrà et al. (2018), into a low-dimensional latent representation,
Î s S. While the architecture can have arbitrary latent dimen-

sions, we choose S= 6, which provides a good trade-off between
the reconstruction quality and model complexity, as suggested by
Melchior et al. (2023). A standard MLP with (256, 512, 1024)
nodes and a leaky ReLU activation generates a rest-frame
spectrum ¢x , whose 7000 spectral elements are chosen to create
a mildly superresolved representation with an extended wavelength
coverage (λrest= 2359K 9332 Å). The reconstructed spectrum x″
is then redshifted and linearly interpolated from ¢x to the same
wavelengths as x.
This architecture allows for a redshift-invariant latent encoding

because the redshift transformation is explicitly performed in the
generator. One might therefore expect that the network will use the
same latent variables to represent the same rest-frame spectrum at
all redshifts as that would simplify the decoding process. However,
we find that the encoder network does not typically yield the same
latent in this case. We arrive at this unintuitive finding by encoding
“augmented” galaxy spectra, for which we have artificially altered
the redshifts. The top panel of Figure 2 shows the distribution of
Euclidean distances in latent space Δsaug between the original and
the augmented spectrum (in red), which has a comparable spread
to the distance distribution of randomly selected original spectra (in
blue). We interpret this result as the high flexibility of the
architecture allowing the decoder to reconstruct indistinguishable
models from different encoded locations. To achieve the best
reconstructions across a range of spectral types and redshifts, the

Figure 1. The autoencoder SPENDER generates a rest frame and observed spectrum reconstruction. It is trained with a conventional fidelity loss, which compares
separately input spectra (x1, x2) to their redshifted and resampled reconstructions (x1″, x2″). In this work, we added a novel similarity loss, which links the distance in
latent space |s1 − s2| between two spectra to their distance in rest frame ¢ - ¢∣ ∣x x1 2 . Spectra of two physically similar galaxies observed at different redshifts (z1, z2), for
which the underlying rest-frame models are very similar, will thus yield similar latent vectors. To further improve the encoding stability, we minimize an additional
consistency loss defined as the latent distances between the input spectra and its artificially redshifted augment |si − si,aug|. After training the autoencoder, we train a
normalizing flow to map the complicated latent distribution of the entire SDSS galaxy sample to a Gaussian base distribution through a series of invertible
transformations, which allows efficient computation of the probability of any given sample.
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autoencoder employs its full capacity, including redshift-dependent
encoding, to represent galaxy spectra. Without additional
constraints, the model may “overfit” the data by generating
distinct latents for intrinsically similar galaxies at different
redshifts.

3.1. Loss Function

Our basic training in Melchior et al. (2023) used a
conventional fidelity loss, which quantifies the reconstruction
quality, assuming normally distributed noise. It measures the
mean log-likelihood of the reconstruction of spectral elements
averaged over batches of N spectra with spectral size M:

å= - ( ) ( )w x xL
1

2 NM
, 1

i

N

i i ifid
2

where xi is the ith input spectrum, wi its inverse variance, and
e the element-wise multiplication.

A stronger constraint is required to generate robustly
redshift-invariant encoding. Our extended loss function

