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Abstract

Background: In vaccination studies with complex sample survey, survival functions have
been used since 2002. Recent publications have proposed several methods for evaluating the
adjusted survival functions in non-population-based studies. However, alternative methods for
calculating adjusted survival functions for complex sample survey have not been described.
Objectives: Propose two methods for calculating adjusted survival functions in the complex
sample survey setting; apply the two methods to 2011 National Immunization Survey (NIS)
child data with SUDAAN software package.

Methods: The inverse probabilities of being in a certain group are defined as the new weights
and applied to obtain the inverse probability weighting (IPW) adjusted Kaplan-Meier (KM)
survival function. Survival functions are evaluated for each of the unique combination of all
levels of predictors in complex sample survey obtained from Cox proportional hazards (PH)
model, and the weighted average of these individual functions is defined as the Cox corrected
group (CCQG) adjusted survival function.

Results: The IPW and CCG methods were applied to generate adjusted cumulative vaccination
coverage curves across children’s age in days receiving the first dose of varicella by family
mobility status. The IPW adjusted cumulative varicella vaccination coverage curves could be
consistent estimates of the true coverage curves, the IPW adjustment made the curve for
moved family closer to the curve for not-moved family, and the IPW method significantly
reduced the standard errors of the cumulative vaccination coverage across children age in days
receiving the first dose of varicella comparing to the unadjusted KM method. The Cox PH
assumption is not valid for 2011 NIS data.

Conclusions: If the Cox PH assumption is not met, then the IPW adjusted KM method is the
only good choice, if adjusted survival estimates are desired. If the Cox PH assumption is valid,
either the IPW or CCG methods can be used.
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1 Introduction

In vaccination studies with complex sample survey data, survival functions have been applied to
account for time to vaccination to estimate cumulative vaccination coverage, assess the timeliness
of vaccination, and compare cumulative vaccination coverage curves between any two levels of
selected covariate [1-11]. It is important to develop alternative methods for generating covariate
adjusted survival functions accounting for the complex sample survey design, such that we could
reduce bias and increase the precision when evaluating the effect of a particular “exposure” factor
on cumulative vaccination coverage over time. In published literature, several methods for
calculating adjusted survival functions in the context of noncomplex sample survey have been
proposed. The average covariate adjusted method is frequently used in biomedical papers, which
applies the parameter estimates obtained from the Cox proportional hazards model to the average
value of the covariates of interest in the groups being compared [12]. The major problem of the
average method is that for categorical covariates, the meaning of the adjusted survival for
individuals with the average covariate value is quite difficult to explain [13]. The corrected group
prognosis method [14-16] was proposed to overcome the limitation of the average covariate
adjusted method. This method calculates the survival functions for each unique combination at all
levels of the covariates with a Cox proportional hazards model and obtains the adjusted survival
function as a weighted average of these individual survival functions, in which weights are based
on the sample sizes in each combinations. Recently an adjusted Kaplan—Meier estimator using
inverse probability of treatment weighting was proposed [17] and it was shown to be a consistent
estimate of the survival function. A non-parametric covariate-adjusted survival function approach
was also introduced [18], but this method involves a loss of efficiency and power especially when
the proportional hazards assumption was valid. A direct adjustment method based on the Kaplan-
Meier survival estimates calculates a weighted average of the strata-specific Kaplan-Meier
estimates, weighting according to the baseline sample size of the study population in each stratum
[19]. However this method produces very similar survival functions to those generated by the
unadjusted Kaplan-Meier method.

Many national public health surveys employ complex sampling schemes, such as the National
Immunization Survey (NIS), Behavioral Risk Factor Surveillance System (BRFSS), National
Health and Nutrition Examination Survey (NHANES), and the National Health Interview Survey
(NHIS). Brogan [20,21] has discussed the impact of sample survey design on data analysis and
has illustrated the possible consequences of ignoring the survey design in analysis of national
health survey data. Bieler et al. [22] pointed out that complex sample surveys are designed to
yield population-based estimates and inferences, and they typically involve some combination of
sample weighting, stratification, multistage sampling, clustering, and perhaps finite population
adjustments. They also emphasized that special statistical methods are needed to account for these
complex sample designs in order to obtain unbiased estimates of population parameters,
appropriate standard errors and confidence intervals, and valid population inferences. Here the
weighting is not just to account for unequal selection, rather in complex sample survey, weighting
process play much more critical role such as to adjust sample-frame non-coverage, interview non-
response, post-stratification of weights, raking adjustment and trimming of post-stratified weights,
propensity score weighting adjustment for provider nonresponse etc. [23]. The covariate adjusted
methods described above are intended to be used for non-population-based studies and are
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implemented with Lifetest and Phreg Procedures in SAS (SAS Institute Inc., Cary, North
Carolina, USA). Alternative methods of calculating covariate adjusted survival functions for
complex sample survey data have not been described.

