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ABSTRACT 
 

Globally, fish production in the wild is decreasing, and different aquaculture systems are presently 
being used for broodstock development in the captivity. Seasonally, broodstock raised in captivity 
exhibit different form of reproductive dysfunction at the level of the brain-pituitary-gonad (BPG) axis. 
Primarily, vitellogenic completion and final oocyte maturation are inhibited in females, and males fail 
to spermiate spontaneously in the captivity. Reproductive dysfunctions are also observed during 
sexual differentiation, pubertal onset and sex conversion periods in teleosts. To overcome these 
problems, different hormonal preparations, primarily gonadotropin-releasing hormones (GnRH) are 
used. In recent years, kisspeptins have been shown to be potent in inducing gonadal growth and 
maturation in teleost fish. Understanding the form of reproductive dysfunction is important in 
formulating suitable hormonal preparations for inducing gametogenesis. The paper reviews the 
problem of reproductive dysfunction and their possible reason for formulating different hormonal 
preparations. 
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1. INTRODUCTION 
 
Fish maintained in different aquaculture system 
fail to experience natural environmental 
conditions, and result in the failure of 
reproductive system to complete normal 
gametogenic cycle in the captivity. Cultured adult 
fish exhibit different form of reproductive 
dysfunction, observed during seasonal 
reproductive cycle [1–9]. In gonochortistic female 
teleost fish, the two major problems encountered 
are failure to initiate and complete the 
vitellogenesis, and the other is failure to undergo 
final oocyte maturation and ovulation, after 
completion of vitellogenesis in the captivity. In 
cultured males, spermiation is the major problem 
encountered; however, problem in the 
completion of spermatogenesis have been 
reported in few cultured freshwater and marine 
species [4,6]. A shift in the sexual differentiation 
and pubertal onset timing periods has been 
reported in few farmed finfish [10]. Particularly, 
pubertal onset is delayed in number of large 
teleost species including marine scombrids which 
take several years to initiate first reproductive 
cycle in the captivity [11–14]. Primarily, low 
activities of different elements of reproductive 
brain-pituitary-gonad (BPG) axis including 
kisspeptin, gonadotropin-releasing homone and 
sex steroid have been attributed primarily to the 
reproductive dysfunction in captivity.  
 

2. REPRODUCTIVE BRAIN-PITUITARY-
GONAD (BPG) AXIS  

 
BPG axis is a reproductive axis involved in the 
regulation of fish gametogenesis [3,15,16,17–
21]. It is well known that brain gonadotropin-
releasing hormone (GnRH) play a major role in 
the control of pituitary gonadotropins, follicle 
stimulating hormone (FSH) and luteinizing 
hormone (LH). These pituitary GtHs in turn 
regulate the production of sex steroids driving 
different stages of gametogensis [22]. As teleost 
fish express multiple GnRH forms in the brain, 
more than one form suggested to be involved in 
the stimulation of pituitary gonadotropins 
suggesting their complexity in modulating 
gametogenesis [3].  
 

Particularly, in late evolved fish, such as 
Perciformes, Atheriniformes and 
Pleuronectiformes expressing three GnRh forms, 
GnRh1 form has been shown to be 
predominantly involved in the control of pituitary 

Fsh and Lh release [3,23]. In cyprinids and 
salmonids expressing two GnRh forms, GnRh3 
form was found to be controlling the pituitary Fsh 
and Lh release [8,24]. GnRH acts at a highest 
level of the BPG axis and has advantage than 
the use of pituitary gonadotropin preparations 
including crude pituitary extract and HCG. 
Chemically synthesized GnRH eliminates the risk 
of the transmission of disease, and high degree 
of interspecies similarity of GnRH decapeptides 
allow single preparation to be used for more than 
one fish species [25]. The differences in multiple 
GnRH forms need to be considered while 
selecting inducing agents based on GnRH in 
finfish breeding. In recent years, several 
upstream regulators have been demonstrated to 
influence GnRH systems in fish [9,26–28]. 
 

