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1 Introduction
Several results on Lie algebras have known extensions to the case of Leibniz algebras. See for
example [1],[2],[3],[4],[5], . . . . Lie’s theorems have been extended to Leibniz algebra, however most
of these results follow the pattern that from a Leibniz algebra L we get a Lie algebra obtained by the
quotient L/Ess(L) where Ess(L) is generated by the square of the elements of L, also called “partie
essentielle” [6].
The purpose of this paper is to adapt the proof of Lie’s theorem on soluble Lie algebra [7], and to give
proof which also covers in a more general way all soluble Leibniz algebras.
Here, our approach is based on the work of J. E. Hymphreys [7], we find the main results, having
evaded the difficulty that Ess(L) 6= {0} for a non Lie Leibniz algebra. Section 2 is devoted to
reminders on definitions and general results. In Section 3 some results on Leibniz modules are
given. Proofs of Lie’ theorems are then generalized in Section 4.

2 Preliminaries
Throughout this paper, F will be an algebraically closed field of characteristic zero. All vector spaces
and algebras will be finite dimensional over F . The dimension of an F -vector space V will be denoted
dimF V . Note the sum of two vector subspaces V1, V2 by V1+̇V2 and direct sum by V1 ⊕ V2.
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Definition 2.1. (Leibniz algebra) [6]
A Leibniz algebra is a vector space L equipped with a bilinear map [−,−] : L×L −→ L, satisfying

the Leibniz identity:

[x, [y, z]] = [[x, y], z]− [[x, z], y] for any x, y, z ∈ L. (2.1)

If the condition [x, x] = 0 is fulfilled, the Leibniz identity is equivalent to the so-called Jacobi
identity. Therefore Lie algebras are particular cases of Leibniz algebras. A morphism of Leibniz
algebras is a linear map φ : L1 −→ L2 such that for any x, y ∈ L1 φ([x, y]) = [φ(x), φ(y)].

It follows from the Leibniz identity that in any Leibniz algebra one has

[y, [x, x]] = 0, [z, [x, y]] + [z, [y, x]] = 0, for all x, y, z ∈ L.

Definition 2.2. (Ideal) A subspace H of a Leibniz algebra L is called left (respectively right) ideal if
for a ∈ H and x ∈ L one has [x, a] ∈ H (respectively [a, x] ∈ H). If H is both left and right ideal, then
H is called (two-sided) ideal.

If V is a vector space, let EndF (V ) denotes the set of all endomorphisms of V . An action of L
on EndF (V ) is a linear map of L on EndF (V ).

Definition 2.3. (Representation) Let L be a Leibniz algebra and V a vector space. V is an L-module
if there are:

• a left action, l : L −→ EndF (V ), x 7→ lx

• a right action, r : L −→ EndF (V ), x 7→ rx,
such that:

r[x,y] = ryrx − rxry,
l[x,y] = rylx − lxry,
l[x,y] = rylx + lxly,
0 = lxly + lxry.

For x in L, rx(v) will be denoted by vx and lx(v) will be denoted by xv. The triplet (l, r, V ) is
called a representation of L on V . Now if L is a Leibniz algebra, we have the adjoint representation
“(Ad, ad, L)” defined as follows: for all x and y in L, adx : L −→ L, y 7−→ [y, x] and Adx : L −→ L,
y 7−→ [x, y]

Remark 2.1. For x ∈ L, adx : L −→ L is a derivation of L i.e. for all x, y, z in L,

adx([y, z]) = [adx(y), z] + [y, adx(z)].

For x ∈ L, Adx : L −→ L is an anti-derivation of L i.e. for all x, y, z in L,

Adx([y, z]) = [Adx(y), z]− [Adx(z), y].

If L is a Lie algebra, for all x, y in L,
Adx(y) = −adx(y).

For an arbitrary algebra and for all non negative integer n let us define the sequences:

(i) D1 (L) = L[1] = L2, Dn+1 (L) = L[n+1] = [L[n], L[n]];

(ii) L1 = L, Ln+1 = [L1, Ln] + [L2, Ln−1] + · · ·+ [Ln−1, L2] + [Ln, L1].