Because the Kaplan-Meier product limits estimate and Cox proportional hazards model are two
popular procedures in survival data analysis, we propose and describe two approaches for
calculating covariate adjusted survival functions in the context of complex sample survey: the
inverse probability weighting (IPW) adjusted Kaplan-Meier method and the Cox corrected group
(CCG) adjusted method. The two methods are implemented with SUDAAN [24] software
package which is an international recognized statistical software package that specializes in
providing efficient and accurate analysis of data from complex sample surveys since SUDAAN
procedures properly account for complex sample survey design features, such as correlated
observations, clustering, complex weighting, stratification, and multiple stages. Data from 2011
National Immunization Survey are used to illustrate the procedures of our proposed methods.

2 Methods

2.1 Inverse Probability Weighting (IPW) Adjusted Kaplan-Meier Survival
Functions for Complex Sample Survey Data

Let (T, 9, X, Z), i=1, 2, ..., N, denotes a survival data from a complex sample survey, where 7; is
the possibly right-censored survival time, J; is the censoring indicator, X; is the group index
variable, X; =1,..., K for K different groups, and Z; is the covariate vector. The IPW method has
been implemented with 3 steps. First, the non-parametric censored linear rank test might be used
to obtain the group variable and the covariates which are significantly associated with the survival
time [25].

Second, a logistic regression analysis was conducted to obtain the predicted probability of an
individual being in a target group for which the adjusted survival function will be evaluated. We
assumed that all of the variables, except the event time, considered in a complex sample survey
survival data analysis were categorical. Let p; be the predicted probability for the ith individual
being in the kth group of the complex sample survey data, which was calculated by use of the
Logistic Procedure in SUDAAN [24,26-27] with the original complex survey weights. These
probabilities may depend on the covariate vector Z;, i.e. py = P(X; =k|Z;), where X; is the group
index for the ith individual and Z; the covariates to be controlled in order to obtain the IPW
adjusted Kaplan-Meier survival function for the kth group.

Third, in order to reduce the confounding effects for different groups by controlling the covariates
and accounting for the complex sample survey design scheme, we assigned a new weight W,
=1/py for the ith individual in group £, then applied the new weights W to SUDAAN Kapmeier
Procedure to obtain the inverse probability weighting (IPW) adjusted Kaplan-Meier survival
function for the kth group.
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2.2 Cox Corrected Group (CCG) Adjusted Survival Functions for Complex
Sample Survey Data

The Cox corrected group (CCG) adjusted method has been implemented with 7 steps. First, Cox
proportional hazard assumption is assumed to be valid for the survival data in the complex sample
survey, evaluation of the proportional hazards assumption is needed. Also we assume that all of
the variables in the survival data, except the survival time, are categorical. Second, the backward-
selection method [28-29] was applied to the Cox proportional hazards model in SUDAAN
Survival Procedure for complex sample survey survival data, to obtain the final model which
contains the significant predictors including the group variable for which the adjusted survival
functions will be evaluated for each level of the group variable, and the covariates to be
controlled. Third, the individual cumulative hazards functions H(?) were obtained for each of the
unique combination at all levels of the predictors including the group variable and the covariates
in the final Cox model by applying SUDAAN Survival Procedure and output the estimated
cumulative hazard functions [24]. Fourth, the estimated individual survival functions S(z) were
calculated by S(#)=Exp/-H(t)]. Fifth, the weighted sample sizes for each of the individual survival
functions were calculated using SUDAAN Crosstab Procedure, weighted sample size is the
weighted count in each table cell of cross tabulation of all predictors in the complex sample
survey. Sixth, when the group variable had m levels, all of the individual survival functions were
separated into m subgroups. Finally, the CCG adjusted survival functions for each of the group
level were estimated as a weighted average of those individual survival functions within each of
the m subgroups with weighs equal to the weighted sample sizes obtained in the fifth step.