3. REPRODUCTIVE DYSFUNCTION IN 
FARMED FINFISH 

 
Cultured eel, mullet and jack mackerel fail to 
complete vitellogenesis in the captivity, based on 
the observation of repeated injection of inducing 
agents like human chorionic gonadotropin (hCG) 
and GnRH failing to induce positive influence 
[8,29]. Interestingly, few studies have indicated 
low expression of brain gnrh1, and pituitary fsh 
and lh in cultured fish, in comparison to wild fish 
of similar reproductive stages [30–33]. Also, 
studies have confirmed low level of circulating 
Estradiol-17β in the peripheral circulation and 
low expression of aromatase [3,34]. These low 
expressions of different elements of BPG axis 
result in higher rate of ovarian atresia.  
 
In marine scombrids including chub mackerel, 
female fish fail to complete final oocyte 
maturation in captivity. In these species, studies 
have confirmed low level of pituitary GnRH and 
LH [32,33,35,36]. Also, circulating levels of 
maturation inducing hormone, 17α,20β-
dihydroxypregn-4-en-3-one (17α,20β-DP) have 
been low in captive fish when compared to wild 
fish of the same reproductive stage. Similar 
reasons have been attributed to male fish failing 
to spermiate in captivity. Overall, it is clear that 
captive stress and absence of natural 
environment results in the reduced activity of 
BPG axis [3,5,6,37–39]. 
 
In gonochoristic male fish, spermiation is the 
major problem encountered. However, problem 
at the level of spermatogenesis have been 
reported, and few freshwater species fail to 
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undergo spermatogenesis in captivity. In 
addition, few species of captive females and 
males take longer duration to undergo gonadal 
growth and maturation. To overcome these 
problems, several hormonal preparations have 
been used and found to show prominent results 
[3,8]. Gonadal steroids play major roles in 
controlling the synthesis and release of FSH and 
LH, and both positive and negative feedback 
effects of androgen and estrogen have been 
demonstrated in teleosts [11,22,40–44]. In 
captivity, operation of positive and negative back 
loop affected due to onset of ovarian follicular 
atresia and apoptosis, resulting in low level of 
sex steroids.  

 
Due to lack of suitable environmental conditions 
and limited breeding tank space, significant rise 
in the hormonal levels of brain GnRH, pituitary 
GtHs and sex steroids are not observed [5,6,45]. 
This is observed in several species including 
Indian major carps, Chinese carps and Indian 
catfish which fail to exhibit spawning in the 
captivity [46-51]. Crude pituitary extracts 
containing gonadotropins and purified fish 
gonadotropins were used for induced breeding in 
salmonids, cyprinids, cichlids and later attempted 
in several finfish [1,2,52–60]. In recent years, 
slow releasing devices like osmotic pumps are 
used for administering pituitary extract 
particularly in species which fail to initiate 
vitellogenesis in captivity. Japanese eel (Anguilla 
japonica), which fail to initiate vitellogenesis in 
captivity, implantation of a single salmon pituitary 
extract loaded osmotic pump (1.5–4 mg/day/fish) 
significantly stimulates vitellogenesis, and 
subsequent implantation of the same osmotic 
pump yield fully-grown female eels [29]. Similar 
strategy can be applied for species exhibiting 
severe reproductive dysfunction in captivity [24].    

 
Difficulty in obtaining the purified and 
concentrated form of fish gonadotropins, other 
inducing agents like GnRH analogues are 
presently used widely in the aquaculture. 
Particularly, synthetic GnRH based analogues 
like Ovaprim, Ovatide and WOVA-FH and 
several other products designed based on GnRH 
based analogue are presently used for induced 
breeding of finfish in India [50, 61]. Particularly, in 
cyprinids showing strong dopaminergic inhibition, 
dopamine receptor antagonists like domperidone 
and pimozide are incorporated along with LHRH 
or GnRH preparations [54,62]. Like pituitary 
extract, few studies have indicated the potency of 
brain extract to induce pituitary gonadotropins 
under in-vitro and in-vivo conditions [23,63].  