Definition 2.4. [1]
An algebra L is called solvable if there exists m ∈ N∗ such that Dm (L) = L[m] = {0}.

An algebra L is called nilpotent if there exists s ∈ N∗ such that Ls = {0}.
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Definition 2.5. Let X be a subset of V . The subspace of V spanned by the subset X will be denoted
by Span(X) and note Span({v}) by Span(v).

The following two lemmas can be found in [8] but for self contained we give proofs here.

Lemma 2.1. Let L be a Leibniz algebra and (l, r, V ) a representation of L. We have:

i) Ess(V ) = Span ({xv + vx, for all (x, v) ∈ L× V }) is a submodule of the L-module V and
Ess(V ) ⊆ ker(lx) for all x ∈ L;

ii) if L is viewed as a L-module equipped with the two actions Ad and ad, then Ess(L) is an ideal of
L and Adz(v), adz(v) are elements of Ess(V ) for all (z, v) ∈ Ess(L)× V .

Proof. Clearly Ess(V ) is a subspace of V , Ess(L) is a subspace of L.

i) Let lx(v) + rx(v) be a generator of Ess(V ). For z in L we have:

lz (lx(v) + rx(v)) = lz (lx(v)) + lz (rx(v))
= l[z,x](v)− rx (lz(v))− l[z,x](v) + rx (lz(v)) = 0.

rz (lx(v) + rx(v)) = rz (lx(v)) + rz (rx(v))
= l[x,z](v) + lx (rz(v)) + r[x,z](v) + rx (rz(v))
=
(
l[x,z](v) + r[x,z](v)

)
+ (lx (rz(v)) + rx (rz(v))) .

It follows that lz (lx(v) + rx(v)) = 0 and rz (lx(v) + rx(v)) is a sum of generators of Ess(V ) so
Ess(V ) is stable under the actions of lz, rz for all z ∈ L. Then Ess(V ) is a submodule.

ii) Applying the first result to the L-module L equipped with the two actions Ad and ad; we have that
Ess(L) is an ideal of L and for all generator z = [a, b] + [b, a] of Ess(L) and all v in V :

lz(v) = l[a,b](v) + l[b,a](v)
= rb (la(v)) + la (lb(v)) + ra (lb(v)) + lb (la(v))
= (la (lb(v)) + ra (lb(v))) + (lb (la(v)) + rb (la(v))) .

So that Adz(v) is a sum of two generators of Ess(M).

rz(v) = r[a,b](v) + r[b,a](v)
= rb (ra(v))− ra (rb(v)) + ra (rb(v))− rb (ra(v)) = 0.

It follows that adz(v) and Adz(v) belong to Ess(V ).

Lemma 2.2. Let L be a Leibniz algebra. We have:

i) for any derivation D of L, D(Ess(L)) ⊆ Ess(L);

ii) for any anti-derivation D̃ of L, D̃(Ess(L)) = {0}.

Proof. For any generator [x, y] + [y, x] of Ess(L) we have:

i) D([x, y] + [y, x]) = D([x, y]) +D([y, x])
= ([D(x), y] + [y,D(x)]) + ([D(y), x] + [x,D(y)]).

So D([x, y] + [y, x]) is a sum of two generators of Ess(L) and hence D(Ess(L)) ⊆ Ess(L).

ii) D̃([x, y] + [y, x]) = D̃([x, y]) + D̃([y, x])

= [D̃(y), x]− [D̃(x), y] + [D̃(x), y]− [D̃(y), x]
= 0.

The lemma is proved.
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Definition 2.6. Let f be in EndFV and W a subsapce of V , say the subspace W is f -stable if
f(W ) ⊆W .

For example, let (l, r, V ) be a representation of L. For any x ∈ L, the submodule Ess(V ) is
lx-stable and rx-stable.

Here we recall some results on linear algebra.

Lemma 2.3. Let α ∈ F , f an element of EndF (V ) such that Ess(V ) is f -stable and u1 a vector of
Ess(V ) \ {0}. Set

U = Span(u1 · · · , um · · · ) and W = Span(w1, · · · , wm, · · · );
where for any integer i ≥ 1

ui+1 = f(ui), and wi = ui+1 − αui.
Then W ⊆ U are subspaces of V , f -stable and for a suitable α in F we have dimF W = dimF U − 1.

