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Abstract: Background and Aim: In the era of deep learning, numerous models have emerged in the
literature and various application domains. Transformer architectures, particularly, have gained
popularity in deep learning, with diverse transformer-based computer vision algorithms. Attention
convolutional neural networks (CNNs) have been introduced to enhance image classification capabil-
ities. In this context, we propose a novel attention convolutional model with the primary objective of
detecting bipolar disorder using optical coherence tomography (OCT) images. Materials and Methods:
To facilitate our study, we curated a unique OCT image dataset, initially comprising two distinct
cases. For the development of an automated OCT image detection system, we introduce a new
attention convolutional neural network named “TurkerNeXt”. This proposed Attention TurkerNeXt
encompasses four key modules: (i) the patchify stem block, (ii) the Attention TurkerNeXt block,
(iii) the patchify downsampling block, and (iv) the output block. In line with the swin transformer, we
employed a patchify operation in this study. The design of the attention block, Attention TurkerNeXt,
draws inspiration from ConvNeXt, with an added shortcut operation to mitigate the vanishing
gradient problem. The overall architecture is influenced by ResNet18. Results: The dataset comprises
two distinctive cases: (i) top to bottom and (ii) left to right. Each case contains 987 training and
328 test images. Our newly proposed Attention TurkerNeXt achieved 100% test and validation
accuracies for both cases. Conclusions: We curated a novel OCT dataset and introduced a new CNN,
named TurkerNeXt in this research. Based on the research findings and classification results, our
proposed TurkerNeXt model demonstrated excellent classification performance. This investigation
distinctly underscores the potential of OCT images as a biomarker for bipolar disorder.

Keywords: bipolar disorder; biomarker discovering; OCT image classification; Attention TurkerNeXt

1. Introduction

Bipolar disorder (BD) is a psychiatric condition with a global prevalence of approx-
imately 1%, which can significantly impact patients’ social, occupational, and cognitive
abilities, and overall quality of life [1]. The exact etiology of bipolar disorder remains
uncertain. However, the terms “neuroprogression” and “neurodegeneration” have been
emphasized in relation to certain processes underlying this disorder. Neurons can ei-
ther complete their normal development or remain in an underdeveloped state. Con-
versely, “neurodegeneration” describes a process in which a normally developed neuron
degenerates and loses its function [2]. Neuroprogression processes in bipolar disorder
may encompass genetic and epigenetic changes, structural and functional changes in the
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brain, damage to neuronal circuits, disrupted circadian rhythms, alterations in the im-
mune and hormonal systems, impaired neuronal plasticity, increased cell death, synaptic
transmission and signaling issues, activation of neurotoxic mechanisms, and alterations in
neurogenesis [3]. Factors contributing to neuroprogression processes in bipolar disorder
include the dopaminergic system, inflammatory cytokines, oxidative and nitrosative stress,
mitochondrial dysfunction, imbalances in calcium signaling pathways, neuroinflammation,
autoimmune responses, disruptions in tryptophan and its metabolites, and irregularities in
the hypothalamic–pituitary–adrenal axis [4–6]. Brain structural abnormalities have been
examined through neuroimaging techniques and associated with numerous susceptible
genetic variations in genetic studies [7,8]. Whether bipolar disorder is a neurodegenerative
disorder remains a topic of debate. Structural brain changes are considered neurobiological
markers of bipolar disorder, since they can be observed even during acute episodes and
in remission periods [9]. Recent neuroimaging studies indicate increasing evidence sup-
porting neurodegeneration. Magnetic resonance imaging (MRI) studies reveal structural
changes such as increased gray matter in individuals using lithium [10]. Such structural
changes can be observed from initial episodes of bipolar disorder [11]. Furthermore, some
changes associated with the number of mood episodes, such as reductions in gray matter
in the hippocampus, fusiform gyrus, cerebellum, and temporal lobes, may have a pro-
gressive nature [12]. Total brain gray matter volume is correlated with the duration of
bipolar disorder, and this reduction can be considered an indicator of the neurodegener-
ative process [13]. Additionally, a relationship has been found between genetic diversity
and gray matter deficiency in bipolar disorder, and individuals with these abnormalities
may have healthy offspring [14,15]. Numerous studies in the field of neurodegeneration,
particularly neuroimaging studies, provide evidence suggesting that bipolar disorder may
be a neurodegenerative disorder. The examination of the retina is considered a potential
method for early diagnosis of degenerative processes in the central nervous system because
retinal nerve axons synapse with many brain regions, making the retina an extension of
the central nervous system. Therefore, the retina is often described as a ‘window to the
brain’ [16,17]. The inclusion of unmyelinated nerve axons in the retinal nerve fiber layer
(RNFL) and its embryological connection to the central nervous system make the RNFL
an ideal structure for assessing neurodegeneration. The diagnosis of bipolar disorder is
often complex and time-consuming using traditional clinical methods. AI techniques are
used in the literature to detect psychiatric diseases [18–24]. However, in recent years, the
combination of optical coherence tomography (OCT) imaging technology and artificial
intelligence (AI) techniques has enabled a faster and more accurate diagnosis of this psy-
chiatric disorder. OCT can precisely observe microstructural changes in the retinal nerve
fiber layer, while AI algorithms can analyze these data and identify distinctive patterns
indicative of bipolar disorder. This article examines the potential of OCT images and AI
techniques in the diagnosis of bipolar disorder and discusses how this novel approach
could play a role in clinical applications.

