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ABSTRACT 
 

We study the nonlinear parabolic Fisher’s equations for travelling wave solutions. The analyses 
focus on to describe the analytic solution in the spatial pattern of travelling wave solutions; 
especially the solutions are characterized in invariant with respect to translation in space. There 
are two phases in the work: in the first stage, we analyze dimensional reaction-diffusion equation 
with logistic type growth while in the second phase the non-dimensional equation known as 
Fishers’ equation is studied numerically. To investigate the results numerically, we select the 
explicit-implicit finite difference method (FDM) and the approximate solutions are compared with 
the exact solution in different time steps. 
 

 
Keywords: Travelling waves; analytic solution; Explicit-Implicit FDM; Fisher’s equation; numerical 

analysis. 
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1. INTRODUCTION 
 
Various types of natural processes which entail 
mechanisms through reaction-diffusion equations 
and one of the most important examples of 
nonlinear reaction-diffusion equation are Fisher’s 
equation. This equation has been used for 
designating several types of physical framework 
like heat and mass transfer, flame propagation, 
chemical reactions and so on. In gene 
technology, the necessity of Fisher's equation is 
discussed via travelling wave solutions and has 
been studied in the propagation of a gene within 
a population [1]. Ronald Fisher presented this 
model in [1] and his paper consisted of 
population dynamics to describe the spatial 
spread of an advantageous allele. The Russian 
mathematician (1903-1987), Andrey Nikolaevich 
Kolmogorov took a part on this equation also 
known as Kolmogorov-Petrovsky-Piskunov 
(KPP) and widely familiar as Fisher-KPP 
equation [2]. 

 
In literature, several studies are available and 
many researchers worked on this equation, see 
for example in [1-7] and references therein. An 
analytic method to construct explicitly exact and 
approximate solutions for nonlinear evolution 
equations is suggested by Feng [3,4]. These 
solutions included solitary wave solutions, 
singular traveling wave solutions, and periodical 
wave solutions. As a continuation of the previous 
study, Demina studied the meromorphic 
solutions (including rational, periodic, elliptic) of 
autonomous nonlinear ordinary differential 
equations and developed an algorithm for 
constructing meromorphic solutions. Next Yuan 
in [5] introduced the complex method for solving 
nonlinear Fisher’s Kolmogorov equation of 
degree three. Tyson and Brazhnik discussed 
about travelling wave solution for this type of 
nonlinear equation in two spatial dimensions [6]. 
A numerical scheme to solve this equation was 
developed by Tang and Weber [7]. George 
Adomian introduced another powerful technique 
known as Adomian decomposition method 
(ADM) [8] which is useful for solving nonlinear 
problem like fisher’s equation. Fisher’s equation 
is one of the simplest semi-linear reaction 
diffusion equations and it can exhibit traveling 
wave solution that switch between equilibrium 
states. To execute the behavior of neutron 
population in a nuclear reactor, Canosa [9,10] 
used a particular case of the equation which was 
introduced in [1]. Further, Haar wavelet was 
utilized by Hariharan et al. [11]. Ablowitz and 
Zepetella [12] used Laurent series expansion to 

solve Fisher’s equation. Since travelling wave 
plays an important role in biology, Murray’s 
authoritative work ‘Mathematical Biology’ was 
dedicated to biological waves [13]. To get the 
Fisher’s equation and it’s travelling wave 
solutions, the platform was ordinary differential 
equations [14,15] and for numerical study and 
error analysis, the literature [16,17] can be 
studied. However, several robust numerical 
techniques were presented in [18-28] to solve 
various types of non-linear partial differential 
equations. 
 

In this paper, we consider Fisher’s equation to 
analyze both analytically and numerically using 
implicit-explicit finite difference methods. This 
study has the following novelties: 
 

• Theoretical studies are verified by 
numerical simulations using Implicit-
Explicit Finite Difference Method.  

• The polynomial fit data match with the 
numerical approximations and there is a 
better agreement with the exact solutions; 
see Fig. 4(b), 5(b) and in Fig. 7.  

• The convergence analysis and stability of 
the numerical method are presented in a 
new approach known as the primitive 
variable transformation. 