Proof. Let m be the least integer such that (u1, · · · , um+1) is linearly dependant and hence we have

um+1 =

m∑
j=1

αjuj for αj in F .

We have also:

um+1 − αum = (αm − α)um +

m−1∑
j=1

αjuj

= (αm − α) (um − αum−1) +
(
αmα− α2

)
um−1 +

m−1∑
j=1

αjuj

= (αm − α) (um − αum−1)+

+
(
αm−1 + αmα− α2

)
um−1 +

m−2∑
j=1

αjuj

= (αm − α) (um − αum−1)
+
(
αm−1 + αmα− α2

)
(um−1 − αum−2)

+
(
αm−2 + αm−1α+ αmα

2 − α3
)
um−2 +

m−3∑
j=1

αjuj .

Step by step we obtain that:

wm = um+1 − αum =

m−1∑
j=2

Pj(α) (uj − αuj−1) + P1(α)u1

where Pj(t) =
m∑
k=j

αkt
k−j − tm−j+1 for j = 1, · · · ,m.

Let α be a root of the polynom P1(t), then wm =

m∑
j=2

Pj(α)wj−1.

B′ = (w1, · · · , wm−1) is a basis of W .
We can note that V and W are f -stable.

Lemma 2.4. Let α ∈ F , f an endomorphism of V such that Ess(V ) is f -stable and u1 a vector of
V \ Ess(V ). Set

U ′ = Ess(V )+̇Span(u1 · · · , um · · · );W ′ = Ess(V )+̇Span(w1, · · · , wm, · · · )

where for any integer i ≥ 1
ui+1 = f(ui), wi = ui+1 − αui.
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Then W ′ ⊆ U ′ are subspaces of V , f -stable and for a suitable α in F we have
dimF W

′ = dimF U
′ − 1.

Proof. Proof is similar to the proof of the Lemma 2.3.

Remark 2.2. Let N = dimFV be the dimension of vector space V . Let f an endomorphism of V
and u1 6= 0.

If u1 ∈ Ess(V ), put W 0 = V . Throughout Lemma 2.3, we can constructed an f -stable subspace
W 1 which is of dimension N − 1. By repeating the process with the vector space W 1, it follows that
W 2 is an f -stable subspace which dimension is N − 2.
And so on, a decreasing chain of f -stable subspaces are constructed:

W 0 = V !W 1 ! · · · !WN−2 !WN−1 ! {0}.

It is consequently clear that any generator w of WN−1 satisfies f(w) = λw for some λ ∈ F .
If u1 ∈ V \ Ess(V ), put W 0 = V . Throughout Lemma 2.4, we can constructed an f -stable

subspace W 1 which is of dimension N − 1. By repeating the process with the vector space W 1, it
follows that W 2 is an f -stable subspace which dimension is N − 2.
And so on, a decreasing chain of f -stable subspaces are constructed:

W 0 = V !W 1 ! · · · !WN−2 !WN−1 ! {0}.

It is also clear that any generator w of WN−1 satisfies f(w) = λw for some λ ∈ F .

3 On Leibniz Modules
Definition 3.1. (Complement of subspace)
Let V be an L-module and v a vector in V . Let Comp(v) denotes the complement in Fv+̇Ess(V ) of
the one dimensional subspace Fv.

Thus if {0} ( Fv ( Fv+̇Ess (V ) we can obtain a basis {v, v1, · · · , vp} of Fv+̇Ess(V ) such that
Comp(v) = Span ({v1, · · · , vp}) and if Ess (V ) ⊆ Fv we set Comp(v) = {0}.

Definition 3.2. (Dual space and pseudo-weights)
Let L be any vector space. Then we denote the set of F -linear maps from L to F by L∗ and call it the
dual space of L. Let K be an ideal of a Leibniz algebra L and V a finite-dimensional L-module. For
λ ∈ L∗ and set

VK,l,λ = {v ∈ V, (lk − λ(k)1V ) (v) ∈ Comp(v) for all k ∈ K};
VK,r,λ = {v ∈ V, (rk − λ(k)1V ) (v) ∈ Comp(v) for all k ∈ K};
Vl,λ = {v ∈ V, (lx − λ(x)1V ) (v) ∈ Comp(v) for all x ∈ L};
Vr,λ = {v ∈ V, (rx − λ(x)1V ) (v) ∈ Comp(v) for all x ∈ L}.