1.1. Literature Gaps

The literature gaps identified in OCT image classification encompass several key areas.
Firstly, a reliance on well-established machine learning or deep learning models has been
pervasive among researchers, ensuring high classification performance but constraining the
introduction of novelty. Secondly, there is a noticeable scarcity of attention-based models
within the existing literature. Lastly, a significant portion of researchers has presented
results lacking in explanability, often providing only the classification outcomes.

1.2. Motivation

We are now in what is often referred to as the information era. Consequently, many
researchers have delved into machine learning to extract significant features from data.
In this study, our primary motivation is to introduce a potential new biomarker for diag-
nosing bipolar disorder: OCT images. We developed a novel convolutional neural network
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(CNN) named Attention TurkerNeXt to further our research objective. This proposed CNN
represents a new iteration of ConvNeXt. From this perspective, our contribution is an
original machine-learning model with a focus on attention mechanisms. Additionally, we
provide explainable results.

In this research, our primary objective is the detection of bipolar disorder utilizing
OCT images. Our approach is grounded in a theory positing that ‘Patterns in optical density
across the OCT images may highlight specific biomarkers. Variations in the light absorption
characteristics within the retinal layers could signify structural changes associated with
bipolar disorder’. To substantiate this theory, we applied the proposed TurkerNeXt to the
collected OCT images, revealing a novel biomarker. Our identified biomarker is the OCT
image for bipolar disorder, aligning with our central goal of detecting hidden patterns
within the data.

We assessed the classification performance of our proposed TurkerNeXt using a col-
lected OCT image dataset. This dataset is divided into two categories: bipolar disorder and
control. Furthermore, the dataset encompasses two distinct cases based on eye movement:
(i) top to bottom and (ii) left to right. Upon applying the TurkerNeXt to these cases, we
obtained specific classification results.

1.3. Contributions and Novelties

In terms of contributions and novelties, our research introduced key innovations.
Firstly, we curated a new OCT image dataset tailored for detecting bipolar disorder. Sec-
ondly, we introduced a novel ConvNeXt variant named “Attention TurkerNeXt.

Our primary aim was to explore the potential of OCT images as a biomarker for bipolar
disorder. To achieve this, we collected an OCT image dataset and developed an attention-
based ConvNeXt model. The results obtained through Attention TurkerNeXt underscore
the viability of OCT images as a biomarker for bipolar disorder detection. Importantly, by
leveraging Attention TurkerNeXt, we provided explainable results, positioning our model
as an exemplar of explainable artificial intelligence.

2. Related Works

In recent years, artificial intelligence techniques have played a significant role in
disease detection and diagnostic processes in medicine. In particular, artificial intelligence-
based approaches for diagnosing and monitoring eye diseases using OCT images have
been extensively researched. Studies in this domain aim to enable faster and more accurate
handling of critical health issues such as disease diagnosis and treatment monitoring.
While research has been conducted on the use of artificial intelligence for detecting eye
diseases from OCT images, there is currently no work related to diagnosing psychiatric
disorders using OCT images. Therefore, below is a review of studies in the literature
regarding the detection of eye diseases using OCT.

