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ABSTRACT 
 

Accurate estimation of reference evapotranspiration (ET0) is crucial for a multitude of applications, 
encompassing drought detection, irrigation scheduling, water resource management, and disaster 
risk reduction. This investigation utilized the FAO-PM equation for ET0 estimation and subsequently 
incorporated meteorological variables as input variables with machine learning (ML) models to 
enhance ET0 predictions. The dataset was bifurcated into training and testing data segments. Four 

Original Research Article 



 
 
 
 

Gaddikeri et al.; Int. J. Environ. Clim. Change, vol. 13, no. 11, pp. 1623-1634, 2023; Article no.IJECC.108260 
 
 

 
1624 

 

distinct machine learning models were deployed in this study, namely Random Forest (RF), 
Support Vector Machine (SVM), Gradient Boosting Machine (GBM), and Linear Regression (LR). 
The performance of these models was evaluated using various statistical indices, including Mean 
Absolute Error (MAE), Mean Sum of Error (MSE), Mean Absolute Percentage Error (MAPE), Root 
Mean Square Error (RMSE), and the coefficient of determination (R2), to pinpoint the most 
efficacious ML algorithm. After conducting a comprehensive analysis involving both training and 
testing data, the results unequivocally identify GBM with MAE values of 0.054 and 0.077, MSE 
values of 0.005 and 0.011, MAPE values of 0.014 and 0.022, RMSE values of 0.072 and 0.107, 
and an R2 value of 0.096 and 0.092 during training and testing, respectively. This model has been 
selected as the optimal choice for precise ET0 estimation within the study region. Subsequently, 
SVM, RF, and LR follow as alternatives in terms of performance, in descending order.  
 

 
Keywords: Evapotranspiration; machine learning; random forest; support vector machine; gradient 

boosting trees; linear regression.  
 

1. INTRODUCTION  
 

The Earth's limited natural resources face an 
escalating risk of depletion, primarily due to the 
concurrent factors of rapid population growth, 
extensive industrial development, and the 
profound impacts of climate change. India is 
expected to become the world's most populous 
nation by 2023, surpassing China, which will 
need to provide sustenance for approximately 
1.66 billion people by 2050 [1]. Among these 
resources, water emerges as a critical factor, 
especially in its vital role as the lifeblood of 
agriculture through irrigation, a fundamental 
component of food security for countries that 
make significant contributions to Gross Domestic 
Product (GDP) and employment. According to 
the Ministry of Jal Shakti, Government of India, 
the average annual per capita water availability 
stood at 1816 cubic meters in 2001, 1545 cubic 
meters in 2011, and 1487 cubic meters in 2021. 
It is projected to further decline to 1367 cubic 
meters by 2031 [2]. The resource crisis 
intensified by climate change is exemplified by 
the disruption of precipitation patterns, prolonged 
droughts, and heightened evapotranspiration 
rates, all of which amplify the competition for 
finite water resources. In response to this 
impending water scarcity crisis, there is an 
urgent need for innovative strategies to ensure 
the sustainability and efficacy of irrigation 
methods, with the goal of safeguarding food 
production systems and economic stability. 
Given this pressing scenario, the necessity for 
effective and sustainable irrigation water 
management has never been more evident. In 
this context, emerging technologies are poised to 
play a central role in addressing these 
challenges. These technologies encompass a 
diverse range of approaches, including precision 
agriculture, remote sensing, data analytics, and 

advanced control systems, collectively providing 
solutions to optimize irrigation practices, enhance 
water use efficiency, and minimize wastage. 
 
Evapotranspiration (ET), a pivotal component of 
the hydrological cycle, is a non-linear and 
intricate phenomenon influenced by a myriad of 
factors encompassing micrometeorological 
variables, soil attributes, crop characteristics, and 
agricultural management practices [3]. Reference 
evapotranspiration (ET0) stands as the most 
widely utilized parameter for calculating crop 
water requirements, devising irrigation 
schedules, maintaining hydrological water 
balances, simulating crop yields, and designing 
irrigation systems. ET0 signifies the volume of 
water that escapes from a continuous expanse of 
vegetation under specific climatic conditions 
when water availability is not a limiting factor [4]. 
Consequently, the precise estimation of ET0 is of 
paramount importance, particularly in regions 
plagued by water scarcity. Several methods can 
be employed to compute ET0, including micro-
weather techniques based on energy balance 
and vapor/mass flux transfer, empirical 
methodologies, lysimetric measurements, and 
soil moisture balance approaches. 
 