 

The paper is organized as follows: in Section 2, 
we consider the general Fisher’s equation 
connected with logistic growth function while all 
the results are presented in Section 3. 
Continually we translated the equation into a 
dimensionless form in Sub-section 3.1. In the 
next Sub-section 3.2, we explore the travelling 
wave solutions of a special case of Fisher’s 
equation analytically. The numerical solutions are 
presented graphically to validate the theoretical 
results in Sub-section 3.3 while comparing with 
the exact solution. The stability analysis of the 
equilibrium points are studied in Section 3.4 and 
describe the error analysis. The convergence 
analyses of numerical method are discussed in 
Section 4. Finally, Section 5 concludes the 
summary and conclusion of the paper.  
 

2. FISHER’S EQUATION  
 

Let us consider the following reaction-diffusion 
equation in the general form  
 ���� = d

������ + �(
)   (1.1) 

 

Where, 
 � is a nonlinear function of 
 and 
  is described 
as a  population of organisms, particles of 
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chemicals, insect population, population density, 
or  a colonial bacteria. By considering the logistic 
type of reaction term, the Fisher's equation now 
can be written in the form of 
 �
�
 = d

��
��� + �
 �1 − 
��  (1.2) 
 

 

Here d is the diffusion coefficient or constant, � is 
the intrinsic growth rate, �  is the carrying 
capacity, 
  is time, �  is the spatial location and 
 = 
(
, �) is the state variable of the diffusive 
population in location �  and at time 
  while the 
reaction term follows the logistic law. 
 

3. ANALYTIC RESULTS WITH 
NUMERICAL APPROXIMATIONS 

 

At the initial stage of this section, we translated 
the governing equation (1.2) into the 
dimensionless form. Then the non-linear 
equation is solved analytically to get the 
travelling wave solutions and finally we study the 
problem numerically to compare with the exact 
solution. 
 

3.1 Dimensional Analysis 
 

To acquire the dimensionless form of Fisher's 
equation, at first we consider the dimensionless 
variables 
 	� = 
�  and  � = 
� 

           (1.3) 
 

 

Where, � and �  are scaling parameters. 
Applying chain rule formula, we get 
 ���� = ���
 �
�� (1.4) 

 

Taking the values of � and � from equation (1.3) 
and using in equation (1.4), we obtain  
 ���� = �� �
�
  

(1.5) 

 

Now we can re-write the equation (1.5) such that 
 �
�
 = �� ����  

(1.6) 
 

 

Again, 
 ���� = ���
 �
�� 

⇒ ���� = 1� �
�
 �
�� 

⇒ ���� = 1� �
�� 

Then we can write  
 �
�� = � ���� 

(1.7) 

 
And also 
 ������ = ��� ������ = ��� � 1��
��� = 1� ��
��� 
 
Hence we can get, 
 ��
��� = ������� (1.8) 

 

 
Using the relations as developed in (1.3), (1.6) 
and (1.8), the equation (1.2) yields 
 

 �� ���� = d������� + ��� �1 − ��� � 

⇒���� = d� ������ + �� ��� �1 − ��� � 

⇒���� = d� ������ + ��� �1 − ��/�� 

 

The relation  
 ! = 1, �� = 1 implies that 

 � = 1� and  � = � 

 
So we can say that �  is the reciprocal of the 
intrinsic growth rate and �  is the carrying 

capacity. After setting 
 ! = 1, �� = "	and d� =#  the Fisher's equation is presented in a new 

form such that 
 ���� = # ������ + "�(1 − �) (1.9) 

 
Where, 
 	"  is the reactive factor and #  is a diffusion 
constant. 

 
Let us now suppose that  
 

�∗ = "�	and �∗ = � � "#�%� 
 
and rearrange the equations such that 
 

� = �1"� �∗and � = �∗ �#" �
%�
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The non-dimensionalized variables give us 
 ���� = " ����∗ ���� = � "#�%� ����∗ ������ = ��� ������ = ��� &� "#�%� ����∗'

= � "#�%� ���∗ &� "#�%� ����∗'
= "# �����∗� 

 
This additionally yields 
 " ����∗ = "�(1 − �) +# � "#� �����∗� ⇒ ����∗ = �(1 − �) + �����∗� 
 
For ignoring the superscript star “*” notation and 
let �∗ = 
	 and �∗ = � , we find the required 
dimensionless form of Fisher's equation:  
 ���
 = ������ + �(1 − �) 
 
which introduce a mutation occurring in a species 
distributed in a linear habitat. In this equation, � = �(
, �)  is density of population, �  is the 
spatial variable and	
 is the time. 
 