Multiple spawning in Chinese carps has been 
achieved through administration of multiple 
hormones. Two injections of luteinizing hormone 
releasing hormone analogue (LHRH-a), human 
chorionic gonadotropin (HCG), carp pituitary 
(PG) or a combination of two of these induces 
multiple spawning in Chinese carps [48]. 
Additionally, multiple spawning is affected in 
captive maintained females and males. This is 
mainly due to the sustained release of brain 
GnRH and pituitary LH in subsequent 
progression of different stages of 
gametogenesis. In few species, decrease in the 
circulating sex steroids has been demonstrated, 
resulting in ovarian follicular atresia and failing to 
spermiate in females and males, respectively. In 
Indian catfishes, administration of oxytocin after 
GnRHa injection induces voluntary captive 
spawning, suggesting possibility in application of 
similar methods for obtaining higher quality eggs 
in Indian major carps and Chinese carps [63,64].  
In recent years, development of ELISA based 
systems for quantifying the circulating FSH and 
LH level in fish blood have improved our 
understating on their involvement in different 
stages of gametogenesis, and hormone dose 
requirement for induced breeding in aquaculture.   

 
4. GnRH ANALOGUES IN INDUCED 

BREEDING 
 
The functional part of GnRH protein is 
decapeptide that is processed from the precursor 
by removal of the signal peptide and cleavage at 
the dibasic amine acid to separate GnRH 
associated peptide (GAP) region [3,24]. NCBI 
GenBank accession nos. of finfish expressing 
three and two GnRH forms in the brain are 
shown in Table 1 and Table 2, respectively. 
Amino acid sequences of multiple GnRH forms in 
finfish are presented in Table 3. Teleosts share 
the mammalian GnRH (mGnRH) form in the 
GnRH1 group with other vertebrates [65,66]. 
However, different variant of GnRH1 form has 
been reported in seabream (Sparus aurata), 
medaka (Oryzias latipes), pejerrey (Odontesthes 
bonariensis), African catfish (Clarias gariepinus), 
herring (Clupea harengus pallasi), whitefish, 
(Coregonus clupeaformis), spotted catshark 
(Scyliorhinus canicula), dogfish (Squalus 
acanthias) and Sea lamprey, Petromyzon 
marinus [3,67] (Table 1). 
 
Decapeptide GnRH analogues commonly used 
in finfish breeding are an analogue of 
mammalian GnRH, called LHRHa and an 
analogue of salmon GnRH, called sGnRHa 
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[7,102]. GnRH analogues are primarily designed 
from the functional decapeptide region. Amino 
acid at position 6 (Glycine) is highly conserved in 
different fish species but suggested to be a target 
site for proteolytic digestion and thus, reducing 
the half-life of the peptide in circulation [103]. In 
these analogues, two modifications are 
performed. D-Amino acid that are mirror image 
forms of naturally occurring L-form, are 
substituted at 6th position, making GnRH 
analogue more resistant to degradation and 
increased half life in the peripheral circulation 
[104]. Also, both analogues lack 10th amino acid, 
and instead end with an ethylamide (NH-CH2-
CH3; abbreviated as NEt). This modification at 
10th position increases binding affinity towards its 
cognate receptor. The primary structure for 
mammalian GnRH is Glu-His-Trp-Ser-Tyr-Gly-
Leu-Arg-Pro-Gly-NH2 and the corresponding 
analogue is Glu-His-Trp-Ser-Tyr-D-Ala-Leu-Arg-
Pro-NH-CH2-CH3. Likewise for salmon GnRH is 
Glu-His-Trp-Ser-Tyr-Gly-Trp-Leu-Pro-Gly-NH₂  
and the corresponding analogue is Glu-His-Trp-
Ser-Tyr-D-Arg-Trp-Leu-Pro-NH-CH₂ -CH₃  
[53,102]. Amino acid sequences of GnRH 
analogues used in induced breeding of finfish are 
presented in Table 4. GnRH decapeptide and its 
synthetic analogues are shown to stimulate 
gonadotropin secretion in teleosts. However, in 
many cyprinids gonadotropin releasing inhibiting 
factor (GRIF's) inhibits the effect of GnRH 
decapeptide on gonadotropin (GtH) release. This 
inhibitory effect is prevented by inclusion of 
dopamine receptor antagonists such as 
domperidone, pimozide, metoclopramide, or 
reserpine in the GnRH decapeptide [53,54]. 
GnRH analogues are sold in many brand names 
in different countries, with modifications in 6th and 
10th amino acid positions. These analogues are 
administered using different ways: intramuscular, 
intravenous, intraperitoneal and intracranial.   