Nevertheless, recent advancements in data-
driven techniques, such as machine learning 
(ML), have proven to be more accurate when 
compared to empirical models, especially under 
varying environmental conditions. ML models 
excel in simulating the intricate and non-linear 
nature of ET0. The utilization of ML models for 
ET forecasting has gained significant traction in 
recent years [5-9]. Various ML algorithms are 
employed worldwide for ET0 prediction [10], 
including adaptive neuro-fuzzy neural networks 
[11], least square-support vector machines (LS-
SVM) [12], fuzzy logic [13], multiple-layer 
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perceptron neural networks [14], relevance 
vector machines [15], multivariate regression 
splines [16], and Least Square-Support Vector 
Regression (LS-SVM) [17]. Multiple studies have 
demonstrated that ML-based models provide 
more accurate ET0 estimates compared to 
empirical methods like the Hargreaves-Samani 
method, Blaney-Criddle method, Thornthwaite 
method, Makkink method, and Penman method 
across various regions globally [18]. 
 
Numerous field studies have demonstrated that 
labor-intensive and time-consuming field 
measurements can be effectively replaced by 
machine learning models possessing strong 
predictive capabilities, offering significant time 
and cost savings. These models excel in 
handling the intricate complexities inherent in 
Evapotranspiration (ET0) calculations, including 
non-linear relationships and adaptability to 
changing environmental conditions. 
Nevertheless, despite the availability of various 
machine learning models, challenges persist in 
achieving accurate ET0 estimations under 
specific climatic conditions. In such cases, local 
calibration and accuracy assessment become 
imperative. As a result, this investigation was 
carried out with the primary aim of evaluating and 
selecting the optimal machine learning model for 
estimating ET0 in Thrissur district, Kerala. 
 

2. MATERIALS AND METHODS 
 

2.1 Study Area  
 
Thrissur district, located between latitudes 
10°10’22’’ and 10°46’54’’ North, and longitudes 
75°57’20’’ and 76°54’23’’ East, experiences a 

wet climate with distinct seasons. These include 
a hot summer (March to May), southwest 
monsoon (June to September), northeast 
monsoon (October to December), and a cooler, 
pleasant period (January and February). The 
district receives an average annual rainfall of 
3198.133 mm, with the highest precipitation 
during the southwest monsoon (71.24%). The 
maximum temperature ranges from 29.3 to 
36.20°C, while the minimum varies from 22.1 to 
24.90°C (Fig. 1). December to April is the 
warmest period, and November to February is 
the coldest. Sunshine hours are abundant from 
December to April, resulting in higher 
evaporation rates (up to 7.4 mm/day), whereas 
the monsoon months (June to October) see 
lower evaporation (minimum of 2.9 mm/day) (Fig. 
2). The prevalent soil type is lateritic. 
 

2.2 Reference Evapotranspiration (ET0) 
 
The ET0 calculations for the past four years 
(2015–2019) relied on daily micrometeorological 
data, encompassing parameters such as 
maximum air temperature (Tmax, °C), minimum 
air temperature (Tmin, °C), maximum relative 
humidity (RHmax, %), minimum relative humidity 
(RHmin, %), wind speed (m/s), and sunshine 
hours. The estimation of ET0 was accomplished 
through the FAO-PM method-based ET 
calculator, utilizing all five variables as inputs. 
Equation 1 was applied for the ET0 computation, 
and comprehensive guidelines for this estimation 
method were delineated by Allen et al. [19]. This 
method serves as the benchmark for comparing 
the performance of various machine learning 
approaches. 

 

 
 

Fig. 1. Graphical representation showing temperature changes scenario 
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𝐸𝑇0 =
0.408∆(𝑅𝑛−𝐺)+𝛾

900

𝑇+273
𝑢2(𝑒𝑠−𝑒𝑎)

∆+𝛾(1+0.3𝑢2)
  ...1 

 
Where, Rn is net solar radiation (MJ m-2 day-1), 
Rs is the solar radiation (MJ m-2 day-1), 𝜆 is the 
latent heat of evaporation (MJ kg-1),T is the daily 
mean temperature (°C), U2 is the mean daily 
wind speed at 2 meter height (m/s), 𝑒𝑠 𝑎𝑛𝑑 𝑒𝑎 - 
Saturation and actual vapor pressure (kPa), G - 
soil heat flux (MJ m-2 day-1), ∆ -the slope                             
of saturated water vapor pressure curve            
(kPa/c)  
 

2.3 Description of Machine Learning 
Model  

 
ML models, viz. Random Forest, SVM, gradient 
bosting method, liner regression was developed 
for predicting ET0 using Tmax, Tmin, RHmax, 
RHmin, wind speed and number of sunshine 
hours as predictors and PM-ET as a prediction in 
calibrated and validated models. 
 