A pseudo-weight of L (on V ) is an element λ ∈ L∗ such that Vl,λ+̇Vr,λ 6= {0}.

When Vl,λ 6= {0} (respectively Vr,λ 6= {0}), we call it a pseudo-weight spaces.

Lemma 3.1. Let V be an L-module, (λ, µ) ∈ L∗ × L∗ and K an ideal of L. Then

i) Ess(V ) ⊆ VK,l,0;

ii) VK,l,λ ∩ VK,l,µ 6= {0} if and only if λ = µ.

Proof. i) Let 0 6= w1 a vector of Ess(V ); w1 is an eigenvector of lx with eigenvalue equals 0. (see
the Lemma 2.1).

2574



British Journal of Mathematics and Computer Science 4(18), 2570-2581, 2014

ii) Let v 6= 0 a vector in VK,l,λ ∩ VK,l,µ, then for any k ∈ K there are w2(k), w3(k) in Comp(v) such
that: {

kv = λ(k)v + w2(k);
kv = µ(k)v + w3(k).

So 0 = (λ− µ) (k) v + (w2(k)− w3(k)) ∈ Kv ⊕ Comp(v) which implies w2(k) = w3(k) and
λ (k) = µ (k) for any k ∈ K.

Remark 3.1. Let λ ∈ L∗ and λ 6= 0. Let v0 ∈ VK,l,λ. (So v0 /∈ Ess(V )). Let 0 6= w ∈ Ess(V ). We
have, for all k ∈ K, lk(v0) = λ(k)v0 + w1(k) where w1(k) ∈ Comp(v0) = Ess(V ).
Set v1 = 2v0 +w, for all k ∈ K, we have lk(v1) = λ(k) (v1)+ (2w1(k) + λ(k)w). Clearly Comp(v1) =
Ess(V ) and v1 ∈ VK,l,λ.
But we have w = v1 − 2v0 ∈ Ess(V ) ⊂ Vl,0 and thus v1 − 2v0 /∈ VK,l,λ.
VK,l,λ is not a vector subspace of a vector space V if λ 6= 0.
Let v0, v1 be two vectors of the pseudo-weight space VK,l,λ (with λ 6= 0). Let α0 ∈ F , α1 ∈ F such
that α0v0 + α1v1 /∈ Ess(V ) then α0v0 + α1v1 ∈ VK,l,λ. So Ess(V )+̇VK,l,λ is a vector subspace of V .

Before introduce the following lemma, we shall note that: for all x ∈ L, basic results on linear
algebra imply that there is a basis B0 = (e0, · · · , ep) of Ess(V ) and a (p + 1)-uplet (λ0, · · · , λp) of
F p+1such that,

rx(e0) = λ0e0;
rx(ei)− λiei ∈ Span(e0, · · · , ei−1), i = 1, · · · , p;
lx(ei) = 0, i = 0, · · · , p. (3.1)

Let M0x be the matrix of the restriction of lx to Ess(V ) and N0x the matrix of the restriction of rx
to Ess(V ), relative to basis B0, we have:

M0x =

 0 · · · 0
...

. . .
...

0 · · · 0

 = 0, N0k =



λ0 a0,1 a0,2 · · · a0,p
0 λ1 a1,2 · · · a1,p
... 0

. . .
. . .

...
...

...
. . . λp−1 ap−1,p

0 0 · · · 0 λp

 .

Lemma 3.2. If λ 6= 0 then VK,l,λ ⊆ VK,r,−λ ⊆ Ess(V )+̇VK,l,λ.

Proof. Since λ 6= 0, there are some k ∈ K and v 6= 0 in VK,l,λ such that λ(k) 6= 0 and
lk(v) = kv = λ(k)v + w(k) for some w(k) in Comp(v).