= + + ( )L L L L 2total fid sim c

operates on all four of the stages shown in Figure 1. We define
a similarity loss Lsim that, unlike the fidelity loss, operates on
the two intermediate stages. Let s= fθ(x) be the encoded latent
vector and ¢ = f ( )x sg be the rest-frame model, where fθ, gf are
parameterized encoder and decoder functions. Ideally, if two
rest-frame models, ¢xi and ¢xj are similar, their latent positions
si and sj should be similar as well; otherwise, the mapping from
latent space to spectrum space becomes difficult to interpret.
On the other hand, distinctively different models should have
well-separated latent positions. The desired relation can be
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¢w is the inverse-variance weight defined at rest-frame
wavelengths, and k0, k1 are adjustable hyper-parameters that
control the steepness of the slope. Lsim encourages pair-wise
latent space distances to be proportional to the spectra (dis)
similarity defined in Equation (4). For a batch of N spectra, we
compare each rest-frame spectrum ¢xi to every other rest-frame
spectrum ¢xj , and calculate the pair-wise distances as a N× N
matrix. If the rest-frame models ¢xi and ¢xj are similar but have
a large latent distance, the first sigmoid term brings them closer
in latent space. Conversely, if the rest-frame models are
dissimilar but have a small latent distance, the second sigmoid
term pushes them apart. Optimizing Lsim drives Si,j toward
zero. In each iteration of the optimization process, the batches
are randomly reassembled so that pair-wise distances can be
computed across the entire data set.
The double sigmoid function in Equation (3) serves two

purposes. It limits the effect of the similarity loss by setting
L 1sim , such that it is only important when the fidelity loss is

also comparably low, Lfid 1. It provides relatively smooth
gradients (compared to e.g., Si j,

2 ), improving the trainability of
the model. It is crucial to measure the similarity between rest-
frame pairs rather than input pairs, because the former provides
a stable measure independent of redshift and observational
window. In addition, rest-frame models usually contain less
noise than the original data (see Figure 3, bottom-left panel).
Inspired by Sinha & Dieng (2021), we add the consistency

loss as a more guided form of the similarity loss:

å
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where si and saug,i are the latent positions of the original and its
corresponding augment spectrum, that has been redshifted by a
random znew from a uniform distribution between [0, 0.5]. In
practice, we set σs= 0.1 which provides a good trade-off
between the consistency and the overall scale of the latent
distribution. Minimizing Lc reduces the latent distances
between galaxy spectra and their augments, improving the
encoding stability against redshift variation. The consistency
loss reinforces that physically similar spectra pairs are pulled
together in latent space, while dissimilar pairs are moved apart
by the (dis)similarity loss term (Equation (4)). This combina-
tion of losses should make the latent space also more
expressive by encouraging of clustering of similar and
separation of dissimilar spectra, which we will exploit in
Section 5.

Figure 2. Euclidean distance distribution in latent space for randomly selected
galaxy pairs (Δsrand, blue) and original-augment pairs (Δsaug). Augmented
spectra stem from the original spectra by artificially altering the redshifts. If the
encoder is redshift invariant, Δsaug = 0. The three panels refer to the result of
training with different terms in the loss function Equation (2). Optimizing the
full loss function (bottom) significantly reduces Δsaug, while increasing Δsrand,
i.e., increasing the separation of different spectral types in latent space.
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3.2. Training

To evaluate the impact of different loss terms, we trained three
models using different strategies: In the first training, we optimize
the model with Lfid alone to serve as the baseline. In the second
model, we optimize +L Lfid sim simultaneously, with an “inverse-
annealing” cycle to gradually increase the slope k1, while k0 is held
constant. For the third model, we add the consistency regulariza-
tion and optimize the full loss defined in Equation (2).

We train each model on an NVIDIA A100 GPU using the same
training and validation data set for 1000 epochs and observe
convergence. The results are summarized in Table 1 and Figure 2.

Our observations indicate no strong evidence of overfitting across
the models, as seen through the consistency between training and
validation/test fidelity. Additionally, incorporating the extra loss
terms appears to yield a minor improvement in the agreement
between training and testing fidelity. With the fidelity loss closely
matched in all three runs, the best performance in terms of redshift
invariance is achieved with all three losses combined. In particular,
including the similarity loss Lsim encourages dissimilar spectra
pairs to move apart (see Figure 2, middle panel), increasing the
average latent distance between random spectra pairs by a factor of
2. Optimizing Lc along with +L Lfid sim reduces the average latent
distance of augmented redshifted spectra by a factor of ∼10

Figure 3. Left: observed spectrum (black) of a galaxy from the test sample at z = 0.02, its reconstruction (red), and reconstructions of augmented spectra with
artificially altered redshifts (color-coded). Zoomed-in versions are shown on the top. The colored bar in the middle-left shows the observed wavelength range of the
augments. Right: UMAP-embedded latent space distribution of the entire SDSS galaxy sample. The white circle marks the example spectrum, and the triangles mark
its augments.

