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ABSTRACT 
 

Maize is an essential crop rank first, cultivated all over the world. Maize is being consumed by both 
humans and animals inspite that it is utilized as an industrial product viz., starch, pharmaceuticals, 
alcoholic beverages, oil, cosmetics, textiles, etc. In ancient times, landraces were more popular due 
to presence of more genetic variability, resistant to biotic and abiotic factors and have 
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heterogeneous nature. But due to continuous use of uniform cultivars, landraces were replaced by 
higher yielder. Modern maize has more homogeneity which is vulnerable to any dangerous 
pathogen strain. In the current era of molecular markers, DNA markers play an important role to 
identify diverse germplasm/cultivars. To evaluate the diversity of maize, several mapping 
populations are developed and used for QTL mapping. Linkage mapping was first used in maize in 
the 1990s and is still common now along with genome-wide association mapping. Association 
mapping has been preferred due to the conserved historical linkage disequilibrium and elimination 
for the construction of a bi-parental mapping population. In this review, we focused, how much work 
on genome mapping has been done and what is the prospect of genome mapping.   
 

 

Keywords: Maize; mapping population; genome mapping. 
 

1. INTRODUCTION 
 

Maize (Zea maize L.) is the essential cereal crop 
belongs to poaceae family and is being cultivated 
all over the world. It plays a vital source of 
income for the overwhelming population [1]. 
Maize is utilized in an industrial for the production 
of starch, pharmaceuticals, alcoholic beverages, 
oil, cosmetics, textiles, etc [2]. Due to the diverse 
uses of maize and its product, maize demand 
has increased continuously day by day all over 
the world [3]. Recently, hybrid maize is being 
widely cultivated all over the world due to its 
higher yield as compared to that of landraces. 
Maize has been grown in tropical and sub-
tropical climates [4]. In ancient time, landraces 
were more popular among the farmers as it is 
highly resistant to biotic and abiotic factor due to 
heterogeneous nature; even though the yield 
was low [5]. The present cultivated form of maize 
is originated from its wild relative teosinte (Zea 
mays ssp. purviglumis) but cultivated maize is 
quite distinguished from teosinte in terms of 
morphology and for several other characters [6].  
 

The molecular markers used in several mapping 
populations like mortal and immortal to identify 
the quantitative traits loci (QTLs) [7]. The mortal 
population is a type of segregating, viz., F2 
population and Advanced Backcross (ABC) 
population while in the immortal population which 
will not segregate, viz., doubled haploid (DH), 
Recombinant inbred lines (RIL), F2 derived lines 
and near isogenic lines (NIL) have been used for 
QTL identification [8]. The development of 
molecular markers plays an important role to 
map the QTLs. QTLs is a genomic region 
responsible for quantitative traits [9]. Numbers of 
QTLs were identified by the different researchers 
in maize for different traits using various 
molecular markers (Table 1). 
 

2. MAPPING POPULATION 
 

Mapping population consists of large segregating 
population that is derived from the sexual 

reproduction and used in development of linkage 
map. Mapping population needs diverse parents, 
polymorphism for one or two characteristics and 
should have high heritability for trait of interest 
[9]. The mapping population size should be 
approximately 250-500 for reliable construction 
of linkage map, in which it gives more 
appropriate result [10]. However, large 
population is necessary for high resolution of 
linkage map.  For QTL analysis, mapping 
population should evaluate phenotypically before 
QTL study [9]. This applies for both monogenic 
and polygenic characters [11].  

 
2.1 Moratal Population 

 
2.1.1 F2 Population 

 
F2 population is derived from the selfing of F1 

population or sib mating of F1 population. F1 
population is heterozygous as their parents are 
differ from each other. So, in F2 population one 
recombinants cycle occurred between two loci. 
Dominant and codominant ratio of phenotype is 
of 3:1 and genotypic is of 1:2:1 in F2. F2 
population is mainly used for preliminary study 
and for oligogenes. F2 population required less 
time and the procedure to develop F2 as 
compared to other mapping population is very 
easy as it required only two generations. It 
provides the effects of additive, dominance and 
epistatic variance. Xie et al., evaluated genetic 
map using 7613 SNPs in F2 population and 
found 14 QTLs for tassel branch number (TBN), 
tassel weight (TW), central spike length (CSL), 
and meristem length (ML) [12].  