λ(k) 6= 0 implies that v /∈ Ess(V ) and Comp(v) = Ess(V ).
Also we have w1(k) = lk(v) + rk(v) ∈ Ess(V ) which implies that rk(v) = −λ(k)v + w1(k) − w(k).
Indeed w1(k)− w(k) ∈ Ess(V ) = Comp(v), so v ∈ VK,r,−λ.

Now let v 6= 0 in VK,r,−λ such that rk(v) = vk = −λ(k)v + w(k) for some w(k) in Comp(v).
If v ∈ Ess(V ) we have v ∈ VK,l,λ+̇Ess(V ), else v /∈ Ess(V ) and then Comp(v) = Ess(V ), in

such case we have lk(v) = λ(k)v + w1(k) − w(k) and indeed w1(k) − w(k) ∈ Ess(V ) = Comp(v).
Then we have v ∈ VK,l,λ and so v ∈ Ess(V )+̇VK,l,λ.

Remark 3.2. If Ess(V ) = {0}, V is a Lie-module, VK,l,λ is the the set of eigenvectors (of lk associated
with the eigenvalue λ(k)) as defined in [7, page 16].

W = VK,l,λ = VK,r,−λ = {v ∈ V, lk(v) = −rk(v) = λkv for all k ∈ K}
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Example 3.3. Let L = Cx + Cy be the two dimensional complex Leibniz algebra which generators
satisfy [x, x] = [y, y] = [y, x] = 0; [x, y] = x. And let L viewed as an L-module.

Let λ ∈ L∗ define by λ (x) = 0;λ (y) = 1. Then:

Vad,λ = Cx, Vad,0 = Cy, VAd,0 = L, VAd,−λ = {0} .

We note that Vad,λ 6= VAd,−λ and Vad,0 6= VAd,0.

Proposition 3.1. Let λ 6= 0 in L∗, v 6= 0 in VK,l,λ, x be in L and Ess(V ) = Span(ep, · · · , e1), the
sequence defined by u1 = v, un+1 = xun = xnv, n ∈ N∗ satisfies for all k ∈ K, the equations:

ku1 = λ(k)u1 + w1(k)︸ ︷︷ ︸ ;
∈Span(ep,··· ,e1)

kun = λ(k)un + wn(k)︸ ︷︷ ︸ (for n ≥ 2)

∈Span(un−1,··· ,u1,ep,··· ,e1)

.

and U = Span(e1, · · · , ep, u1, · · · , un, · · · ) is invariant under K and under x.

Proof. It is obvious that the subspace defined by U = Span(e1, · · · , ep, u1, · · · , un, · · · ) is invariant
under x. Since, λ 6= 0, VK,l,λ ∩ VK,l,0 = {0} so v /∈ Ess(V ) and the subspace
Comp(v) = Comp(u1) = Ess(V ) = Span(ep, · · · , e1).

For all k ∈ K, ku1−λ(k)u1 ∈ Comp(u1) and then we have, for all k ∈ K, ku1 = λ(k)u1+w
1(k).︸ ︷︷ ︸
∈Ess(V )

Let u2 = xu1 then,
ku2 = k(xu1)

= [k, x]u1 − (ku1)x
= λ([k, x])u1 + w1([k, x])− (λ(k)u1 + w1(k))x
= λ(k)xu1 + λ([k, x])u1 + w1([k, x])− w1(k)x− λ(k)(u1x+ xu1)︸ ︷︷ ︸

∈Span(u1,ep,··· ,e1)

= λ(k)u2 + λ([k, x])u1 + w1([k, x])− w1(k)x− λ(k)(u1x+ xu1)︸ ︷︷ ︸
∈Span(u1,ep,··· ,e1)

.

We have for all k ∈ K, ku2 = λ(k) (u1) + w1(k).︸ ︷︷ ︸
∈Span(u1,ep,··· ,e1)

Suppose, by induction that for all k ∈ K and n > 1,

kun = λ(k)un + wn(k)︸ ︷︷ ︸ .
∈Span(un−1,··· ,u1,ep,··· ,e1)

Then,
kun+1 = k(xun)

= [k, x]un − (kun)x
= λ([k, x])un + wn([k, x])− (λ(k)un + wn(k))x
= λ(k)xun + λ([k, x])un − λ(k)(unx+ xun) + wn([k, x])− wn(k)x︸ ︷︷ ︸