Thomas et al. [25] proposed a method based on contrast enhancement and adaptive
noise reduction to extract the retinal pigment epithelium (RPE) layer and determine the
drusen height in retinal spectral domain optical coherence tomography (SD-OCT) images.
The drusen height was obtained, and the OCT images were classified as either AMD or
normal. The classification accuracy in a dataset consisting of 2130 images is 96.66%. Per-
domo et al. [26] introduced their deep learning model, OCT-NET, which was developed
to classify retinal diseases. Using this model, they classified OCT images of healthy eyes,
diabetic retinopathy, diabetic macular edema, and age-related macular degeneration in
the SERI-CUHK and A2A SD-OCT datasets. They achieved precision and AUC results of
93% and 86%, respectively, in the SERI+CUHK dataset. In the A2A SD-OCT dataset, they
obtained an AUC result of 99.00%. Lee et al. [27] proposed a deep learning-based model
for distinguishing between normal and AMD (age-related macular degeneration) based
on macular OCT images. Their proposed a modified VGG16 CNN model consisting of
21 layers. The study utilized 52,690 normal macular OCT images and 48,312 AMD mac-
ular OCT images. They yielded a disease classification accuracy of 87.63% and an AUC
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value of 92.77%. Perdomo et al. [28] introduced a CNN-based OCT-NET model to classify
OCT volumes automatically to detect diabetic macular edema. With their proposed 12-
layer CNN network, they achieved accuracy, sensitivity, and specificity results of 93.75%
each. Zhang et al. [29] proposed a more intuitive and robust diagnostic model, consid-
ering its self-improvement capability and the ability to assist clinical triage for patients.
They used 38,057 OCT images (Drusen, DME, CNV, and Normal) to build and evaluate
their model. Their approach utilized a multiscale transfer learning algorithm. Initially,
samples were sent to a self-enhancement module for automatic edge detection and im-
provement. Subsequently, processed data were directed to the image diagnosis module for
disease type determination, which improved efficiency and accuracy. The model achieved
accuracy, sensitivity, and specificity results of 94.5%, 97.2%, and 97% on an independent
test dataset. Abdullahi et al. [30] proposed a 50-layer Deep Residual Neural Network
(ResNet50) convolutional neural network for classifying dry and wet AMD. They utilized
the KERMANY dataset consisting of 32,931 OCT images for model training. Their proposed
method achieved accuracy, specificity, and sensitivity results of 96.56%, 98.20%, and 89.45%,
respectively. Saleh et al. [31] aimed to classify patients of choroidal neovascularization,
diabetic macular edema, drusen, and normal using optical coherence tomography (OCT)
images. They employed two new transfer learning-based techniques, SqueezeNet and
InceptionV3Net, to classify retinal disorder. Data segmentation was used to compare
two SqueezeNet scenarios consisting of 11,200 OCT images for one and 18,000 for Incep-
tionV3Net. The modified SqueezeNet achieved 98% accuracy, while the InceptionV3Net
classifier achieved 98.4% accuracy.

3. Materials and Methods

In this section, we have presented the details of the used dataset and the proposed
Attention TurkerNeXt.

3.1. Dataset

This research was conducted on a study group consisting of individuals diagnosed
with bipolar disorder who were receiving treatment at Elazig Fethi Sekin City Hospital
and Elazig Mental and Neurological Diseases Hospital. During the data collection process,
the Huvitz HOCT-1F OCT device was utilized. OCT image datasets of bipolar patients
were meticulously obtained by scanning the Retinal Nerve Fiber Layer (RNFL) and mac-
ular regions. These regions were scanned horizontally to create cross-sectional slices at
specified intervals. The study included 20 patients diagnosed with bipolar disorder and
30 healthy control individuals. Bipolar patients were assessed using the Beck Depression In-
ventory (BDI) and the Young Mania Rating Scale (YMRS). The relevant socio-demographic
characteristics of the participants are systematically presented in Table 1.

Table 1. Characteristics of the collected dataset.

Diagnosis Bipolar Disorder Healthy Control

Sex 10 female 10 male 15 female 15 male

Mean age, years 36.5 ± 4.25 40.4 ± 8.8 28.7 ± 5.36 30.4 ± 3.55

Age range, years 25–59 18–62 23–48 27–56

Beck Depression Inventory (BDI) 4.37 ± 3.15 4.66 ± 2.87 - -

Young Mania Rating Scale
(YMRS) 2 ± 1.51 2.88 ± 4.62 - -

The sample images are given in Figure 1.
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Figure 1. OCT images from the collected dataset corresponding to various cases.