3.2 Solution and Exploration of Fisher’s 
Equation 

 
For searching the solution and exploration of 
Fisher’s equation, we use phase portrait to 
describe the behavior of the roots and also           
use Implicit-Explicit Finite Difference Method to 
solve the problem. At first we discuss the 
travelling wave solution of the problem while            
the dimensionless form of the Fisher's equation 
is 
 
 ���
 = ������ + �(1 − �) 

 

 

 
Let us consider a particular case of this equation, 
see, for example in [14] 
 
 ���
 = ������ + 6�(1 − �) (1.10) 

 

 

Now we have to search for wave solution of this 
equation. At first we assume a wave 
transformation in the following form 
 �(
, �) = )(*), * = � − +
 (1.11) 

 
At * → ±∞  the function )  approaches to the 
constant values. The function ) to be determined 
by differentiates twice. Here +  is the unknown 
wave speed which must be figure out as a part of 
the solution of the problem. We have to use 
ordinary differential equation for finding travelling 
wave solution of Fisher’s equation [14,15]. We 
can find a second order ordinary differential 
equation for ) from (1.10) and (1.11) such that 

 −+ /)/* = /�)/*� + 6)(1 − )) (1.12) 
 

 
According to the phase plane analysis, it is 
necessary to analyze the equation (1.12) which 
cannot be solved in a closed form. In a standard 
way we write (1.12) as a simultaneous system of 

first order equations by defining 	0 = 1213  and 

hence we obtain 
 

4 /)/* = 0/0/* = −6)(1 − )) − +05 
 

(1.13) 

 
By solving this system for equilibrium points 
 6 0 = 0		0 = −6)(1 − )) − +05 (1.14) 

 
 
There are two stationary equilibrium points such 
that (0, 0) and (1, 0). The system is then 
linearized near the stationary points. For 
obtaining the eigenvalues corresponding to the 
equilibrium points, we have to use Jacobian 
matrix as well as characteristic equations. Now 
Jacobian matrix of the system (1.13) is 
 8(), 0) = � 0 112) − 6 −+� 
 
At (0, 0), the matrix turn to 

 8(0,0) = � 0 1−6 −+� 
 
Sequentially, we need to use the characteristic 
equation for finding the eigenvalues and hence 
define the characteristic equation as follows 
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 |8 − ;. =| = 0 

 ⇒ >� 0 1−6 −+� − �; 00 ;�> = 0 

 ⇒ >−; 1−6 −+ − ;> = 0 

 ⇒ (−;)(−+ − ;) + 6 = 0 

 ⇒ ;� + ;. + + 6 = 0 
 
So the eigenvalues corresponding to the 
stationary point (0, 0) are 
 ;%,� = −+ ± √+� − 242  

 
Similarly, using characteristic equation, we can 
obtain the eigenvalues corresponding to the 
equilibrium point (1,0) such that 
 ;A,B = −+ ± √+� + 242  

 
We can mainly observe the behavior of the 
system from these roots. 
 

• If + ≥ 2√6  then ;%,�  are both real and 

negative. Here (0, 0) is a stable node for 
the linearized system.  

• If + ∈ (0, 2√6)  then ;%,�  are complex with 

negative real part and the equillibirum (0, 
0) is a stable focus.  

• On the other hand, ;A,B  are real and 

opposite signs and in this case (1, 0) is a 
saddle point. There exists finite limits of )(*) as * → ±∞ . In this situation, the 
equilibrium points are the limit points of 
solutions.  