∈Span(un−1,··· ,u1,ep,··· ,e1)

= λ(k)un+1 + λ([k, x])un + wn([k, x])− wn(k)x− λ(k)(unx+ xun)︸ ︷︷ ︸
∈Span(un,··· ,u1,ep,··· ,e1)

,

thus for all k ∈ K, kun+1 = λ(k)un+1 + wn+1(k).︸ ︷︷ ︸
∈Span(un,··· ,u1,ep,··· ,e1)

Induction is done.
Induction shows also that U ′n = Span(un, · · · , u1, ep, · · · , e1) is invariant under K.
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Let v ∈ VK,l,λ \ Ess(V ) and u1 = v.
Let m be the least integer, such that (u1, · · · , um+1) is linearly dependent.

U = Span(um, · · · , u1, ep, · · · , e1) is invariant under K and under the action of x. So U is an L-
module. According to Equation 3.1 and Proposition 3.1, we have that the matrix Mk of l′x (the
restriction of lk to U ), for any k ∈ K, with respect to the basis B = (e1, · · · , ep, u1, · · · , um) is an
upper triangular matrix with all diagonal entries being nul or equal to λ (k):

Mk =



0 · · · 0 a1,p+1 ∗ · · · a1,p+m
...

. . .
...

...
...

0 · · · 0 ap,p+1 · · · ∗ ap,p+m
0 · · · 0 λ(k) ap+1,p+2 · · · ap+1,p+m

0
... 0 λ(k)

. . .
...

... 0
...

. . .
. . . ap+m−1,p+m

0 · · · 0 0 · · · 0 λ(k)


.

Let Nk be the matrix of r′x (the restriction of rk to U ), with respect to the basis B.
Due to lk(v) + rk(v) ∈ Ess(V ), we have

Nk =



λ0 b1,2 · · · b1,p b1,p+1 ∗ · · · b1,p+m

0 λ1

. . .
...

...
. . .

. . . bp−1,p

...
...

0 · · · 0 λp bp,p+1 · · · ∗ bp,p+m
0 · · · 0 −λ(k) ap+1,p+2 · · · ap+1,p+m

0
... 0 −λ(k)

. . .
...

... 0
...

. . .
. . . ap+m−1,p+m

0 · · · 0 0 · · · 0 −λ(k)


.

Now, we can prove the following

Lemma 3.4. λ ([k, x]) = 0 for all k ∈ K and all x ∈ L.

Proof. If λ (k) = 0 for all k ∈ K, there is nothing to prove.
Else there is an k′ ∈ K, v ∈ VK,l,λ such that λ (k′) 6= 0 and (lk′ − λ(k′)1V ) (v) lies in Ess(V ).
Then u1 = lk′(v) = k′v = λ(k′)v + w(k′) /∈ Ess(V ). Let U be spanned by the linearly

independant familyB = (e1, · · · , ep, u1, · · · , um). U is invariant underK and under x, so it is invariant
under the whole Leibniz subalgebra K+̇Span(x) of L. For every element k in K, the commutator
[k, x] is contained in K, so the matrix M[k,x] of its action on U with respect to the basis B is upper
triangular with λ([k, x]) or zero on the diagonal. On the other hand, since l[k,x] = rxlk − lkrx,
its matrix is the commutator of the matrix Nx and Mk, so in particular its trace is zero. Thus
tr(M[k,x]) = mλ ([k, x]) = 0 implies λ ([k, x]) = 0 and we have proved the Lemma.

Note that we have proved at the same time that

U = Span(u1, · · · , um) ⊆ VK,l,λ.

Lemma 3.5. The subspace Ess(V )+̇VK,l,λ is a submodule of V .