 
Several studies have indicated use of different 
forms of GnRH decapeptide in inducing GtH 
mRNAs under in-vitro conditions including 
differential response of administered GnRH at 
different stages of gametogenesis [30,103]. 
Lumayno et al. [39] demonstrated that all three 
native forms of GnRH including a mammalian 
GnRH analogue stimulate luteinizing hormone 
from cultured pituitary cells of chub mackerel 
under invitro condition, suggesting the potency of 
native multiple GnRH forms in induced breeding. 
Several studies have demonstrated that GnRH2 
(cGnRH-II form) has a higher binding affinity 
compared to other GnRH forms mainly due to the 
preconfigured β-II’ conformation [104]. 

GnRHa releasing-systems are successfully used 
to stimulate gonadal development, maturation 
and spawning of the gametes in several finfish 
species [4,61,105,106]. During the last two 
decades, various GnRHa administration methods 
were evaluated in aquacultured finfish [4,24]. For 
sustained release of pituitary gonadotropin in 
stimulating gametogenesis in multiple spawning 
finfish, recent developments resulted in the 
GnRHa incorporation in a polymeric controlled 
releasing system, which allow releasing of 
hormone from controlled devices like osmotic 
pumps for a period or days or weeks or months 
[4,26,106,107]. The compounds commonly used 
as slow releasing medium are cholesterol and 
cellulose, lactic acid and glycolic acid, or co-
polymers of dimer fatty acid and sebasic acid, or 
acetate of ethylene and vinyl (EVAc). Depending 
on the type of reproductive dysfunction and 
species size, body shape and other biological 
features of the species, slow-releasing medium 
and -devices can be selected for induced 
breeding. 
 

5. PUBERTAL ONSET IN FARMED 
FINFISH 

 

Puberty in fish is the developmental period 
during which an individual becomes capable of 
reproducing sexually for the first time, and 
associated with an appearance of meiotic germ 
cells in the testis and ovary [108–110]. Several 
reasons have been hypothesized for delay in the 
onset of puberty in fish [10]. One major reason is 
the delay in the complete maturation of immune-
euroendocrine circuits and networks. Unlike 
mammals, fish lack bone marrow and lymph 
nodes; instead, the spleen and head kidney are 
sites for the interaction of immune system with 
antigens and harbor the antibody producing 
lymphocytes. The thymus is a primary lymphoid 
organ acting as a centre of T-lymphocyte 
maturation and it is possible that delay in the 
complete maturation of this centre can result in 
delay in pubertal onset in fish [111]. Members of 
the activin/inhibin subfamily have been found to 
play a major role in T cell homeostasis. Follistatin 
is a single chain protein with biological activities 
similar to those of inhibin, but it structurally 
unrelated to activin and inhibin. All the above 
three proteins are shown to regulate pituitary 
FSH secretion without significant effects on 
luteinizing hormone. Activin stimulates, whereas 
inhibin and follistatin suppress FSH secretion. It 
is possible that delay in the activation of the 
above system may result in the delayed 
progression of gametogenesis due to low activity 
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of FSH. It is well demonstrated that an increase 
in FSH level is necessary for progression of early 
gametogenesis [112]. In recent years, kisspeptin 
has been shown to be involved in the activation 
of reproductive BPG axis with evidences in few 
fish indicating that GnRH neurons express 
kisspeptin receptors to influence other 
downstream regulators [13,17,113]. Interestingly, 
in fish showing positive influence of kisspeptin on 
pubertal onset, emerging studies indicate that 
leptin directly influences gonadotropin secretion 
as leptin transmits information about energy 
stored in the peripheral tissues like adipose 
tissue and liver to the reproductive axis [114-

115]. Additionally, in-vivo administration of 
functional kisspeptin peptides induces 
spermatogenesis and oogenesis in immature fish 
[24]. Maintenance of constant temperature in 
different aquaculture systems induce early 
pubertal onset in farmed finfish [116,117]. Recent 
studies also indicate peripheral signals like leptin 
produced in liver and adipose tissues are 
involved in the control of pubertal onset in fish 
[13,28,115]. In migratory salmonids, salinity and 
photoperiod modulate pubertal onset [118]. In 
recent years, surrogate broodstock technology 
has been used to produce donor-derived 
gametes in surrogates [119,120]. 