 
2.1.2 Back cross population 

 
Backcross population is developed by crossing 
between hybrids with either of their parents. 
Crossing between hybrids and recessive parent 
is known as testcross and have 1:1 (dominant 
marker) and (codominant marker) 1:0 



 
 
 
 

Kumar et al.; Int. J. Plant Soil Sci., vol. 35, no. 18, pp. 1061-1069, 2023; Article no.IJPSS.102437 
 

 

 
1063 

 

(codominant marker) ratio in coupling phase and 
repulsion phase respectively. The backcross 
population has advantage for marker assisted 
back crossing of interest trait as proposed in 
advance backcross quantitative trait loci method 
[13].  

 
2.2 Immortal Population 
 
2.2.1 Doubled haploid 

 
Double haploid is produced by the chromosome 
doubling of a haploid using the colchicine 
treatment. They are completely homozygous and 
have all identical sets of chromosomes. Only one 
gene is available for all the genes. Haploid lines 
may develop spontaneously or produced 
artificially. Generally, haploid plants are sterile 
and have weak wealth, less vital. Choi et al., 
used DH lines that were developed from normal 
corn parents (HF1 and 11S6169) [14].  

 
2.2.2 NIL population 

 
Near isogenic line (NILs) developed through 
backcrossing (8). Near isogenic lines are 
identical to recurrent parent except for one 
gene/locus. Practically, NILs are different for the 
single gene and genomic region of variable 
length flanking this locus. In addition, it also 
found different for some random genomic 
segments located elsewhere in the genome. 
Hence, a pair of NILs would most likely to differ 
for alleles from few to several loci which justifies 
the use of the term near isogenic lines for such 
lines. For instance, a line developed by the cross 
between a cultivated variety of tomato and a wild 
variety of tomato [13].  
 

2.2.3 Recombinant inbred lines 
 

Recombinant inbred lines (RILs) derived by the 
inter mating of F2 plants or sib mating progeny of 
F2 individuals’ population. Linkage mapping 
concepts using RILs was first established in mice 
[11]. Single seed descent lines also called RIL 
lines as RIL developed from each single seed of 
every line. RIL produced by the single seed 
descent method allow the self-pollination till 6-8 
generations and hence, it becomes completely 
homozygous. In this method, there is no change 
in genetic makeup due to recombination in 
alternate parent at the same population. Thus, 
RILs create a permanent resource and have 
advantage to replicate indefinitely and could 
share by several groups in the research 
community. In studied, RILs were found better 
and give more appropriate result than a F2 
population [15].  
 

3. QTL MAPPING 
 

QTL mapping theory was described by Sax for 
the first time in 1923. He revealed that seed coat 
color (monogenic trait) decided the seed size in 
bean (a complex trait) [16]. He suggested that if 
segregation of oligogenic trait can detect the QTL 
that is linked with complex trait. This criterion is 
fulfilled by the modern QTL mapping technique 
[17]. The location of QTL on the whole genome 
gives the idea of polygenic characteristics that 
were involved in the expression of gene at 
particular time. A review is written by Miles & 
Wayne [18]. QTL mapping involve testing whole 
genome with DNA markers to know likelihood 
chance present of QTLs. This technique reveals 
the significance QTL among individuals with 
traits of interest [19]. 