Proof. For v in Ess(V )+̇VK,l,λ, we have to show that lx(v) and rx(v) belong to Ess(V )+̇VK,l,λ.
Thanks to Lemma 3.1, Ess(V ) is a submodule lying in the kernel of lx for all x in L; so we will deal
with a vector u not in Ess(V ).
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if λ ≡ 0, Ess(V )+̇VK,l,0 = VK,l,0 and let u ∈ VK,l,0 then, we have k (xu) = [k, x]u − (ku)x =
w′([k, x])− w′(k)x where w′([k, x]), w′(k) belong to the subspace Comp(u) = Ess (V ).
This shows that k2 (xu) = k (w′([k, x])− w′(k)x) = 0 and then xv lies in VK,l,0. Moreover the
relation lx(v) + rx (x) ∈ Ess (V ) tells us that also rx(v) lies in VK,l,0.
So that VK,l,0 is a submodule.

if λ 6≡ 0, let u ∈ VK,l,λ then;

Al = k(xu)− λ(k)(xu) = [k, x]u− (ku)x− λ(k)(xu)
= λ([k, x])u+ w([k, x])− λ(k)(ux+ xu)− w(k)x.

Let us note that w([k, x]) and w(k) ly in Ess(V ), then

w([k, x])− λ(k)(ux+ xu)− w(k)x ∈ Ess(V ).

By the Lemma 3.4, λ([k, x]) = 0, which implies that (lk − λ(k)1K) (xu) lies in Ess(V ) and
so xu = lx(u) ∈ Ess(V )+̇VK,l,λ. Indeed, since lk(u) + rk(u) ∈ Ess(V ), also ux = rx(u) ∈
Ess(V )+̇VK,l,λ.

Let u1 ∈ Ess(V ) \ {0} and x an element of L not in [L,L].
Consider the sequence u1, u2 = rx(u1), · · · , un+1 = rx(un) = rnx (u1) , · · · for all n ∈ N∗.

Proposition 3.2. Let L be a solvable Leibniz F -algebra, V an L-module and K be an ideal of L
of codimension one such that L = K ⊕ Fx for x /∈ [L,L]. Suppose there are a non-zero vector
u1 ∈ Ess(V ) and the functions %, ζ : K −→ F such that lh(u1) = ζ(h)u1 = 0V , rh(u1) = %(h)u1 for
all h ∈ K. Then U = Span(u1, · · · , un, · · · ) is an L-module in which lies a common eingevector i. e.
a vector v ∈ U along with the functions %, ς : L −→ F such that ly(v) = ς(y)v = 0V , ry(v) = %(y)v
for all y ∈ L.

Proof. Note that by induction we have for all i ≥ 1 and all h ∈ K:

rh(ui+1) = rh(rx(ui)) = rx(rh(ui)) + r[h,x](ui))
= %(h)rx(ui) + %([h, x])ui = %(h)ui+1.

Note also that rx is an endomorphism of the vector space L and u1 satisfies the hypotheses of
Lemma 2.3. Thanks to Lemma 2.3 and Remark 2.2 there is a vector w ∈ Span(u1, · · · , um, · · · )
which satisfies rx(w) = λw. Make % an element of L∗ by defined %(h+αx) = %(h)+αλ for all h ∈ K,
α ∈ F . Clearly we have, for any y ∈ L, ry(w) = %(y)w. Since w ∈ Ess(L), for any y ∈ L, ly(w) = 0.
Hence Fw is one dimensional submodule and w a common eingevector.

Let u1 /∈ Ess(V ) and x an element of L not in [L,L].
Let B0 = (e1, · · · , ep) be a basis of Ess(V ).
Consider the sequence u1, u2 = rx(u1), · · · , un+1 = rx(un) = rnx (u1) , · · · for all n ∈ N∗.

Proposition 3.3. Let L be a solvable Leibniz F -algebra, V an L-module and K be an ideal of L
of codimension one such that L = K ⊕ Fx for x /∈ [L,L]. Suppose there are a non-zero vector
u1 6∈ Ess(V ) and the functions %, ζ : K −→ F such that lh(u1) = ζ(h)u1 = −%(h)u1, rh(u1) = %(h)u1

for all h ∈ K. Then U ′ = Span(e1, · · · , ep, u1, · · · , um, · · · ) is an L-module in which lies a common
eingevector i. e. a vector v ∈ U and the functions %, ς : L −→ F such that ly(v) = −%(y)v,
ry(v) = %(y)v for all y ∈ L.
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Proof. Note that by induction we have for all i ≥ 1 and all h ∈ K:

rh(ui+1) = rh(rx(ui)) = rx(rh(ui)) + r[h,x](ui))
= %(h)rx(ui) + %([h, x])ui = %(h)ui+1.