2.3.1 Random forest 
 

The Random Forest (RF) algorithm, introduced 
by Breiman in [20], is based on a model known 
as Classification and Regression Trees (CART). 
This algorithm encompasses both regression 
(RFR) and classification (RFC) methods and 
finds applications in a wide range of tasks, 
including regression, classification, and 
unsupervised learning. The fundamental idea 
behind the RF algorithm is rooted in statistical 
theory. It involves the repeated and random 
selection of K samples from the original training 
dataset of size N, creating a new set of training 
samples through a method called bootstrap 
resampling. Subsequently, K decision trees are 
generated, and a random forest is assembled 
based on these bootstrap sample sets [21]. For 
classification tasks, the predictions for new data 
are determined by tallying the votes obtained 
from the classification trees. In regression 
scenarios, the final prediction is derived by 
averaging the predictive values from all the 
decision trees. The operation of the Random 
Forest algorithm can be summarized in the 
following steps: (i) Multiple resampling of the 
original training data. (ii) The random selection of 
a subset of features for each resampling step. 
(iii) The estimation of a decision tree based on a 
resample and the selected features. (iv) 
Accumulation of multiple decision trees to               
create a Random Forest model. These steps 
collectively form the foundation of the RF 
algorithm. 

2.3.2 Support Vector Machine (SVM) 
 
It is a robust machine learning model utilized in 
both classification and regression tasks. The 
SVM algorithm, originally introduced by Vapnik in 
[22], is a supervised machine learning model 
commonly used for pattern recognition and data 
analysis. It has found extensive application in 
regression and forecasting within various 
domains, including agriculture, hydrology, 
meteorology, and environmental studies. The 
SVM model conducts regression estimation 
through a series of kernel functions, which 
effectively transform the original input data from 
a lower-dimensional space to a higher-
dimensional feature space. SVM operates by 
converting the input vector into this feature space 
and establishing the connection with the output 
vector. Its primary objective is to identify a 
hyperplane that optimally separates the data into 
distinct categories while maximizing the margin. 
Initially SVR approach used for rainfall-runoff 
modeling in hydrology. 
 
2.3.3 Gradient boosting trees 
 
GBM, also known as Gradient Boosting Decision 
Tree (GBDT) or Multiple Additive Regression 
Trees (MART), was introduced by Geigy et al. in 
[23] and later by Jensen et al. in [24]. It serves as 
a robust machine learning algorithm that excels 
in practical applications. As defined by Blaney in 
1892 and [25], GBR is composed of three key 
components: a loss function, a weak learner, and 
an additive model. Whenever a decision tree 
performs as a weak learner then the resulting 
algorithm is called gradient-boosted trees. These 
elements work in harmony to optimize, make 
predictions, and progressively incorporate weak 
learners to minimize the loss function. The term 
‘boosting’ refers to the iterative process and uses 
a gradient descent for the optimization. It is used 
to improve the accuracy of trees [26]. Gradient 
Boosting Machine (GBM) is built by many 
decision trees that reduce the residual errors 
from the last iteration [27]. GBM is an ensemble-
based method for regression, classification 
purposes, and applying a weak classifier on the 
data to generate the set of decision trees [28]. 
 
2.3.4 Linear regression  
 
Linear regression is a type of supervised 
machine learning algorithm that computes the 
linear relationship between a dependent variable 
and one or more independent features. The goal 
of the algorithm is to find the best linear equation 
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that can predict the value of the dependent 
variable based on the independent variables. 
The ET0 calculation method was tested by 
focusing on the most basic linear regression 
analysis algorithm among machine learning 
algorithms. MLR and polynomial regression (PR) 
algorithms were applied based on the 
composition of independent variables. Linear 
regression learns relatively quickly, has a high 
explanatory power, and has no significant 
difference in performance compared to other 
algorithms. The MLR model is applied when one 
dependent variable and two or more independent 
variables are used as input data. This method is 
significant when each independent variable has a 
linear relationship with the dependent variable; 
 

2.4 Development and Validation of 
Models 

 
For the training and testing of the models, the 
data set was randomly divided into a training set 
(with 70% of the data) and a test set (with 30% of 
the data). The training set was used to calibrate 
ET0 equations and to model ET0 with heuristic 
models. The prediction of the test set was used 
to evaluate the performance of the equations and 
models. 
 