 

Table 1. GenBank accession nos. of finfish expressing three GnRH forms 
 

Fish GenBank Accession Nos. References 

gnrh1 gnrh2 gnrh3 

Gilthead seabream,  
Sparus aurata 

U30320 U30325 U30311 [68] 

African cichlid fish, Haplochromis 
burtoni 

AF076963 AF076962 
 

AF076961 [69] 

Medaka,  
Oryzias latipes 

NP_0010981
69 

NC_019863 AB041335 [70,71] 

Sea lamprey,  
Petromyzon marinus 

AF14448.1 AF144481, 
DQ457017 

AY052628 [72,73] 

European sea bass, 
Dicentrarchus labrax 

AF224279 AF224281 AF224280 [74,75] 

Barfin flounder,  
Verasper moseri 

AB066360 AB066359 AB066358 [76] 

Atlantic croaker, Micropogonias 
undulatus 

AY324668 AY324669 AY3246670 [77] 

Spotted green pufferfish, 
Tetraodon nigroviridis 

AB212811 
 

AB212812 AB212814 
 

[78] 

Nile tilapia,  
Oreochromis niloticus 

AB104861 
 

AB104862 
 

AB104863 
 

[79] 

Cobia,  
Rachycentron canadum 

AY677175 AY677174 AY677173 [80] 

Pejerrey,  
Odontesthes bonariensis 

AY744689 
 

AY744687 
 

AY744688 
 

[81] 

Black porgy,  
Acanthopagrus schlegelii 

EU099997 EU099996 EU117212 [82] 

Grey mullet,  
Mugil cephalus 

AY373450 AY373451 AY373449 [83] 

Goldlined seabream, 
Rhabdosargus sarba 

EF433770 
 

EF433771 
 

EF433772 
 

[84] 

Grass puffer,  
Takifugu niphobles 

AB531127 AB531128 AB531129 [85] 

Bambooleaf wrasse, 
Pseudolabrus sieboldi 

KC896411 KC896412 KC896413 [86,87] 

Chub mackerel,  
Scomber japonicus 

HQ108193 HQ108194 HQ108195 [35] 

Japanese anchovy, Engraulis 
japaonicus 

JX406273 
 

JX406274 
 

JX406275 
 

[66] 

Spotted catshark, Scyliorhinus 
canicula 

MH468810 MH468811 MH468812 [87] 



 
 
 
 

Selvaraj et al.; ARRB, 36(10): 65-81, 2021; Article no.ARRB.75461 
 

 

 
70 

 

Table 2. GenBank accession nos. of finfish expressing two GnRH forms 

 

Fish GenBank Accession Nos. References 

gnrh1 gnrh2 gnrh3 

Goldfish,  

Carassius auratus 

– U30386 U30301 [88–90] 

Rainbow trout, 

Oncorhynchus mykiss 

– AF125973 

 

X79710 

 

[91,92] 

North African catfish, 
Clarias gariepinus 

X78049 X78047 

 

– [93] 

Japanese Eel, 

Anguilla japonica  

AB026989 

 

AB026990 

 

– [94] 

Arowana, 

Scleropages jardinii 

– AB047326 

 

AB047325 

 

[95] 

Zebrafish, Danio rerio – NM_181439 AJ304429 [96,97] 

Common carp,  

Cyprinus carpio  

– AY246698 

 

AY189960 

 

[98,99] 

chum salmon, 

Oncorhynchus keta 

– AB365004 JX183101 

 

[100] 

Beluga, 

Huso huso 

EF534707 

mGnRH 

EF534706 

 

– [101] 

 

Table 3. Amino acid sequences of naturally occurring multiple GnRH forms in finfish 

 

Position 1 2 3 4 5 6 7 8 9 10 

GnRH I forms 

sbGnRH pGlu His Trp Ser Tyr Gly Leu Ser Pro Gly-
NH2 

mGnRH — — — — — — — Arg — — 

pjGnRH — — — — Phe — — Ser — — 

cfGnRH — — — — His — — Asn — — 

hrGnRH — — — — His — — Ser — — 

wfGnRH — — — — — — Met Asn — — 

scGnRH — — — — His — Trp Arg — — 

dfGnRH — — — — His — — Leu — — 

lGnRH — — Tyr — Leu Glu Trp Lys Pro Gly-NH2 

GnRH II forms 

cGnRH-II 

(teleost) 

pGlu His Trp Ser His Gly Trp Tyr Pro Gly-
NH2 

cGnRH-II 

(elasmobranch) 