Table 1
Model Performance Comparison Using Different Training Strategies

Training objective Lfid (train) Lfid (valid) Lfid (test) Lsim Lc 〈Δsaug〉 〈Δsrand〉 〈Δsaug〉/〈Δsrand〉

Lfid 0.385 0.386 0.387 L L 0.353 0.540 65.4%
+L Lfid sim 0.387 0.388 0.388 0.177 L 0.483 1.232 39.2%
+ +L L Lcfid sim 0.388 0.390 0.389 0.177 0.020 0.043 1.103 3.9%

Note. The fidelity loss, Lfid, is presented for the training, validation, and test sets for each of the three models. All other terms are evaluated on the test set. 〈Δsaug〉
denotes the average Euclidean distance between encoded data-augment pairs, 〈Δsrand〉 for randomly chosen data pairs. See Figure 2 for a visualization of the same
data. Lsim is evaluated assuming k0 = 2.5, k1 = 5.0. Note that when the latent distance and spectral distance are perfectly aligned, the minimum similarity loss Lsim

is 0.151.
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(Figure 2, bottom panel). As a result, in the latent space of the best-
fit model, the true and augmented spectra are 25 times closer to
each other than the average pair-wise distance, while for the
fidelity-alone model, the original and augmented spectra are only
1.5 times closer than the average. This order-of-magnitude
improvement has been achieved with a very minor decrease in
fidelity, which suggests that the autoencoder indeed has sufficient
flexibility to accommodate the additional demands to the latent
space without sacrificing reconstruction quality.

We suggest that the consistency loss should not be used
without the similarity loss because it merely seeks to compress
the volume occupied by the latent distribution and collapse it to
a point at the origin. Instead, it is best added once a model
trained with fidelity and similarity losses is available.

With the best model, we achieve a desirable redshift-invariant
behavior. Figure 3 shows the reconstructed rest-frame model and
encoded latent position for an example galaxy. The latent positions
of the original and redshift-augmented spectra are stably grouped
together (colored markers in the right panel), even for the z= 0.45
augment (colored in orange) where the dominant Hα emission line
is outside of the observable wavelength range, i.e., unavailable to
the encoder. The reconstruction quality is evidently robust to such
missing features.

4. Latent-space Structure

Following the approach we took in Melchior et al. (2023),
we inspect the latent space distribution by further projecting the
latent variables of the entire galaxy spectra sample into a two-
dimensional UMAP embedding (McInnes et al. 2018). As

shown in Figure 4, the UMAP embedding of the data set is
continuous and connected. To test our assumption that the
latent space encodes the physical properties of the galaxy
without our supervision, we plot the stellar masses, star-
formation rates, and dust attenuation estimates from the
GALEX-SDSS-WISE LEGACY CATALOG (Salim et al.
2016, 2018), which covers ∼80% of the SDSS galaxy spectra.
As shown in Figure 4, the two-dimensional embedding of the

latent space strongly correlates with each of the physical properties:
the specific star-formation rate is predominantly following a
continuous trend in the counter-clockwise direction, from the most
quiescent galaxies to starburst galaxies (bottom-left panel). The
stellar mass of galaxies correlates with the clockwise direction
(top-right panel). The galaxies with the strongest dust attenuation
seem to cluster around a “locus” where the star-forming and
quiescent galaxies are squeezed together, and the attenuation
weakens inside out in the radial direction (bottom-right panel).
One might notice that the stellar mass appears to correlate

with redshift (top-left panel). As we have argued in Melchior
et al. (2023), this is an artifact of a magnitude-limited sample.
At high redshift, only the most massive galaxies are observed,
while low-mass galaxies can be observed only at low redshifts.
By inspecting the latent space structures, we conclude that

our latent space is well behaved and physically informative.
One can, for instance, assign an estimate of the physical
properties of an SDSS-I spectrum according to its neighbors in
latent space. Similar approaches have been reported with direct
embeddings, but have so far been restricted to, e.g., lower-
dimensional spaces of broad-band SEDs (Hemmati et al. 2019)