 

For * → ±∞ , we can find the travelling wave 
solutions of (1.12) which is equivalent to 
searching for orbits of (1.13). If they join    
separate equilibrium points then such orbits              
are known as heteroclinic orbits. If the orbit 
returns to the same equilibrium point from             
which it started known as homoclinic. There are 
two orbits giving rise, together with the 
equilibrium point (1, 0) to the unstable manifold 
defined at least in some neighborhood of the 
saddle point (1, 0) such that each orbit E(*) =F)(*), 0(*)G satisfies E(*) to (1, 0) as * → −∞. At 

least one of these orbits can be continued till * → +∞ and reaches then (0, 0) in a monotonic 
way and we can get an exact solution of equation 
(1.10) using initial-boundary conditions such   
that  
 

)(*) = �(
, �) = 1(1 + H(�IJ�))� 
 

 
 

Fig. 1. Phase portrait with c=1 and c=6 
 

For any + > 0 , ther exists a unique right-going 
travelling wave with speed + connecting the state � = 1 , �3 = 0  for � → −∞  to the state � = 0 , �3 = 0   for � → +∞ . Then we will find faster 
waves. 
 

• For + ≥ 2√6 , the wave monotonically 

decreasing function of �, while for + < 2√6, 
it is oscillatory.  

• That is, the critical points in the ) − 0 
plane are (1, 0), a saddle point and (0, 0), 

a stable node for + ≥ 2√6 and a spiral for + < 2√6.  

• So, the orbit is globally defined for * = � − +
 ∈ (−∞,∞)  joining equilibrium 
points (1, 0) and (0, 0). Hence )  is 
monotonically decreasing and becomes 
flat at “±∞” giving a travelling wave front 
solution. 

 

3.3 Implicit-Explicit Finite Difference 
Method  

 

We use numerical methods for solving this model 
and comparing its approximate solution with 
travelling wave solutions of Fisher’s equations. 
Various types of implicit-explicit finite difference 
method are important for solving nonlinear partial 
differential equations.  
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Fig. 1(a). Exact solution M(N) = O(P, Q) for different times over the domain 

 
The main motivation to introduce implicit-explicit 
finite difference method is to compare the 
approximate solution with the exact one and 
polynomial fit data as a new dimension. Now we 
introduce implicit-explicit method [16] for solving 
the governing equations as recalled here  
 
 �
�
 = ��
��� + �
 �1 − 
�� 

              (1.15) 

 
Since we have obtained equation (1.10) which is 
a dimensionless form of the equation (1.15) as 
defined in the earlier section and hence we can 
write 
 ���
 = ������ + 6�(1 − �) (1.16) 

 

Where, 

 

  

the domain,  R = (0,1)  

the initial condition,  �(0, �) = %(%STU)�  and  

the boundary conditions,   �(
, 0) = 1(1 + HIJ�)� �(
, 1) = 1(1 + H%IJ�)� 
 

 
Obtaining the difference method of the equation 
(1.16), at first, we have to use the Taylor series 
in 
 to form the difference quotient 
 ���
 F
V, �WG = �F
V + ∆
, �WG − �F
V , �WG∆
− ∆
2 ����
� (YV , �W) 

                              
(1.17) 

for some YV ∈ F
V , 
VS%G  and  
∆�� ��Z��� (YV , �W)  is the 

error term. 
 
Now using central-difference method to form the 
difference quotient by Taylor series in �, we have  
 ������ F
V , �WG= [�F
V, �W + ∆�G − 2�F
V, �WG + �F
V, �W − ∆�(∆�)�− (∆�)�6 �B���B (
V, \W) 

  (1.18) 

 
Where, 
 

 \W ∈ (�WI%, �WS%)  and ( 
V , �W)  is the interior 

gridpoint and 
(∆�)�] �^Z��^ F
V , \WG is the error. 

 
Suppose that, ∆� = ℎ, ∆
 = ` . Then (1.17) 
becomes  
 ���
 F
V, �WG= �F
V +`, �WG − �F
V , �WG`− 2̀ ����
� (YV , �W) 

                              
 
 
 
 

(1.19) 

 
and (1.18) becomes  
 ������ F
V, �WG= [�F
V, �W + ℎG − 2�F
V, �WG + �F
V, �W − ℎGℎ� a

− ℎ�6 �B���B (
V , \W) 

(1.20) 
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Putting (1.19) and (1.20) in (1.16) and ignoring 
the local truncation error of order O( ` + ℎ�) 
consisting of − b� ��Z��� (YV , �W)  and − c�] �^Z��^ (
V , \W) 
and next discretizing the equation (1.16) by 
implicit-explicit scheme, we have 
 �WVS% − �WV` = [�WS%V − 2�WV + �WI%Vℎ� a+ 6�WVF1 − �WVG 

 

which yields 
 ⇒ �WVS% = dZe�WS%V − 2�WV + �WI%V f+ 6`�WVF1 − �WVG+ �WV 

(1.21) 

Where the new parameter is defined as dZ = bc�. 
To get the numerical solutions, we need to 
employ the boundary conditions (1.21). The 
algorithm is developed in FORTRAN 90/95 
languages and the version is Plato.  In the rest of 

the section, the results are presented graphically 
for further discussion. 
 