In Figure 1, we present the collected sample OCT images with two cases. To verify
the hypothesis of nerve-related impairment in the eyes of patients with bipolar disorder
using artificial intelligence, a new OCT dataset was assembled. This dataset was sourced
from both individuals diagnosed with bipolar disorder and healthy controls. Two types of
eye movements were induced to obtain OCT images from these individuals, denoted as
vertical (from bottom to top) and horizontal (from left to right) movements. As illustrated
in Figure 1, structural differences were observed between OCT images of individuals with
bipolar disorder and those of healthy individuals.

The dataset is categorized into two main groups: ‘From left to right’ and ‘From top
to bottom.’ In the ‘From left to right’ category, there are a total of 403 images for bipolar
disorder and 912 images for healthy controls. Similarly, in the ‘From top to bottom’ category,
there are 403 images for bipolar disorder and 912 images for healthy controls. In total, this
dataset comprises 2630 images. The allocation of these OCT (optical coherence tomography)
images into different training and test sets is succinctly summarized in Table 2.

Table 2. Training and test image distributions.

From Left to Right From Top to Bottom

Train Images Test Images Total Train Images Test Images Total

Bipolar
Disorder 303 100 403 303 100 403

Healthy
control 684 228 912 684 228 912

3.2. Attention TurkerNeXt

In this study, we introduced a novel Attention CNN named Attention TurkerNeXt.
Our primary goal was to develop a new generation of ConvNeXt. To achieve this, we inte-
grated components from Swin Transformers [32], ConvNeXt [33], MLP [34], and ResNet [35]
into our model. We utilized four essential blocks to structure this model, which are detailed
below to elucidate the design of the proposed Attention TurkerNeXt.



Diagnostics 2023, 13, 3422 6 of 16

Stem block: In this block, we have used patchify to generate the first feature map.
We have used 4 × 4 sized convolution, batch normalization, and swish activation functions
in this block. The mathematical definition of this block is given below.

out1 = swish(B(C(I))) (1)

swish(x) =
xex

ex + 1
= x × sigmoid(x) (2)

Herein, out1 is the first output, B(.) defines the batch normalization function, and C(.)
implies convolution function. We have used a 4 × 4 sized stride to create a patchify model.

The proposed attention block (Attention TurkerNeXt block): The novelty of this model is
the proposed attention block. In order to propose this block, we used an MLP structure
and shortcut together. In this block, depth-wise convolution, point-wise convolution, and
transposed convolution have been used together. A schematic diagram of this block is
demonstrated in Figure 2 to clarify this block better.
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Figure 2. The proposed attention block. Herein, F defines the number of filters, D represents
depth-wise convolution, and T is the transposed convolution.

The mathematical definition of this block is also given below.

dout = B
(

C
(

outn−1
))

(3)

mout = swish(C(dout))× swish(T(dout)) (4)

at = sigmoid(mout)× swish(dout) (5)

outn = at + outn−1 (6)

Herein, dout: depth-wise outcome, T(): transposed convolution, mout: multiplication
outcome, and at: attention-based output. As can be seen from Figure 1 and the given
equations, we have used both attention and residual connections together in this block.

Downsampling block: In the downsampling block, we used a 2 × 2 sized convolution
with 2 × 2 stride.

Output block: To gather outputs, we used global average pooling a fully connected
layer, and a softmax function in this block.

By using these blocks, we created the proposed Attention TurkerNeXt, and a block
diagram of this ConvNeXt is illustrated in Figure 3.
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Figure 3. Graphical output of the proposed Attention TurkerNeXt.

The graphical output of Attention TurkerNeXt is visually presented in Figure 3, illus-
trating the interconnected blocks, their sizes, and repetitions.

Per Figure 3, we have presented the transition table of the proposed Attention Turk-
erNeXt in Table 3.

Table 3. Transition table of the proposed Attention TurkerNeXt.