Table 1. List of QTLs detected using different molecular markers 
 

S. 
No. 

Marker Trait QTL Chr. Location Mapping 
Population 

Reference 

01 SSR Phosphorus 
treatments 

69 All chr. 210, F2:3 
families 

20 

02 SSR Kernel row 
number 

13 1,2,3,4,5,6,7 500, F2 
Individuals  

21 

03 SSR grain oil and 
starch 

21 1,5,6,7,4,8 265 F2:3 
families 

22 

04 SSR Test weight 5 1,2,.3,4,5,7, 225 F2:3  23 
05 SSR Resistance to 

Aflatoxin 
40 1,3,4,5,9,10 250, F2:3 

families 
24 

06 SSR Root system 
architecture 

36 All Chr. 187 BC4F3 25 

07 SSR gray leaf spot  1,2,5,8 161 F2:3 
families 

26 
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S. 
No. 

Marker Trait QTL Chr. Location Mapping 
Population 

Reference 

08 SSR plant 
architecture 

18 1,2,3,7,9 239, RIL 27 

09 SSR kernel size and 
weight 

55, 28 1,2,4,5,9, 270 F2:3 
families 

28 

10 SSR Gray leaf spot 
resistance 

18 2, 3, 4, 5 & 8 478 F2:3 
population 

29 

11 SSR Ear Fasciation 65 All chr. 149 F2:3 
families 

30 

12 SSR protein, oil and 
starch contents 

25, 13, 
31&15  

1, 2, 5, 6, 8, and 
10. 

498 RILs 31 

13 SSR Grain 
morphology 
traits 

18, 26, 
23&19 

1,2,3,6,7,8,9 58, Ril 32 

14 SSR Inflorescence 
Architecture 

19 1,2,3,4,5,6,7 202 and 218 
F2:3 family 

33 

15 SSR Agronomic traits 15 All chr. 121 Dh 
population 

34 

16 SSR Maize kernel 
size 
And weight 

52 1,2,3,4,5,7,8,9,10 150 f7 rils 35 

17 SSR Forage 
agronomic traits 

42, 
41, 54, 
and 45 

All chr. 250-720 DH 
and RILs 

36 

18 SSR Nitrogen use 
efficiency (nue), 

19 1,2,4,5,8,10 Recombinant 
inbred lines 
(181) 

37 

19 SSR Agronomic traits 15 1, 2, 3, 4, 5, 7, 10  121 Double 
haploid 

38 

20 SNP Northern leaf 
blight 

29 All chr. 25,Nam, ril 39 

21 SNP Southern leaf 
blight 

32 All chr. 5000 RIL  
40 

22 SNP Plant height and 
biomass as 
secondary traits 
of drought 
tolerance 

23 7,8,10,4 150 F2:3 line 41 

23 SSR Kernel related 
trait 

7 1,4,6,7,9,10 F2:3 population 42 

24 SNP Kernel Weight  23,59 All chr. 408 RILs 43 
25 SNP Fusarium ear 

Rot resistance 
15 2, 3, 4, 5, 9, 10 940 elite inbred 

lines 
44 

26 SNP leaf morphology 111 All chr. 215, 223, 208 
and 212 RILs 

45 

27 SNP maize tassel 72 1,2,3,4,6,7,9 866 maize-
teosinte BC2S3 
RILs 

46 

28 SNP ear leaf traits 23, 25, 
&17 

1,2,3,4,6,7,8, 909 ril 47 

29 SNP Vitamin E 31 All chr. 213 F2:3 48 
30 SNP amylose 

biosynthesis 
27 4,6,7,9 464 inbreds 49 

31 SNP Leaf 
Angle&Tassel 
Size 

23 All chr. 213 F2:3 
Population 

50 
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S. 
No. 