The density has been normalized at value taken 
over the domain at different times. From this 
graphical structure, we able to see that the 
solution of �(
, �)  is decreasing which means �(
, �) lessens over the domain at time 
 = 0.5. 
The exact solutions of equation (1.16) using 
travelling wave scheme which is also 
represented in Fig. 2 (left) and the error term are 
visible in Fig. 2 (right). The graph shows that 
travelling wave solution is also monotonically 
decreasing while the mesh time step is ∆
 = ` =0.001 at time 
 = 0.5 over the domain. It is seen 
that the solution obtained by implicit-explicit FDM 
is visually coincides with the exact solution. 
 
Since we have discussed about the nature of the 
solutions graphically, one additional numerical 
solutions are presented in Fig. 3 at time 
 = 10 
over the domain h ∈ (0,1).  
 

  
 
Fig. 2. Comparison of O(P, Q) and exact solution with error over the domain at  time P = i. j 
 

 
 

Fig. 3. The solution of O(P, Q) and exact with error over the domain at time P = ki. i 
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Fig. 4.  Graphical presentation of time vs average solution of O(P, Q) in (a) for implicit-explicit 
FDM and (b) by polynomial-fit and compared with wave solution  over l at P = m. i 

 

At this stage, we are interested to discuss about 
average solution produced by implicit-explicit 
finite-difference method. The solution depicted in 
Fig. 4 (left) reasonably accurate since there is a 
better agreement with the exact solution. If we 
consider the polynomial fit approximations of our 
available data, the numerical solution is very 
close to the travelling wave solution over the 
space at time t = 3.0. 
 

If t varying, we can illustrate the figures as 
decorated in Fig. 5, where we illustrate average 
of u(t,x) and compare it with the wave or exact 

solution for time t=10.0. The behavior of the 
solutions is similar to the solutions as shown in 
Fig. 4. The total illustration of average implicit-
explicit solution with wave solution vs time is 
given in Fig. 6. 
 
Using analytic and numerical solutions, we have 
obtained the results as depicted in Fig. 6 at 
 = 0.5 and at 
 = 3.0. Time increases from 0.5 to 
3.0 and corresponding average of �(
, �)  or 
implicit-explicit finite difference solutions are 
shown simultaneously in Fig. 6.  

 

  
 

Fig. 5. Graphical results of time vs average solution of O(P, Q) (a) for implicit-explicit FDM and 
(b) by polynomial-fit and compared with wave solution  over the domain at time P = ki. i 
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Fig. 6. Average solutions of O(P, Q) at time P = i. j, P = m. i and compared  with exact solution 
for time P = ki. i 

 

 
 

Fig. 7. Multiple plots of O(P, Q) at different times and the exact solution for P = ki. i 
 
Finally, we have displayed multiple plots as 
shown in Fig. 7, using numerical data for various 
times in one diagram using polynomial-fit 
illustrations. While the time is increasing the 
solutions are closer to the exact solution which is 
more feasible.  
 

3.4 Stability and Error 
 

The following sections are concerned about the 
stability and error test. Implicit-Explicit FDM is 

valid for 0 < dZ ≤ %�   only. The readers are 

referred to check the following Section 4 to know 
more details about the stability analysis and 

time

A
v
e

u

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

t
0.5
3.0
exact

time

A
v
e

u

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

1.2

t
0.5
3.0
10.0
exact



 
 
 
 

Ahmed and Kamrujjaman; AJARR, 3(3): 1-13, 2019; Article no.AJARR.46701 
 
 