— — — — Phe Asp Tyr Arg — — 

lGnRH-II 

(lamprey) 

— — — — — — — Phe — — 

GnRH III forms 

sGnRH 

(teleost) 

pGlu His Trp Ser Tyr Gly Trp Leu Pro Gly-
NH2 

sGnRH 

(elasmobranch) 

— — — — Phe Asp — — — — 

lGnRH-III 

(lamprey) 

— — — — His Asp — — — — 

(sbGnRH, Seabream GnRH1; mGnRH, Mammalian GnRH1; pjGnRH or mdGnRH, Pejerrey or Medaka GnRH1; 
cfGnRH, catfish GnRH1; hrGnRH, Herring GnRH1; wfGnRH, Whitefish GnRH1; scGnRH, Spotted catshark 

GnRH1; dogfish GnRH1; lGnRH, Lamprey GnRH1) 
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Table 4. Amino acid sequences of GnRH I and GnRH III analogues used in induced breeding of 
finfish 

  

Position 1 2 3 4 5 6 7 8 9 10 

GnRH I analogues 

Mammalian 
GnRH 

pGlu His Trp Ser Tyr D-Ala Leu Arg Pro Net 

— — — — — D-Arg Trp Leu — Net 

— — — — — D-Tle — — — Net 

— — — — — D-Trp — — — Net 

— — — — — D-Nal (2) — — — aza-
Gly 

— — — — — D-Ser(t-Bu) — — — Net 

GnRH III analogues 

salmon  
GnRH 

pGlu His Trp Ser Tyr D-Arg Trp Leu Pro Net 

— — — — — D-Lys — — Pro Net 

— — — — — Gly — — Pro Net 

— — — — — D-Lys — — Pro Gly-
NH2 

(D-Amino acid that are mirror image forms of naturally occurring L-form, are substituted at 6th position and 
analogues lacking 10th amino acid is replaced with an ethylamide (NH-CH2-CH3), abbreviated as Net; the table 

information) 
 

6. SEX CHANGE CONVERSION IN 
CAPTIVE MAINTAINED FINFISH 

 
Sex change is widespread in teleosts and it is an 
ontogenetic event in some species; however, in 
others, it can be triggered by stimuli such as 
interaction with conspecifics [121,122]. Groupers 
and Asian seabass are naturally distributed in 
tropical and subtropical regions and they are 
aquacultued in many Asian countries including 
India [123–128]. Physiologically, they are known 
as protogynous and protandrous hermaphrodites 
with sex change from female to male and male to 
female, respectively. This kind of sexuality raises 
several problems in the broodstock management 
in fish hatchery and necessitates hormonal 
treatments for sex change in the hatchery [129–
131].  

 
In several species, rise in the 11-
ketotestosetrone (11-KT) and 17β-estradiol (E2) 
coincides with sex change to male and female, 
respectively  [125–128]. Elevation in the serum 
glucocorticoid, cortisol has been demonstrated in 
gonochoristic fish species, including medaka, 
pejerrey, Japanese flounder that exhibit 
temperature induced masculinization. Also, 
cortisol is shown to be involved in the initiation of 
sex change in protogynous hermaphroditic fish. 
Sex change strategy in the groupers of the genus 
Epinephelus involves the size-advantage model 
with larger individuals undergoing a sex change 
after attaining a certain age and body size [122]. 
In blue spotted grouper, Epinephelus fario 
mature males through sex reversal by the oral 

administration of methyltestosterone at daily 
feeding doses of 0.5 mg and 1.0 mg MT/kg body 
weight for 5 months [129]. 
 