Figure 4. UMAP embedding of the latent variables for all 531,890 SDSS galaxy spectra, color-coded by redshifts (top left), stellar masses (top right), specific star-
formation rates (lower left), and dust attenuation in rest-frame V band (lower right). The lower right histograms show the distribution of physical properties of ∼2000
samples located inside a small box (marked black/white) in the UMAP space.
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or to spectra at z≈ 0 (Traven et al. 2017). We see this
capability as beneficial for subpopulations of galaxies where
conventional spectrum analysis does not produce reliable
parameter estimates, or none at all. Without the extended loss
during training introduced in Section 3, the association between
latent space position and physical parameters would be subject
to random scatter from variations in redshift.

5. Outlier Detection

Because of our choice of additional loss terms, we surmise
that the latent space is also well suited for outlier detection, as
the anomalous samples will be pushed away from more typical
ones. However, despite the apparent simplicity of the UMAP
embedding in Figure 4, the latent space has a complex
distribution in S. Determining outliers in this space is not
trivial. We therefore implement an additional mapping from the
latent distribution of the SDSS galaxy sample to a S-
dimensional normal distribution using a normalizing flow.

5.1. Normalizing Flow

A normalizing flow (NF; Papamakarios et al. 2017) consists
of a series of trainable reversible transformations. Let us define
f= fi ◦ f2...◦ fn as the transformation from the base space u to
target space s. Let πs(s) be the target density and πu(u) be some
simple base density (i.e., Gaussian). The resulting model of the
probability density in the target space is:

p=
¶
¶

-
-

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ( )) ( )s s
s

p f
f

det 6u
1

1

where ¶ ¶-( )sfdet 1 is the Jacobian of the inverse transforma-
tion f−1. It can be shown that maximizing the likelihood of data

( )splog is equivalent to minimizing the Kullback–Leibler (KL)
divergence between the proposed distribution and target
distribution DKL(πs(s)∥p(s)).
To implement these transformations, we set up a five-layer

masked auto-regressive flow (MAF) with 50 hidden features

Figure 5. The latent space distribution of the validation data (black) and the distribution of the mock samples generated by the normalizing flow (blue) for each of the
six latent variables.
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using nflows (Durkan et al. 2020) and adopt the total
negative log-likelihood as the loss function.

å= ( ) ( )sL plog . 7
i

MAF i

The entire SDSS galaxy samples are encoded by the best
pretrained autoencoder, with 85% samples used for training
and 15% for validation. We train the normalizing flow on an
Intel CPU node with 4G RAM using 10,000 samples per batch
and observe convergence after 2000 epochs.

We test the performance of our normalizing flow by taking
samples from the base distributions and using the model to
transform them into the learned target distribution. As shown in

Figure 5, the distribution of the mock sample generated by the
model and the true latent distribution of the validation set
(N= 104,786) are essentially indistinguishable.