Layer Input Size Operation Output Size

Stem 224 × 224 4 × 4, 96, stride: 4 56 × 56

Layer 1 56 × 56
[

d3 × 3, 96
1 × 1, 96

⊗
t1 × 1, 96

]
× 2 28 × 28

Layer 2 28 × 28
[

d3 × 3, 192
1 × 1, 192

⊗
t1 × 1, 192

]
× 2 14 × 14

Layer 3 14 × 14
[

d3 × 3, 384
1 × 1, 384

⊗
t1 × 1, 384

]
× 2 7 × 7

Layer 4 7 × 7
[

d3 × 3, 768
1 × 1, 768

⊗
t1 × 1, 768

]
× 2 7 × 7

Output size 7 × 7 Global average pooling, fully
connected layer, softmax Number of classes

Total learnable parameters ~1.6 million

The novel architecture of Attention TurkerNeXt represents a fusion of cutting-edge
neural network components, meticulously designed to excel in the complex task of iden-
tifying biomarkers associated with bipolar disorder. The model’s success, as evidenced
by its performance metrics, positions it as a pioneering tool in the realm of medical image
analysis.

4. Experimental Results and Discussions

The results obtained are presented in this section. To implement our proposed model,
we utilized the MATLAB 2023a programming environment. The computations were
conducted on a personal computer (PC) with 64 GB of main memory, a central processor
operating at 3.6 GHz, and a graphics card boasting 1920 CUDA cores. We designed the
proposed Attention TurkerNeXt using MATLAB’s deep network designer, building the
network from scratch.
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The TurkerNeXt was trained on the two cases present in our dataset. The training
options for our proposed CNN were as follows:

Solver: Stochastic gradient descent with momentum
Initial learning rate: 0.01
Mini batch size: 32
Number of epochs: 50
Learning drop factor: 0.1
L2 regularization: 0.0001
Momentum: 0.9
Training and validation split ratio: 80:20
Each case was trained using the parameters mentioned above, and the resulting

training and validation curves are detailed in Figure 4.
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Figure 4. Training and validation curves of the proposed Attention TurkerNeXt. (a) Bottom to top.
(b) Left to right. (c) Merged case: bottom to top + left to right.

As shown in Figure 4, our proposed model achieved 100% accuracy in training and
validation for all three defined cases. Additionally, we calculated the testing accuracies for
these cases, and the confusion matrices for each case are depicted in Figure 5.

As illustrated in Figure 5, the proposed Attention TurkerNeXt achieved 100% accuracy
for all three cases. Moreover, we have attained 100% sensitivity, specificity, F1-score,
geometric mean and precision. We have listed our results in Table 4.
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Table 4. Classification results of the presented Attention TurkerNeXt according to the used cases.

Performance Evaluation Metrics
Case

Bottom to Top Left to Right Merged

Accuracy 100% 100% 100%

Sensitivity 100% 100% 100%

Specificity 100% 100% 100%

Precision 100% 100% 100%

F1-score 100% 100% 100%

Geometric mean 100% 100% 100%

4.1. Explainable Results

We have presented the explainable results of our proposed model using the collected
dataset. To achieve these explainable results, we utilized activations. Gradient-weighted
class activation mapping (Grad-CAM) is a prevalent component in explainable artificial
intelligence. Essentially, Grad-CAM provides a heatmap visualization of a specific class
label. This label can be user-selected or chosen based on the highest softmax probability
via Grad-CAM. The heatmap highlights the most significant regions of interest in the
images. Thus, Grad-CAM serves as a valuable method for obtaining interpretable results.
The heatmaps generated from sample images are depicted in Figure 6.

According to the heatmaps, TurkerNeXt identified bipolar disorder by analyzing specific
regions beneath the OCT images, as it effectively recognizes patterns associated with bipolar
disorder in these areas. Conversely, healthy OCTs were identified based on the overall shape of
the OCT image. Per the obtained explainable findings, bipolar disorder may affect the retinal
nerve fiber layer and the retinal pigment epithelium. Differences occurring in these areas can be
detected using OCT in the diagnosis of bipolar disorder.
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4.2. Discussions

This study identified a potential new biomarker by applying a machine learning
model. Consequently, we introduced a novel ConvNeXt called Attention TurkerNeXt.
The proposed Attention TurkerNeXt achieved 100% classification accuracy when applied
to an OCT image dataset. Additionally, we showcased the explainable outcomes generated
by the Attention TurkerNeXt.

Comparative results are provided in Table 5 to highlight the classification prowess of
our model.
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Table 5. Comparative results.