Note also that rx is an endomorphism of the vector space L and u1 satisfies the hypotheses of
Lemma 2.4. Thanks to Lemma 2.4 and Remark 2.2 there is a vector w ∈ Span(u1, · · · , um, · · · )
which satisfies rx(w) = λw. Make % an element of L∗ by defined %(h + αx) = %(h) + αλ for all
h ∈ K, α ∈ F . Clearly we have, for any y ∈ L, ry(w) = %(y)w. If w ∈ Ess(L), then for any y ∈ L,
ly(w) = 0 else ly(w) = −ry(w) = −%(y)w. Hence Fw is one dimensional submodule and w a
common eingevector.

4 On Lie’s Theorems
Theorem 4.1. [Lie.] Let L be a solvable Leibniz algebra over an algebraically closed field F of
characteristic zero, and V an L-module. Then we can find a basis B of V such that for every x in L
the matrix of lx and rx, with respect to the base B, are upper triangular matrix.

By induction on dimFL+ dimFV this reduces to the following :

Theorem 4.2. [Lie.] Under the same hypotheses, there exists a common eigenvector v and the
functions χ, ς : L −→ F such that

ly(v) = χ(y)v, ry(v) = ς(y)v for all y ∈ L.

Proof. We will procced by induction on dim FL+ dim FV . Let suppose that L 6= {0} and V 6= {0} .
Let dim FL + dim FV = 2, then dim FL = dim FV = 1, then L = Fx and V = Fv and results

are obvious.
Let us suppose by induction that the result holds for any couple (L, V ), where L is solvable

Leibniz algebra and V an L-module, with dim FL+ dim FV ≤ n.
Consider now a couple (L, V ) with dim FL + dim FV = n + 1. Since L is solvable, pick an

element x of L \ [L,L]. Denote by K the complement in L of the one dimensional subspace Fx. We
have L = Fx⊕K .

Notice also that [L,L] ⊆ K and K is an ideal of L of codimension one.

We have dim FK + dim FV = n, so by induction there is a non-zero vector u1 ∈ V and the
functions %, ζ : K −→ F such that lh(u1) = ζ(h)u1, rh(u1) = %(h)u1 for all h ∈ K.

If u1 ∈ Ess(V ) then by Proposition 3.2 there is a common eingevector v along with the functions
%, ς : L −→ F such that ly(v) = ς(y)v = 0V , ry(v) = %(y)v for all y ∈ L.

Else if u1 /∈ Ess(V ) then by Proposition 3.3 there is a common eingevector v along with the
functions %, ς : L −→ F such that ly(v) = ς(y)v, ry(v) = %(y)v for all y ∈ L.

So proofs of theorems are done.

Remark 4.1. If v ∈ Ess(V ) then χ(y) = 0 for all y ∈ L
else χ(y) = −ς(y) for all y ∈ L since ly(v) + ry(v) = (χ(y) + ς(y))v ∈ Ess(V ).

In the case of the adjoint representation (l = Ad, r = ad, V = L), a flag of subspaces stable
under L is a chain of ideals. This proves the following corollary.

Corollary 4.3. If L is a solvable Leibniz algebra there exists a chain of ideals 0 = L0 ⊂ L1 ⊂ · · · ⊂
Ln = L such that dimLi = i.
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Corollary 4.4. If L is solvable Leibniz algebra, then x ∈ [L,L] implies that x is ad-nilpotent. In
particular [L,L] is nilpotent.

Proof. Find a flag of ideals as in the Corollary 4.3.
Relative to a basis(x1, · · · , xn) of L where (x1, · · · , xi) spans Li, the matrix of adx is an upper

triangular matrix.
Thus the matrix of ad[x,y] = [adx, ady] is a strictly upper triangular matrix. Hence adx is nilpotent for
x ∈ [L,L]. The last statement follows by Engel’s theorem for Leibniz algebras [2].

5 Conclusion
We give here a panoramic exposure on solvable Leibniz algebras. By this paper, we bring another
way, more elegant and simple, to give the proof of Lie’ theorems on solvable Leibniz algebras, which
generalizes that known on Lie algebras.
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