5.2. Top-ranked Outliers

Having confirmed that the normalizing flow accurately
reconstructs the encoded parameters of SDSS galaxies, we
evaluate the likelihood for each spectrum in the base
distribution, where the anomalous data will be assigned low
likelihoods. We show a sample of the top-ranked, i.e., lowest
probability, outliers in Figure 6.
For further analysis, we focus on the targets with low

likelihood but good reconstruction quality, excluding the

Figure 6. A sample of the outliers identified by the normalizing flow, ranked from top to bottom by the assigned probabilities, includes an interacting galaxy system, a
double-peaked emission galaxy, a star misclassified as a galaxy, a galaxy with extreme dust attenuation, and a chance alignment of a WD-MS binary and background
galaxy. The first column shows the entire normalized spectrum (black) with uncertainties (gray shading) and its reconstruction (red). The second, third, and fourth
columns zoom in to important emission/absorption lines. The corresponding images are shown in the last column. The legend on the top left corner includes the SDSS
ID, redshift, reduced chi-square, and the negative log probability of each spectrum.
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strongest line emitters, for which the maximum flux is more
than 100 times the continuum flux, as the SPENDER model
often fails to accurately reproduce such strong emission lines.
We visually inspect the SDSS spectra and images of the top
100 objects that are assigned the lowest likelihood, and find a
variety of different objects, from blends to supernovae.

The largest group of NF outliers is formed by 44 blended
objects—superpositions of multiple galaxies and/or stars.
Identifying blends in images can be relatively straightforward,
but detecting them from spectroscopic data is often challen-
ging, especially when the spectra lack emission lines. Our
method is particularly sensitive to blends, as the encoder could
not easily reconcile the line and continuum features of the two
objects with its expected spectrum shape of a single object. The
NF anomaly detection is able to identify blends as outliers even
when the spectra are almost featureless, which suggests that the
autoencoder indeed has a reliable notion of the typical shape of
a common continuum. In 31 of the 44 blends, the primary and
secondary objects are well separated in the SDSS image. We
present an example of such object, SDSS 2141-53764-533
(- =plog 47.87), a complex interacting system with long tidal
tails, in the top row of Figure 6. In the remaining 13 blending
systems, the primary and secondary objects are too close to be
distinguished visually. In this case, we first subtract the best
SPENDER model from data, then look for a second set of
features in the residual spectrum. We show an example, SDSS
1010-52649-301 (- =plog 21.98), with interesting patterns in
the residual spectrum in the last row of Figure 6. This system
appears in a white dwarf-main-sequence binary catalog (Liu
et al. 2012), and the strong emission lines suggest that is
coincidentally aligned with a background galaxy.

We identified 10 emission-line galaxies with velocity
structures, such as double-peaked emissions, and asymmetric
lines. When an object with a velocity structure is resolved, we
might observe some additional features in the image. For
example, SDSS 2208-53880-82 (- =plog 27.56) has a ring-
like structure that indicates rotational motion (Figure 6).
Similarly, another example not shown here, SDSS 617-
52072-326 (- =plog 23.28), also known as LEDA 2816158,
is reported as interacting with a spiral companion (LEDA
2816157), confirmed by the long tidal tail in the image
(Petrosian et al. 2002).

We found two stars that are misclassified as galaxies by the
SDSS data pipeline, one of which is shown in the third row of
Figure 6. K stars can mimic elliptical galaxies that lack
emission lines. It is evident from the image that SDSS 457-
51901-58 (- =plog 27.13) is a star because it has a
morphology consistent with a single point-spread function ,
including visible diffraction spikes.
We found five extremely dusty objects with almost no blue-

side emission. We show one example of a strongly reddened
galaxy, SDSS 1200-52668-24 (- =plog 26.93), in the fourth
row of Figure 6. Evidently, the Hβ emission is heavily
suppressed compared to Hα, and the corresponding image
clearly reveals the presence of dust clouds.
Two outliers, SDSS 2430-53815-267 (- =plog 18.42) and

SDSS 1581-53149-470 (- =plog 19.03), are galaxies hosting
supernovae that were active at the time when the spectra were
taken. Both of them are reported as type Ia supernovae by
Graur & Maoz (2013).
Some of the NF outlier spectra were already reported in the

literature including: SDSS 277-51908-519 (- =plog 18.45) is
identified as a BL Lacertae object by Peña-Herazo et al. 2021.
SDSS 2745-54231-4 (- =plog 18.17) is selected by Lehmer
et al. 2022 as a galaxy with unusually high specific star-
formation rate ( -

+3.77 0.10
0.14 yr−1) and low metallicity (∼0.3Ze).