Study Model Dataset Results (%)

[36]

Joint-Attention
Network

MobileNet-v2

OCT2017
500 training images
500 testing images

Accuracy: 95.60
Specificity: 97.10
Sensitivity: 95.60

Joint-Attention
Network

ResNet50-v1

Srinivasan2014
2916 training images

315 testing images

Accuracy: 100.0
Specificity: 100.0
Sensitivity: 100.0

[37] CNN 16,896 images
100:1 Accuracy: 94.35

[38] Transfer learning, Ant
colony optimization

2397 training images
601 testing images Accuracy: 99.10

[39] Swin-Poly
Transformer network

OCT-C8
25,600 training

images
2800 validation

images
2800 testing images

Accuracy: 97.12
Precision: 97.13

Recall: 97.13
F1-Score: 97.10

[40]
Lesion-aware
convolution

neural network

2000 images
10-fold CV

Accuracy: 90.10
Sensitivity: 86.80
Precision: 86.20

[41]
Hybrid ConvNet–

Transformer
Network

Srinivasan2014
3231 images

60:20:20

Accuracy: 86.18
Sensitivity:85.40
Precision: 88.53

OCT2017
84.484 images

60:20:20

Accuracy: 91.56
Sensitivity:88.57
Precision: 88.11

[42] CNN,
iterative ReliefF

Srinivasan2014
3194 images
10-fold CV

Accuracy: 100.0
Precision: 100.0
F1-score: 100.0

OCT image dataset
11,000 images

10:1

Accuracy: 97.30
Precision: 97.32
F1-score: 97.30

Proposed Model Attention TurkerNeXt
Collected Dataset

2630 images
60:15:25

From left to right
Accuracy: 100.0
Sensitivity: 100.0
Specificity: 100.0

From top to bottom
Accuracy: 100.0
Sensitivity: 100.0
Specificity: 100.0

Merged
Accuracy: 100.0
Sensitivity: 100.0
Specificity: 100.0

In our reviewed literature, the field of bipolar disorder detection models is notably
underrepresented, highlighting the need for innovative approaches. In response to this gap,
we conducted a meticulous comparative analysis, strategically juxtaposing the outcomes of
our study with those derived from existing OCT image classification models dedicated to
similar diagnostic objectives. This comprehensive assessment serves to shed light on the
relative efficacy and performance of our proposed model, Attention TurkerNeXt, within
the context of bipolar disorder detection. By presenting a detailed comparison, we aim
to contribute valuable insights into the potential advancements our model brings to the
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forefront of medical image analysis, emphasizing its capability to surpass or complement
existing methodologies in this critical domain.

According to these comparative results, our proposed model achieved a 100% classi-
fication rate. Additionally, we compared it with EfficientNetV2 [43] using our combined
case, and the results are illustrated in Figure 7.
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merged case.

EfficientNetV2, a new generation CNN, stands out as a significant advancement in the
field of deep learning architectures. It is designed to achieve high efficiency and accuracy
across a wide range of tasks. In our study, we chose EfficientNetV2 as a reference model to
assess and compare its performance against our proposed TurkerNeXt.

To conduct a thorough evaluation, both EfficientNetV2 and TurkerNeXt were applied
to our meticulously collected dataset. EfficientNetV2 exhibited a commendable 94.94%
validation accuracy, showcasing its robust capabilities in image classification tasks.

In contrast, TurkerNeXt, our proposed model, outperformed EfficientNetV2 by achieving
remarkable accuracy scores of 100% in both the validation and test sets on the same dataset.
This outcome underscores the effectiveness and superiority of TurkerNeXt in capturing
intricate patterns and features relevant to bipolar disorder detection within OCT images.

The exceptional performance of TurkerNeXt suggests its potential as a powerful tool
for medical image analysis and biomarker identification. The 100% accuracy in validation
and test sets highlights its reliability and precision in distinguishing between individuals
with bipolar disorder and healthy controls based on OCT images. This compelling evidence
positions TurkerNeXt as a promising candidate for further exploration and application in
medical diagnostics and related fields.

Our research’s innovations, findings, advantages, and limitations have been explained below.
Innovations:

- In this research, we have proposed a new deep learning algorithm and this Algorithm
is named TurkerNeXt.

- We have collected a new OCT image dataset to detect bipolar disorder.
- We have shown the explainable results.