2.5 Model Performance Metrics 
 
The efficacy of ML models in the estimation of 
ET0 was assessed through a comparative 
analysis against the established FAO-PM 
approach, recognized as the standard. Initially, 
the FAO-PM equation was applied as a 
reference method, and ET0 values derived from 
other ML models were juxtaposed with this 
standard to ascertain accuracy. To gauge the 
performance and precision of the developed ML 
models, various statistical metrics were 
employed. These included the coefficient of 
determination (R2, Nagelkerke [29]), Mean 
Absolute percentage Error (MAPE), Root Mean 
Square Error (RMSE, Huffman [30]), Mean 
Absolute Error (MAE), and Mean Square Error 
(MSE). The model that yielded the highest R2 
value while simultaneously producing the lowest 
RMSE, MBE, and MAE values was identified as 
the optimal model. Detailed mathematical 
expressions for these statistical indicators can be 
found in equation 2-6 for reference. 
 

𝑅2 = {
𝑛(∑ 𝑥𝑖𝑦𝑖)−(∑ 𝑥𝑖)(∑ 𝑦𝑖)

√[𝑛 ∑ 𝑥𝑖
2−(∑ 𝑥𝑖)

2
][𝑛 ∑ 𝑦𝑖

2−(∑ 𝑦𝑖)
2

]

}

2

  

…2 

𝑀𝐴𝐸 =
∑ |𝑦𝑖−𝑥𝑖|𝑛

𝑖=1

𝑁
  …3 

 
  

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑥𝑖)2𝑛

𝑖=1

𝑁
  

…4 
 
 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑥𝑖)2𝑁

𝑖=1   …5 
 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑦𝑖−𝑥𝑖

𝑦𝑖
|𝑁

𝑖=1   …6 

 
Where, yi is observed ith value, xi is predicted ith 

value, 𝑦�̅� is average of observed values, N is the 
total number of observations.  
 

3. RESULTS AND DISCUSSION  
 

The characteristics of daily meteorological 
variables are shown in Table 1. The daily 
minimum temperature varied from 16.5 to 27.7 
°C, while the maximum temperature varied from 
24 to 40.4 °C. The daily wind speed and number 
of sunshine hours in the study area ranged from 
0 to 3.8 m/s and 0 to 10.8 h/day, respectively. 
The ET0 varied between 1.76 and 8.41 mm/day. 
Figs. 2 and 3 shows the monthly variation of 
climatic variables during 2015–2019 in the study 
area. 
 
The results of the performance of various 
Machine learning models are presented in Table 
1 for training and testing periods.  The evaluation 
was conducted on both training and testing 
datasets to assess the models' ability to 
generalize and predict outcomes accurately. 
 
In the present study, all four models (Random 
Forest, Support Vector Machine, Logistic 
Regression, and Gradient Boosting Machine) 
exhibited relatively low Mean Squared Error 
(MSE) values for both the training and testing 
datasets. Among these models, SVM and GBM 
consistently demonstrated the lowest MSE 
values for both training and testing datasets, with 
SVM recording 0.007 and 0.011 for training and 
testing, respectively, and GBM recording 0.005 
for training and 0.011 for testing. On the other 
hand, LR and RF displayed relatively higher MSE 
values, with LR having 0.019 for training and 
0.015 for testing, and RF with 0.007 for training 
and 0.016 for testing. Additionally, all models 
displayed low Root Mean Squared Error (RMSE) 
values, indicating their accuracy in estimating the 
target variable. SVM (with values of 0.085 for 
training and 0.105 for testing) and GBM (0.072 
for training and 0.107 for testing) consistently 
outperformed RF (0.016 for training and 0.085 for 
testing) and LR (0.015 for training and 0.137 for 
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testing) in terms of RMSE, underscoring their 
ability to provide more precise predictions with 
lower error. Furthermore, all models yielded low 
Mean Absolute Error (MAE) values for both 
training and testing datasets, signifying their 
proficiency in predicting the target variable with 
minimal absolute errors. RF and GBM had the 
lowest MAE values, with RF recording 0.049 for 
training and 0.08 for testing, and GBM with 0.054 
for training and 0.077 for testing. SVM and LR 
also performed well in this aspect, though they 
had slightly higher MAE values, with SVM 
recording 0.062 for training and 0.072 for testing, 
and LR with 0.094 for training and 0.089 for 
testing. Additionally, all models maintained low 
Mean Absolute Percentage Error (MAPE) values, 
highlighting their ability to provide reliable 
predictions. RF and GBM exhibited the lowest 