Physiologically, female to male sex change in the 
honeycomb grouper (Epinephelus merra) is 
associated with a drop in E2 levels followed by 
an increase in 11-KT levels [122,125,126]. Also, 
naturally occurring sex change is accompanied 
by significant increase in the size of androgen 
producing cells and androgen production by the 
gonads [123,124]. In several sex changing fish, 
levels of circulating 11-KT have been reported to 
increase with the progression of sex change. In 
captivity, steroidogenic pathways favoring 
production of androgen and estrogen in male 
(protogynous) and female (protandrous), 
respectively do not function effectively and result 
in delay in the sex change. Under aquaculture 
conditions, slow releasing 11-KT implants (10 
ppm/kg body weight) were implanted into the 
body cavity; 100% masculinization was achieved 
on 75th day [122]. In recent years, kisspeptin 
systems are shown to be involved during 17α-
methyltestosterone-induced sex reversal in the 
grouper, likely to be through BPG axis [110,130]. 
Recent studies suggest that gonochorist teleost 
species are amenable to chemical-induced 
gonadal sex reversal even after sexual maturity 
[131].   
 

7. CONTROL OF SEXUAL 
DIFFERENTIATION IN CULTURED FISH  

 

Sexual differentiation of farmed finfish can be 
controlled using hormonal treatments, control in 
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water quality parameters, and genetic 
manipulation [34,130–137]. Feminization in blue 
gill (Lepomis macrochirus) and blue crappie 
(Pomoxis nigromaculatus) are achieved by 
periodic immersions of fry in a 1 mg/l estradiol-
17β solution [138]. Also, feminized female tilapia 
are obtained by feeding fish diethylatilbesterol at 
150 mg/kg feed. Similarly, feminization has been 
achieved in fish showing superior trait in females 
compared to males [139–141].  Several studies 
have demonstrated successful all male 
production of teleost fish using androgens 
[134,136,137]. In addition to androgens, enzyme 
inhibitors targeting steroidogenic pathways have 
been used. Rashid et al. (2007)[138] indicated use 
of aromatase inhibitor, Fardrazole in the diet at a 
concentration between 500 and 1000 µg/g diet, 
which induces testicular development in fugu 
(Takifugu rubripes). Similar method has been 
used in variety of teleost fish [139,140].  
 
There is strong evidence that water temperature 
induces sex reversal in teleost fish. In Pejerrey 
(Odontesthes bonariensis), low temperature (15-
19°C) favours feminization [141,142]. 
Mozambique tilapia (Oreochromis mossambicus) 
reared at a high temperature (37±0.5°C) for 50 
days result in the sterilization of testes lacking 
spermatogenic germ cells. Nile tilapia 
(Oreochromis niloticus) juveniles prefer a 
masculinizing temperature of 36.5°C for inducing 
sex reversal to males [143]. Recently, it was 
demonstrated in yellow catfish (Tachysurus 
fulvidraco) that high temperature (33.5°C) 
induces masculinization. Similar stratagies can 
be applied for manipulating sex and stimulating 
growth under aquacultured condition.   
 

8. CONCLUSION 
 
It is well demonstrated that different elements of 
BPG axis can be used as inducing agents in 
finfish aquaculture. In recent years, 
biotechnological tools have been used for 
production of recombinant proteins. Emerging 
studies indicate the possibility of using 
recombinant FSH and LH in inducing 
spermatogenesis in male eels, suggesting 
development of similar methods for other finfish. 
Also, it was demonstrated that recombinant 
gonadotropin-releasing hormone associated 
peptide can be used as an inducing agent for 
breeding in finfish. This strategy would work 
effectively in a number of fish species, in which 
repeated injection of GnRH fail to induce final 
oocyte maturation and spawning in captivity, 
including its application in manipulating the 

timing of pubertal onset and sex conversion. 
Interestingly, recent studies indicate the 
possibility of using kisspeptin peptide along with 
dopamine antagonists for inducing LH release in 
cyprinid fish and the response is dependent on 
the maturity stage of gonad. There is possibility 
that kisspeptin effect would be superior atleast in 
cyprinids and scombrids when compared to 
GnRH as it acts at higher level in the BPG axis 
and its effect on circulating steroid level would 
mediate positive feedback in the brain for 
sustained release of gonadotropins in fish 
exhibiting asynchronous ovarian development. 
Further studies in other freshwater and marine 
finfish are required to confirm the superior effect 
of kisspeptin peptides on induced spawning.  
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