Marker Trait QTL Chr. Location Mapping 
Population 

Reference 

32 SNP Cob resistance, 
ear 
Rot resistance 

28 1, 2, 3, 4,5, 6, 7, 
9,10 

258 
Maize inbred 

51 

33 SNP tassel-related 
traits 

27 All chr. 266 F2:3 
families ril 

52 

34 SNP Leaf morphology 
traits 

19,838 All chr. 866 maize-
teosinte bc2s3 
RILs 

53 

35 SNP Kernel size & 
weight 

27 All except 6 and 10 204 ril lines 54 

36 SNP Salt tolerance 65 1, 3, 7, and 9, 209 DH 55 
37 SNP Delayed maize 

flowering in 
response to low 
Phosphate 

41 2, 5, 6 262 Ril 
population  

56 

38 SNP Water deficit-
responsive 

213 1,2,3,4,5,6,7,8,9,10 267 Ril 
population  

57 

39 SNP Dynamic plant 
height 

68 1,2,3,4,5,6,7,8,9,10 Inbred lines 
(117 temperate 
lines, 135 
tropical lines 

58 

40 SNP Tassel 
architecture 

19 1, 2, 3, 4, 6, and 7 359 inbred lines 
and an ibm syn 
10 population of 
273 doubled 
haploid lines 

59 

41 SNP Tassel-related 
traits 

14 1, 2, 3, 5, 7, 8 and 
10, 

148 f2 
population 

60 

42 SNP Plant 
architecture 

21 All chr. 301 RILs 61 

43 SNP Disease 
resistance 
(southern leaf 
blight (slb), 
northern leaf 
blight (nlb), and 
gray leaf spot) 

17 1,2,3,4,5,6,7,8,9,10 253 RIL 62 

44 RFLP Drought 
tolerance  

22 1,3,6,5,7,9,10 105,F2:3 
families  

63 

45 RFLP & 
SSR 

Weevil 
resistance 

17 1,2, 3, 5, 8, and 9, Parental 
population, F2 
individual 

64 

46 RFLP,SSR gray leaf spot 
disease 

30 1,3,4,6,7,9,10 145 ril 65 

47 SSR, 
AFLP 

 Aluminum 
Tolerance 

9 2, 4, 5, 6, 7, 8, 9, 
10 

 350 F2:3  66 

 

3.1 QTLs for Morphological and 
Agronomic Traits of Maize 

 

The list of QTLs was identified by different 
researchers after 2010 is mentioned in Table 1. 
The plant morphology and other characters 
based on genetics determine the grain yield [67]. 
Several other quantitative trait loci were 

discovered for ear length, ear height ratio, ear 
height, plant height, cob color, kernel weight, set 
ear length and ear width etc. in double haploid 
population [14]. Wang et al study genome wide 
association mapping using 43,958 high-quality 
SNPs in 359 inbred lines and an IBM Syn 10 
population of 273 doubled haploid under three 
environments (59).  
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3.2 QTLs Mapping and Plant Disease 
Resistance 

 
Disease resistance has been detected with the 
help of genome wide association study 
associated with the resistance, evaluated under 
3 environments [44]. Many works have been 
described to kernel and cob including with ear rot 
resistance caused by F. verticillioides cob rot 
(FCR) [51]. Diverse lines with high density 
markers have been conducted for common rust 
resistance under multiple environments and it 
was feasible to found QTL and several candidate 
genes. Zwonitzer et al 2010 investigated 
correlation among three diseases resistance and 
found highest association between SLB and GLS 
resistance. A significant association was found 
between resistance to each of the diseases and 
time to flowering. A total 9, 8, and 6 QTL were 
found for SLB, GLS, and NLB resistance 
respectively in maize [68]. 
 

4. CONCLUSION   
 

Genomic approach is one of the most powerful 
tools for accelerating the knowledge of genome 
region. With the rapid increment of genomic 
technology all kinds of diversity in different 
environment can be assessed. Maize is one of 
the important cereal crops cultivated over 
worldwide. Multi location data will help to 
determine yield and yield related traits. The 
Maize genome presents many technical 
challenges, to discover quantitative trait loci in 
maize is difficult task, in spite that, many QTLs 
have been discovered for agronomical traits and 
biochemical traits. In this review paper, we 
described the details of quantitative traits loci for 
agronomical traits.  
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