MAPE values, with RF recording 0.012 for 
training and 0.021 for testing, and GBM with 
0.014 for training and 0.022 for testing. SVM and 
LR also maintained low MAPE values, with SVM 
recording 0.018 for training and 0.024 for testing, 
and LR with 0.024 for training and 0.026 for 
testing, underscoring their practicality for various 
applications. The results also indicated that all 
machine learning models demonstrated high R2 
values for both training and testing datasets 
(Figs. 4 and 5), suggesting their capability to 
explain a substantial portion of the variance in 
the data. GBM and SVM consistently achieved 
the highest R2 values, implying their superiority in 
explaining the variation in the target variable, 
while RF and LR also delivered respectable R2 
values, indicating their strong predictive 
performance. 

 

 
 

Fig. 2.  Annual fluctuation in humidity and wind speed within the study area 
 

 
 

Fig. 3. Annual fluctuation in reference Evapotranspiration within the study area 
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Table 1. Statistical indices of ML models for performance analysis 
  

MSE RMSE MAE MAPE R2 

Training Testing Training Testing Training Testing Training Testing Training Testing 

RF 0.007 0.016 0.085 0.127 0.049 0.08 0.012 0.021 0.995 0.989 
SVM 0.007 0.011 0.085 0.105 0.062 0.072 0.018 0.024 0.995 0.992 
LR 0.019 0.015 0.137 0.122 0.094 0.089 0.024 0.026 0.987 0.99 
GBM 0.005 0.011 0.072 0.107 0.054 0.077 0.014 0.022 0.996 0.992 
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Training Data 

 
 

  
 

Fig. 4. Coefficient of Determination for training set data 
 
In this study, we observed that SVM and GBM 
consistently outperformed RF and LR in terms of 
MSE, RMSE, and R2. However, MAE and MAPE 
found that RF and GBM out performed SVM and 
LR ML models. This consistency suggests that 
SVM and GBM have a robust performance 
across various aspects of predictive modeling. 
The superiority of these ensemble-based 
methods is often attributed to their ability to 
capture complex relationships in the data by 
combining multiple learners. It's important to note 
that while SVM and GBM exhibited superior 
predictive accuracy, they may lack the 
interpretability that linear models like LR provide. 
SVM and GBM can be quite slow and need a lot 
of computer power because they have to make 
many different decisions. On the other hand, RF 
and LR are simpler and quicker to use, which 
makes them a better choice if you need fast 
results or have limited computer resources. The 
results emphasize the importance of considering 
multiple evaluation metrics to make informed 
decisions about which ML algorithm best suits a 
particular task. Moreover, it highlights the 
potential of ensemble methods like SVM and 

GBM for achieving high predictive accuracy of 
ET0 Assessment in the present study. SVM and 
GBM, which consistently outperformed RF and 
LR, could be preferred in scenarios where high 
prediction accuracy is paramount. Similar kind of 
study is also reported by the various researchers 
throughout the world. In a study carried out by 
Duhan et al. in [8], an investigation was 
undertaken to evaluate the accuracy of 
estimating ET0 using various machine learning 
models. The results revealed that machine 
learning models produced R2 values ranging 
from 0.800 to 0.998, with the highest value 
(0.998) observed in the Least Square-SVM 
model. Similarly, in 2018, another study 
conducted by a different group evaluated the 
performance of different machine learning 
algorithms, including SVM, RF, and the extreme 
gradient boosting algorithm (XGboost), in 
estimating ET. The study found that SVM 
demonstrated the best performance with both 
accuracy and stability. Mokari et al.2022 
conducted a study in New York to determine the 
most suitable machine learning model for a 
specific area. Their findings indicated that SVM, 
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followed by the Random Forest model, and then 
genetic programming, were the most suitable 
options. These results align with previous 
research. However, Wu et al. in [31] reported 
contrasting results. Their study, conducted in 
Jiangxi Province, China, found that the Random 
Forest model was the best choice for estimating 
ET0, diverging from our findings and those of 
other researchers. 
 