 
10 

 

convergence of the method. If the solution of the 
finite difference equations is to be reasonably 
accurate approximation to the solution of the 
corresponding nonlinear partial differential 
equation, then the condition must be satisfied. To 
satisfy the rest of the part, let us denote q as an 
exact solution of partial differential equation and 
the exact solution of finite difference implicit-
explicit scheme is denoted by �.  Then we 
consider H = q − � , where H  is discretization 
error. Since the simplest implicit-explicit finite 
difference approximation of equation (1.16) can 
be written as  
 �WVS% − �WV` = [�WS%V − 2�WV + �WI%Vℎ� a+ 6�WVF1 − �WVG 
 

(1.22) 
 
 

The simplification of equation (1.22) is given in 

equation (1.21). Let us consider now �WVS% =qWVS% − HWVS%  and   �WV = qWV − HWV  at the mesh 

points. Then putting these in equation (1.22), we 
obtain  
 HWVS% = qWVS% − dZeqWS%V − HWS%V − 2(qWV− HWV) + qWI%V − HWI%V f  

(1.23) −6`(qWV − HWV)F1 − (qWV − HWV)G − (qWV −HWV)                                                                                        

 
After using Taylor’s theorem [17] in equation 

(1.23), we can see that rqWV − �WVr ≤ HV  where HV 
presents the maximum value of rHWVr  which 

proves that � converges to q when dZ ≤ %�  and t 

is finite.  
 
The implicit-explicit finite difference scheme is 

unstable when dZ > %�  and conditionally stable if  0 < dZ ≤ %�  . Graph of error using approximate 

and exact solutions is given in Fig. 8. 
 

We show that the errors consisting of difference 
between exact and approximate solutions using 
different patterns over the domain at increasing 
time. 
 

4. DISCUSSION WITH STABILITY TEST 
AND CONVERGENT ANALYSIS 

 

In the following two sections, we will discuss 
about the stability of our considered numerical 
method and the local truncation errors of Implicit-
Explicit Finite Difference scheme. 
 

4.1 Stability Analysis and Convergence of 
the Method 

 

Considering the equation (1.21) which can be 
represented in tri-diagonal form such as 
 sW�WI%V + tW�WV + uW�WS%V = vW  (1.24) 

 
Where, 
 sW = uW = dZ  is a dimensionless constant   

number and tW = 1 − 2dZ + 6`(1 − �WV). 
 

 
 

Fig. 8. Error over the domain at time P = i. j, P = m. i	and P = ki. i 
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Using boundary conditions with acquiring the 
whole system of equation, we can construct the 
matrix form 
 sw = t  
 

Where,  
 

 s =
x
yyy
z t% dZ … . … . … .dZ t� dZ … . … .… . dZ tA dZ … .… . … . … . … . … .… . … . … . … . … .… . … . … . … . … .… . … . dZ t|I% dZ}

~~~
�		     is tri- 

diagonal matrix of order 
 

 � × �; t =
x
yz
�%V��V⋮�|V}
~�  

 

withholds all known values and 
 

 w =
x
yz
�%VS%��VS%⋮�|VS%}

~� all unknown values.  

 

Since Fisher’s equation is a nonlinear equation 
and for finding its stability, we have to consider �WV = � as a constant such that we can write the 

tri-diagonal form in terms of constant �. Here the 
coefficient matrix for (1.21) can be introduced by  
 

x
yyy
z � dZ … . … . … .dZ � dZ … . … .… . dZ � dZ … .… . … . … . … . … .… . … . … . … . … .… . … . … . … . … .… . … . dZ t| � }

~~~
�

,  

Where, 
 

 � = 1 − 2dZ + 6`(1 − �) is also a constant.  
 

Since the coefficient matrix is positive definite 
and also symmetric. One can remark that its 
eigenvalues are also positive. Here ;� ≤ 1; 	� =1,2,3….  [29,30]. That is, Eigenvalues of the 
required matrix must be less than or equal to one 
for minimizing the errors.  
 