SDSS 2145-54212-388 (- =plog 19.86) and SDSS 1998-
53433-304 (- =plog 21.18) are star-forming galaxies show-
ing strong nebular emission He IIλ4686 that is believed to be
dominated by emission from WolfRayet stars (Shirazi &
Brinchmann 2012).
We classify five outlier spectra as “Bad Spectra” because a

significant portion of them are missing, while the remaining
parts are simply connected by straight lines.
Lastly, we found five outliers for which we could not find an

explanation through visual inspection. However, we note that
all of them stem from the same plate, 2208, taken on the same
date, MJD 53880. One possible explanation is a subtle
calibration mismatch for this plate.
The types of outliers we found are generally consistent with

those identified by Baron & Poznanski (2017). We note that, in
comparison, our method appears to be more sensitive to blends
as outliers. A possible explanation could be our simultaneous
use of line and continuum features, while their unsupervised
random forest method considers each spectral bin separately.
We summarize our findings from the Top-100 outliers with

our, admittedly subjective, classification in Figure 7. Note that
there is no motivation for limiting the sample to 100 other than
the time it takes to individually inspect and classify each
spectrum. The labels we created for the above NF outliers
describe only our best guess for its assigned low probability
instead of a rigorous and quantitative analysis. We provide the
full Top-100 outlier list in Table 2 and the NF probabilities for
the entire SDSS galaxy sample at our code repository, and
encourage interested readers to carry out their own follow-up
studies.

6. Discussion and Conclusion

In this study, we performed unsupervised outlier detection
on an interpretable, redshift-invariant encoding of SDSS galaxy
spectra using the SPENDER architecture. Our best autoencoder
model generates highly realistic spectra for the entirety of the
SDSS spectroscopic galaxy sample with six latent parameters,

Figure 7. Visual classification of 100 SDSS objects that are deemed most
unlikely given their position in the SPENDER latent space.
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which encode the physical properties probed by the galaxy
spectra.

We defined a new loss term to directly relate distances in
latent space to distances in rest-frame space, which discourages
latent-space degeneracies that act as a source of stochasticity on
any subsequent use of the latents. In particular, the decoder can
learn a more robust and complete underlying rest-frame model
over the entire redshift range. In addition, the association of
latent-space position to physical properties is more stable and
evident with such a robust encoding.

Training with similarity loss encourages physically similar
galaxies to cluster in latent space, as long as there are enough
intermediate objects to link them. This new loss term
encouraged an encoding that is well suited for outlier detection:
outliers are pushed away from more common samples, who
themselves tended to cluster.
We trained a normalizing flow on the latent distribution of

the entire SDSS galaxy sample and identified the top 100
objects that are deemed most unlikely by the normalizing flow
model. By visual inspection and classification, we confirmed

Table 2
The Positions and Visual Classification Labels of the Top 100 SDSS Galaxy Outliers Ranked by Their Negative Log Probabilities - plog