3 Results

3.1 Data Source

In this study, the 2011 National Immunization Survey (NIS) Child data was used to calculate
adjusted cumulative vaccination coverage curves accounting for the complex sample survey
design of NIS and controlling for the selected socio-demographic factors. The NIS is conducted
annually by the U.S. Centers for Disease Control and Prevention (CDC) to provide national, state,
and selected urban-area estimates of vaccination coverage among U.S. children aged 19-35
months [30]. The NIS is a stratified clustered random-digit-dialed telephone survey of households
with age-eligible children. The NIS landline sample was used in this illustrative example. Data for
19,534 children who had adequate provider vaccination information were analyzed. In 2011, the
NIS landline household survey response rate based on Council of American Survey and Research
Organizations (CASRO) guidelines was 61.5%.

3.2 Adjusted Cumulative Vaccination Coverage Curves for the First Dose of
Varicella Vaccination

The IPW and CCG methods were applied to generate the adjusted cumulative vaccination
coverage curves across children’s age in days upon receiving the first dose of wvaricella
vaccination stratified by children’s family mobility status (whether the state of family residence at
child birth is different from current residence state: moved vs. not moved), and controlling for
three other significant covariates: parental attitude of delay/refusal vaccination (yes vs. no);

2689



British Journal of Mathematics & Computer Science 4(18), 2686-2698, 2014

mother’s age group (<29 years vs. >30 years); and children first born status (yes vs. no). The
association of family mobility status, parental attitude, mother’s age, and children first born status
with time in days of children receiving the first dose of varicella vaccination was examined by
non-parametric censored linear rank tests [25], all of the four predictor are significantly associated
with the vaccination time (P<0.05) based on the 2011 NIS child data. Also, using the method
recommended by Kleinbaum [12], the Cox proportional hazards assumption was evaluated
graphically and found to be invalid for all of the four predictors. For comparison purpose, the
unadjusted cumulative vaccination coverage curves were estimated using the original unadjusted
Kaplan-Meier (KM) method in SUDAAN, abbreviated as unadjusted KM method, with the
original sampling design weights in NIS.

Essentially the IPW method that we proposed for complex sample survey survival data is the
extension of the AKME (Adjusted Kaplan—Meier Estimator) method proposed by Xie and Liu
[17] for observation studies. The AKME method applied the inverse probability weighting to
adjust the covariates; our IPW method applied both the inverse probability weighting to adjust the
covariates and the SUDAAN software to implement the complex sample survey design
characteristics. Therefore IPW method is both an extension and a promotion of the AKME
method. Xie and Liu conducted both a theoretical and a computer simulation studies. They show
that the AKME is a consistent estimate of the survival function, i.e. the AKME estimate is closer
to the true survival function; simulated AKME survival curves centered at the true survival curve;
the limit of survival curves by AKME is different from the limit of survival curves by unadjusted
KM method; and the two target group survival curves by the unadjusted KM method are separate,
whereas the two target group survival curves by AKME method are closer. The AKME reduces
the confounding effect of covariates, and therefore provides a better estimation of survival
functions for the two target groups [17].