Findings:

- The proposed Attention TurkerNeXt model efficiently identified potential biomarkers
through an OCT image dataset. We have listed the findings of the proposed Attention
TurkerNeXt as below.

# Attention TurkerNeXt integrates components from Swin Transformers, Con-
vNeXt, MLP, and ResNet. This amalgamation is unique and tailored for the
specific task of identifying biomarkers associated with bipolar disorder in OCT
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images. The thoughtful integration of these diverse components contributes to
the model’s adaptability and effectiveness in capturing complex patterns.

# The proposed Attention TurkerNeXt block is a novel addition to the architec-
ture. It combines an MLP structure with a shortcut, incorporating depth-wise
convolution, point-wise convolution, and transposed convolution simultane-
ously. The utilization of attention and residual connections within this block
enhances the model’s capacity to capture intricate features relevant to bipolar
disorder. This block’s architecture is distinct from traditional CNN building
blocks, making it a novel contribution to the field.

# Attention TurkerNeXt stands out by providing explainable results, a critical
feature in medical applications. The attention mechanisms integrated into the
model contribute to its interpretability, allowing clinicians and researchers to
understand the basis for the model’s predictions. This emphasis on explainability
is a novel and crucial aspect, especially in the context of medical image analysis.

# The use of the patchify approach in the Stem block to generate the first feature
map is a novel strategy. This method, employing a 4 × 4-sized convolution,
batch normalization, and swish activation functions, contributes to the model’s
initial feature extraction and sets the stage for subsequent processing.

# The graphical output of Attention TurkerNeXt, along with the presented tran-
sition table, provides a comprehensive view of the model’s architecture. This
transparency is crucial in understanding the flow of information through dif-
ferent layers, contributing to the novelty of the model’s design.

# Achieving a 100% classification accuracy on both the validation and test sets
for bipolar disorder detection in OCT images is a remarkable and novel accom-
plishment. This level of accuracy is indicative of the model’s ability to discern
subtle patterns and features associated with bipolar disorder, setting it apart
from existing models.

In conclusion, the Attention TurkerNeXt CNN introduces novel elements, from its inte-
grated components to the attention-based block, explainable results, and innovative architectural
choices. These aspects collectively contribute to the model’s uniqueness and efficacy in the
specific task of identifying biomarkers related to bipolar disorder in OCT images.

- A comparative analysis revealed that the Attention TurkerNeXt outperformed Effi-
cientNetV2, achieving a validation accuracy of 94.94%.

Advantages:

- The proposed model achieves perfect classification performance, indicating its relia-
bility and robustness.

- The model does not just provide outcomes; it gives explainable results, enabling better
understanding and trustworthiness.

- Compared to existing models like EfficientNetV2, Attention TurkerNeXt showcases
superior classification capability, especially in the context of the collected dataset.

- The model’s ability to identify new potential biomarkers can greatly enhance diagnos-
tic methods in medical research.

- The proposed CNN has only 1.6 million parameters. Therefore, the proposed Attention
TurkerNeXt is a lightweight model.

Limitations:

- Larger and more diverse OCT datasets can be gathered. OCT images from other
macular degenerative disorders can be employed to identify patterns indicative of
bipolar disorder.

- Attention TurkerNeXt can be tested for other computer vision problems.

5. Conclusions

Our research on OCT imaging has made a contribution that has fundamentally re-
shaped the landscape of bipolar disorder diagnosis. Attention TurkerNeXt, a ConvNeXt
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model designed for the identification of potential biomarkers associated with bipolar dis-
order, has emerged as a leading force, not only achieving an outstanding classification
accuracy of 100%, but also exceeding the performance of the benchmark model. Efficient-
NetV2 achieved a 94.94% verification accuracy.

Our proposed model is both a lightweight algorithm and has a high ability to produce
explainable results. This critical feature provides an important bridge between machine-
driven precision and meaningful interpretation in the complex field of medical diagnosis.
Reaching 100% accuracy is not just a numerical milestone; It is proof of the concrete impact
and reliability that our model can provide to the front lines of the healthcare industry.

Future efforts should include more comprehensive comparative studies, comprehen-
sive examination of diverse datasets, and rigorous reduction of potential overfitting. While
this work is groundbreaking, it also serves as a dynamic foundation for ongoing research
and continuous improvement.
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