Outlier 1–50 Outlier 50–100

SDSS ID R.A. Decl. - plog Label SDSS ID R.A. Decl. - plog Label

634-52164-68 310.92025 −6.20623 84.79 Blends 2268-53682-16 122.67157 13.11158 22.23 Blends
2753-54234-150 230.47445 12.39628 67.63 Blends 1789-54259-351 190.44328 10.21984 22.16 Bad Spectrum
346-51693-429 243.85497 0.65564 52.18 Blends 348-51696-444 248.53931 1.00628 22.06 Blends
1383-53116-293 221.50511 35.31970 51.83 Blends 1010-52649-301 159.86438 52.47833 21.98 Blends
1578-53496-55 241.85655 28.03230 51.75 Blends 1740-53050-182 140.44511 10.74848 21.95 Blends
2607-54184-354 203.65768 16.62918 51.57 Blends 653-52145-313 4.71200 −10.37686 21.75 Velocity Structure
2141-53764-533 222.01011 29.91320 47.87 Blends 1013-52707-127 170.24723 53.19049 21.49 Bright HII Region
2208-53880-85 246.49823 14.44520 46.48 Velocity Structure 1998-53433-304 159.05510 37.32432 21.18 WolfRayet
755-52235-410 115.89659 32.17637 44.88 Blends 2753-54234-408 230.15202 13.56871 21.16 Blends
2370-53764-120 148.09108 18.06227 42.26 Blends 541-51959-230 113.53775 31.97459 21.03 Sky Contamination
1574-53476-78 246.57670 24.55564 40.27 Blends 2885-54497-174 163.09376 8.98783 20.99 Bad Spectrum
1716-53827-156 225.08889 11.55063 39.82 Blends 2880-54509-269 185.47488 4.46184 20.98 NI-5200
489-51930-33 161.82787 65.11410 37.18 Blends 2245-54208-263 202.76555 25.84251 20.90 Strong Hδ
1980-53433-27 169.71192 38.24940 35.84 Blends 1876-54464-276 133.30146 63.49627 20.72 Blends
1708-53503-620 217.62451 13.65335 34.51 Teacup AGN 2208-53880-42 246.56421 14.24435 20.62 Plate 2208
1296-52962-221 124.98270 6.39953 31.92 Blends 2791-54556-390 223.44661 20.27430 20.60 Velocity Structure
348-51671-460 248.53931 1.00628 31.87 Star 2208-53880-127 245.99632 14.62167 20.41 Plate 2208
891-52584-89 120.29245 32.75213 29.97 Blends 1879-54478-496 148.67673 69.06061 20.21 NI-5200
2795-54563-133 234.11637 16.21026 29.62 Blends 627-52144-321 247.42806 47.29304 20.16 Bad Spectrum
2208-53880-265 245.79470 15.78185 29.47 Plate 2208 1442-53050-520 173.30839 47.04056 20.13 Bright HII Region
2170-53875-149 238.67295 17.30955 29.26 Blends 339-51692-306 195.06886 −2.90912 20.06 Strong Hδ
1713-53827-7 223.43381 9.09825 28.63 Sky Contamination 2208-53880-15 247.24661 14.57195 20.04 Blends
2598-54232-567 187.67913 18.76584 28.51 AGN+He4686 2145-54212-388 222.88978 26.76765 19.86 WolfRayet
1369-53089-530 181.55612 45.33371 28.49 Strong Hδ 1708-53503-256 216.14604 12.37499 19.81 Blends
2522-54570-408 239.28112 14.00622 28.26 Blends 1877-54464-240 138.94872 64.26537 19.75 Blends
1768-53442-243 187.46343 14.06649 28.09 Blends 776-52319-633 176.27600 62.31015 19.70 Strong Hδ
434-51885-137 116.84624 41.54075 27.69 Blends 1463-53063-523 202.48142 47.23385 19.60 NI-5200
2208-53880-82 246.45008 14.48492 27.56 Velocity Structure 593-52026-182 233.43788 2.71444 19.55 Blends
457-51901-58 44.43610 −8.51291 27.13 Star 1786-54450-372 136.14741 62.38961 19.53 Blends
2765-54535-484 226.65602 15.93717 26.98 Blends 486-51910-231 143.96497 61.35320 19.51 Dusty
1200-52668-24 138.81367 40.91724 26.93 Dusty 280-51612-172 170.54637 −0.07120 19.24 Sky Contamination
2570-54081-85 121.76227 7.49888 26.54 Blends 280-51612-213 170.24713 −0.38365 19.24 Blends
1798-53851-174 199.16677 9.57150 25.84 Bad Spectrum 307-51663-111 220.04478 −0.29398 19.23 NI-5200
892-52378-188 122.23627 35.27962 25.35 Blends 2207-53558-27 249.43996 16.59545 19.21 Velocity Structure
1359-53002-195 155.93396 41.06743 24.89 Blends 401-51788-423 25.06214 0.41179 19.13 Blends