Because the IPW method is an extension of the AKME method, the [IPW method should possess
the favorable property of AKME as mentioned above, i.e. the IPW could generate consistent
estimate of the survival function and the estimated survival function may be closer to the true
survival function. Comparison of the first dose of cumulative varicella vaccination coverage
curves for children whose family moved vs. not-moved by IPW and unadjusted KM methods are
shown in Fig. 1. The vaccination coverage curves among children whose family were not-moved
by both IPW and unadjusted KM methods were higher than the corresponding vaccination
coverage curves among children whose family were moved, as expected. The IPW adjustment
made the curve for moved family closer to the curve for not-moved family and both IPW adjusted
curves are positioned between the corresponding unadjusted KM curves, this movement of curves
might be explained as follows: the socio-demographic factors act as confounders, therefore the
association of mobility with status of vaccination is attenuated when controlling for those factors
via adjusted survival curves [16-17]. Therefore the IPW method in this illustrative example
generated better adjusted cumulative varicella vaccination coverage curves than the unadjusted
KM method. Furthermore, we calculated the standard errors of the first dose varicella cumulative
vaccination coverage across children age in days receiving the first dose of varicella by children
whose family moved vs. not-moved and by the IPW vs. unadjusted KM method. Fig. 2 shown that
the IPW method results in much smaller standard errors than the unadjusted KM method: the
standard errors of the IPW methods are approximately 50% less than the standard errors of
unadjusted KM method among children whose family moved; the standard errors of the
unadjusted KM methods are about 45% higher than the standard errors of IPW method among
children whose family not moved. The significant reductions in standard errors were not found
alone in our IPW method. Jiang et al. obtained remarkable reductions in standard errors by using
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of their covariate-adjusted non-parametric method [18]. In general covariate adjustment has been
demonstrated to reduce bias, and increase estimation efficiency [31-37]. In summary, the adjusted
cumulative varicella vaccination coverage curves by IPW method could be consistent estimates to
the true coverage curves, the IPW adjustment made the curve for moved family closer to the curve
for not-moved family and both IPW adjusted curves are positioned between the corresponding
unadjusted KM curves, and the IPW method significantly reduces the standard errors of the
cumulative varicella vaccination coverage across children age in days receiving the first dose of
varicella comparing to the unadjusted KM method, therefore IPW method is the better choice over
the unadjusted KM method for calculating adjusted survival curves in the context of complex
sample survey.
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Fig. 1. Comparison of the first dose varicella cumulative vaccination coverage curves for
children whose family moved vs. not-moved by IPW and unadjusted KM methods, 2011

National Immunization Survey (NIS)

Moved IPW: Cumulative varicella vaccination coverage curve for children whose family moved by Inverse

probability weighting (IPW) adjusted Kaplan-Meier method.

NotMoved IPW: Cumulative varicella vaccination coverage curve for children whose family not moved by

Inverse probability weighting (IPW) adjusted Kaplan-Meier method.

Moved KM: Cumulative varicella vaccination coverage curve for children whose family moved by original

unadjusted Kaplan-Meier method in SUDAAN.

NotMoved KM: Cumulative varicella vaccination coverage curve for children whose family not moved by

original unadjusted Kaplan-Meier method in SUDAAN
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Fig. 2. Comparison of standard errors of the first dose varicella cumulative vaccination
coverage across age in days receiving the first dose of varicella for children whose family
moved vs. not-moved by IPW and unadjusted KM methods, 2011 National Immunization

Survey (NIS)

Moved_selPW: Standard error of cumulative varicella vaccination coverage for children whose family
moved by Inverse probability weighting (IPW) adjusted Kaplan-Meier method.
NotMoved_selPW: Standard error of cumulative varicella vaccination coverage for children whose family
not moved by Inverse probability weighting (IPW) adjusted Kaplan-Meier method.
Moved_seKM: Standard error of cumulative varicella vaccination coverage for children whose family
moved by original unadjusted Kaplan-Meier method in SUDAAN.

NotMoved seKM: Standard error of cumulative varicella vaccination coverage for children whose family
not moved by original unadjusted Kaplan-Meier method in SUDAAN

On the other hand, as presented in Fig. 3, the CCG adjusted first dose of cumulative varicella
vaccination coverage curves for moved and not-moved family were located approximately outside
of the varicella vaccination coverage curves with unadjusted KM method for moved and not-
moved family, and most time the CCG adjusted cumulative vaccination coverage curve for moved
family was moved far below from the curve with unadjusted KM method for moved family. The
CCG method requires the satisfaction of Cox proportional hazards assumption which is not met in
this illustrative example with 2011 NIS child data.
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Fig. 3. Comparison of the first dose varicella cumulative vaccination coverage curves for
children whose family moved vs. not-moved by CCG and unadjusted KM methods, 2011
National Immunization Survey (NIS)

Moved KM: Cumulative varicella vaccination coverage curve for children whose family moved by original
unadjusted Kaplan-Meier method in SUDAAN.

NotMoved KM: Cumulative varicella vaccination coverage curve for children whose family not moved by
original unadjusted Kaplan-Meier method in SUDAAN.