We can also use the fourier method to check if 
the scheme is stable or not. Assuming a solution 
of the form 
 �WV = "(V)(+)H�W�c 

Where, 
 + is the wave number, ℎ = ∆� and � =	√−1. We 
introduce here Von Neumann stability condition 
[31] which is |�(+)| ≤ 1  for 0 ≤ +ℎ ≤ �,	 where �(+) = �(���)(�)�(�)(�) ; 	"(+), �(+) are the growth rate of 

fourier component and an amplification factor 
respectively. We can say that the explicit scheme 

is stable if and only if dZ ≤ %� which is also known 

as conditionally stable. It is also noted that if the 
implicit and Crank–Nicolson schemes are stable 
for any values of dZ, then the method is known 
as unconditionally stable. Substituting the 

solution of the form �WV  in (1.24) for implicit-

explicit scheme, we get 
 "(VS%)(+)H�W�c= dZ"(V)(+)H�(WS%)�c+ e1 − 2dZ+ 6`F1 − "(V)(+)H�W�cGf"(V)(+)H�W�c + dZ"(V)(+)H�(WI%)�c 
 ⇒ �(+) = "(VS%)(+)"(V)(+)= dZH��c+ e1 − 2dZ+ 6`F1 − "(V)(+)H�W�cGf+ dZHI��c 
 

So by Von Neumann stability condition, |�(+)| ≤1 
 ⇔ rdZH��c + e1 − 2dZ+ 6`F1 − "(V)(+)H�W�cGf+ dZHI��cr ≤ 1 ⇔ |dZH��c + �1 − 2dZ� + dZHI��c| ≤ 1 ⇔ |�1 − 2dZ� + 2dZu�*(+ℎ)| ≤ 1 

⇔ �1 − 2dZ + 2dZ �1 − ���� �+ℎ2 ��� ≤ 1 

⇔ �1 − 2dZ + 2dZ−4dZ���� �+ℎ2 �� ≤ 1 

⇔ �1−4dZ���� �+ℎ2 �� ≤ 1 

⇔ 0 ≤ 4dZ���� �+ℎ2 � ≤ 2 ⇔ 0 ≤ dZ ≤ %��W������ �  for all 0 ≤ +ℎ ≤ � and 

this is equivalent to 0 ≤ dZ ≤ %�. 
 

4.2 Local Truncation Errors and 
Consistency 

 

The Implicit-Explicit scheme has local truncation 
errors. If the step size approaches to zero then 
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the local truncation error tends to zero. This is 
the essential condition of the numerical solutions 
to the continuous solution for better convergence 
and the method is said to be consistent. For 
finding the local truncation errors of a numerical 
method, we can introduce it in a single iteration 
with the expanding the coefficients by Taylor 
series method such that 
 �WVS% = �WV + ` ���
 + `�2! ����
� +⋯… .+¢(`)B; 

�WS%V = �WV + ℎ ���� + ℎ�2! ������ +⋯… .+¢(ℎ)B; 
�WI%V = �WV − ℎ ���� + ℎ�2! ������ −⋯… .+¢(ℎ)B; 

 
Where ℎ = ∆�  and ` = ∆
 . Now substituting all 
these in the combined Implicit-Explicit method of 
(1.16), the local truncation errors can be written 
as  
 �
H = limc,b→¦`�2! ����
� + `A3! �A��
A +⋯+ ℎB4! �B���B+ ℎ]6! �]���] +⋯ . . = 0; 
 
Since the difference between our selected PDE 
and its FDE representation vanishes as mesh is 
refined and ℎ, `  approaches to 0  for which  lim§T3c→¦�
H = 0 i.e., local truncation errors become 

zero, then we conclude that the employed finite 
difference scheme is consistent. 

 
5. CONCLUSION 
 
It is observed that the density of population 
diminishes over the domain at certain time and 
average solutions are coincided for increasing of 
times. In this paper, we have find that travelling 

wave solutions exists for + ≥ 2√6 in the selected 
Fisher’s equation and wave develops with speed + = 2√6  in the governing equation. Nonlinear 
problems like fisher’s equations can be solved by 
Implicit-Explicit schemes. We have generally 
used Implicit-Explicit method and compared it 
with travelling wave solutions to justify our 
solutions. For solving Fisher’s equation, this 
method is simply a powerful technique. The 
approximate solutions obtained by using this 
method produce better results as compared with 
travelling wave solution. However, in 
neurophysiology, chemical kinetics and 
population dynamics such types of modeling 
phenomena like Fisher’s equation can be 
extended for future study. 
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