1627-53473-611 188.57624 8.23982 24.34 WolfRayet 1581-53149-470 235.10316 32.86590 19.03 SNIa
575-52319-200 155.91516 4.18628 24.34 NI-5200 638-52081-281 316.36185 −7.57458 19.02 Blends
931-52619-573 125.66402 31.50058 24.26 Blends 1677-53148-350 226.10314 44.41580 18.89 Velocity Structure
1608-53138-173 175.89681 11.95587 23.98 Bad Spectrum 2763-54507-360 220.84255 16.21258 18.79 Strong Hδ
1324-53088-240 210.72928 54.37413 23.90 NI-5200 1418-53142-370 239.62236 35.22463 18.67 AGN+He4686
1946-53432-30 148.30424 30.85623 23.84 Blends 551-51993-372 132.80788 50.67865 18.56 Dusty
617-52072-326 235.02012 57.25070 23.28 Velocity Structure 1740-53050-102 141.32669 10.50220 18.49 Velocity Structure
2208-53880-124 246.05605 14.66926 23.17 Plate 2208 277-51908-519 165.98395 0.37677 18.45 BL Lacertae
1999-53503-224 183.90322 33.52926 22.87 Blends 2430-53815-267 132.43307 12.29871 18.42 SNIa
1767-53436-367 185.73890 15.86261 22.82 NI-5200 1269-52937-606 131.88764 31.02697 18.42 Velocity Structure
410-51877-620 44.88340 0.85483 22.57 Blends 2208-53880-281 245.33715 14.68445 18.36 Plate 2208
1721-53857-102 231.05243 8.54481 22.55 Dusty 1753-53383-252 170.07089 13.58969 18.31 Dusty
1740-53050-315 139.70837 10.57356 22.39 Blends 2477-54058-389 159.76004 23.51568 18.20 Strong Hδ
845-52381-246 187.91661 3.94210 22.29 Bright HII Region 2745-54231-4 214.19363 14.70976 18.17 Low-z Starburst
1835-54563-29 233.26141 4.20341 22.28 Velocity Structure 750-52235-326 358.94087 15.87922 18.00 Blends
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that our anomaly detection method finds a wide variety of
meaningful astrophysical and instrumental outliers. The most
common group of outliers we found were due to the blending
of multiple sources, either stars or galaxies. These blends were
present in the SDSS main galaxy sample with high-quality
redshifts. Were they to be used, e.g., in the training of
photometric redshift estimators, they could cause erratic and
suboptimal performance.

We caveat that outliers are, by definition, at locations in
latent space that are sparsely populated. Because very little
training data is available, both the encoding and the modeling
by the normalizing flow are much less reliable for such objects.
We therefore suggest considering the probability p(s) reported
by the normalizing flow rather qualitatively: very low values
indicate rare objects, but the exact values themselves may not
be meaningful.

On the other hand, our immediate reason to utilize a
normalizing flow, namely its fast evaluation of the sample
likelihood, enables applications beyond outlier detection. In
particular, it allows for rapid sampling from the latent
distribution, which, coupled to the decoder, yields mock
samples of realistic rest-frame spectra. As our architecture
can adjust redshift, spectral resolution, and line-spread
function, we can produce mock spectra for instruments or
surveys other than SDSS. Furthermore, because of the clear
association of physical parameters with latent-space posi-
tion, one can estimate those parameters by encoding an
unseen spectrum and then adopting the parameters of interest
from neighbors in latent space, without the need for a full-
fledged spectrum analysis pipeline. To support such
applications, we make our new SPENDER model as well as
the full catalog of latent-space probabilities available at our
code repository.4
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