Moved CCG: Cumulative varicella vaccination coverage curve for children whose family moved by Cox
corrected group (CCG) adjusted method.

NotMoved CCG: Cumulative varicella vaccination coverage curve for children whose family not moved by
Cox corrected group (CCG) adjusted method

4 Discussion

Because the IPW method is the extension of the AKME method, the IPW method should possess
the favorable property of AKME, i.e. the IPW could generate consistent estimate of the survival
function and the estimated survival function may be closer to the true survival function. In
addition, the IPW method significantly reduced the standard errors of cumulative vaccination
coverage comparing to the unadjusted KM method. The IPW adjusted Kaplan-Meier method
accounts for the complex sample survey design and adjusts the confounding by using the inverse
probability weights and SUDAAN software. It is a non-parametric method and easy to implement.
In addition, the IPW method provides marginal survival function estimates, does not require the
validity of the Cox proportional hazards assumption which may not be satisfied sometimes, and
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does not assume any semi-parametric or parametric survival model [17]. Thus, if the Cox
proportional hazards assumption is not met, as in the illustrative example presented in this study,
the IPW adjusted Kaplan-Meier method is the only appropriate choice among the two proposed
methods with regard to calculating adjusted survival functions. Kleinbaum [12] pointed out that
“the Cox proportional hazards model is a “robust” model, reasonable estimates of adjusted
survival functions can be obtained for a wide variety of data situations, and the results from using
the Cox model will closely approximate the results from the correct parametric model”. The CCG
adjusted method is also a flexible tool for adjusting important covariates [18]. If the Cox
proportional hazards assumption is valid, either [IPW and CCG adjusted methods can be used, or
the two methods could be used in combination (e.g., [PW as the primary method and CCG for
subsequent adjustment). In practice, we recommend presenting the unadjusted survival curves
first. The objectives of the study will determine if adjusted survival curves are needed. For
example, in a study of disparities by race/ethnicity, the unadjusted curves are most important and
need to be shown first. If researchers want to explain the disparity in terms of causal factors, the
adjusted survival curves may be useful.

One limitation of these two proposed methods for calculating adjusted survival functions with
complex sample survey data is the assumption that all variables considered in the analysis are
categorical. Estimation and group comparison of survival curves are two very common issues in
survival analysis [17]. The purpose of our study is to propose the IPW and CCG methods for
calculating adjusted survival function in the context of complex sample survey for EACH
LEVELS OF THE GROUP VARIABLE. Therefore the group index variable must be a
categorical variable. For IPW method, at the time of estimating the predicted probability of p; for
the ith individual being in the kth group adjusting the covariates Z; which could contains the
continuous elements. For CCG method, in order to evaluate the individual cumulative hazards
functions H(#) for each of the unique combination at all levels of the predictors including the
group variable and the covariates in the final Cox model by applying SUDAAN Survival
Procedure and output the estimated cumulative hazard functions [24], SUDAAN requires that all
of the predictors including the group variable and the covariates must be categorical variable. In
fact in the U.S. national public health surveys, almost all of the variables are categorical. Some
variables such as mother’s age, education levels, or family income etc. might be treated as
continuous variables, however they have been categorized to make the variable more informative
and easier to use in the subsequent data analysis.

Another limitation might be the large number of variable combinations for which individual
survival functions must be calculated if models contain many covariates by using CCG method. In
these cases, researchers may apply stepwise survival analysis if Cox proportional hazards
assumption is valid for all covariates, and adopt multicollinearity test, to get a small number, for
example < 10, of significant predictors associated with survival time for calculating adjusted
survival functions. This study is a statistical practice report that proposes and describes two
methods for calculating adjusted survival functions in the context of complex sample survey; the
two methods are implemented with procedures in SUDAAN vl11 software [24] and are illustrated
using 2011 NIS child data. Comprehensive theoretical researches and sophisticated computer
simulation for evaluating the performance of both IPW and CCG methods might be needed in the
future.
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5 Conclusion

If the Cox PH assumption is not met, then the IPW adjusted KM method is the only good choice,
if adjusted survival estimates are desired. If the Cox PH assumption is valid, either the IPW or
CCG methods can be used.
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