This study holds significant implications for the 
scientific community as it addresses the critical 
issue of accurately estimating ET0, which has 
broad applications in drought detection, irrigation 
scheduling, water resource management. By 
combining the FAO-PM equation with machine 
learning models, including Random Forest, 
Support Vector Machine, Gradient Boosting 
Machine, and Linear Regression, the research 
enhances the precision, accuracy of ET0 
predictions. Besides that, ML large datasets 
efficiently, making them suitable for analyzing 
extensive historical weather data. These models 
are having ability to learn and retaining may 
enhance the predict capacity of the model. 
Additionally, ML automates the ETo estimation 
process, reducing the need for manual 

calculations and potentially costly errors 
associated with human input. The meticulous 
evaluation of these models using various 
statistical indices not only identifies the most 
effective ML algorithm—Gradient Boosting 
Machine—but also provides a valuable 
benchmark for future research and practical 
implementations. Furthermore, the study's 
regional relevance underscores the importance 
of tailoring ET0 estimation methods to specific 
geographic contexts, offering insights and tools 
that cater to diverse regional needs. 
 
Moreover, the choice of the machine learning 
model should match the application's needs, 
considering factors like accuracy, efficiency, 
adaptability, and the balance between complexity 
and interpretability. The findings support the 
potential of machine learning in improving the 
precision and efficiency of ET0 predictions, which 
are essential for sustainable agricultural 
practices and water resource management in a 
changing climate. Besides that, these data-driven 
algorithms have the ability to capture complex 
relationships and patterns in the data, which can 
lead to more accurate predictions of ET0. 

 
Testing Data 

  

  
 

Fig. 5. Coefficient of Determination for testing set data 
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In recent years, there has been a frequent 
occurrence of natural disasters like drought, 
influenced by both natural forces and human 
activities. These disasters have displayed 
escalating intensity, along with peculiar and 
unpredictable patterns. Evapotranspiration 
serves as a crucial indicator for tracking drought 
conditions. Consequently, making accurate ET 
predictions holds significant importance for 
crafting precise irrigation strategies, monitoring 
dry conditions in croplands, and enhancing water 
usage efficiency. ML algorithms possess the 
capability to capture intricate relationships 
between input and output data, making them 
effective tools for solving nonlinear problems. As 
a result, ML techniques are widely employed in 
estimating ET. Therefore, our research involved 
a comparison of the most commonly used ML 
algorithms to identify the top-performing one for 
ET estimation on a regional scale.  
 

4. CONCLUSION  
 
Precise estimation of cropland ET plays a pivotal 
role in drought detection, irrigation scheduling, 
water management and the implementation of 
effective mitigation measures to reduce disaster 
risk. This study initially employed the FAO-PM 
equation for ET0 estimation and subsequently 
integrated meteorological variables as inputs into 
machine learning models for enhanced ET0 
prediction. The model outputs were rigorously 
evaluated using various statistical indices, 
including MAE, MSE, MAPE, RMSE, and R2 
values, with the goal of identifying the best-
performing model. Among the evaluated ML 
algorithms (RF, SVM, GBM, and LR), GBM 
emerged as the top-performing model, followed 
by SVM and RF, while LR exhibited the least 
accuracy when compared to GBM. Therefore, 
based on the findings, it is concluded that the 
GBM machine learning model is the most 
suitable choice for the study region. Future 
research may explore additional machine 
learning models to gain further insights and 
improve ET0 prediction capabilities.  
 

5. FUTURE DIRECTIONS FOR 
RESEARCH 

 
Future research can focus on fine-tuning the 
selected models or exploring new, more 
advanced machine learning techniques to 
achieve even higher accuracy in ET0 estimation. 
Additionally, work may take to explore the 
synergy between ML models and remote sensing 
technologies to improve the accuracy and spatial 

resolution of ET0 predictions. Furthermore, the 
accuracy of the estimated model in this study 
needs to be tested in other regions, and any 
similarities in accuracy among these regions 
should be assessed. 
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