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Abstract 

 
The objective of this work was to find the numerical solution of the Impendence problem for 

the Helmholtz equation for a smooth superellipsoid. The superellipsoid is a shape that is 

controlled by two parameters. There are some numerical issues in this type of an analysis; any 

integration method is affected by the wave number k, because of the oscillatory behavior of the 

fundamental solution. The Helmholtz equation, which is the modified wave equation, is used in 

many scattering problems. This project was funded by NASA RI Space Grant for testing of the 

Robin boundary condition for the shape of the superellipsoid. One practical value of all these 

computations can be getting a shape for the engine nacelles in a ray tracing the space shuttle. 

We significantly reduced the number of terms in the infinite series needed to modify the 

original integral equation and used the Green's theorem to solve the integral equation for the 

boundary of the surface. 
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1 Introduction 

 
The main objective of this paper is to solve the Robin boundary value problem for the Helmholtz 

equation given by  
 

,0Im ,0
2 ≥=+∆ kuku                                                                          (1.1) 

 

where k is the wave number. In this paper we looked at specifically the superellipsoid region, a 

versatile primitive which is controlled by two parameters. In this case we noted that there are 

numerical issues with very small and very large parameters. The points we looked at come from 

all directions as shown in Diagram 1. These results are available for the Helmholtz equation with 

the Dirichlet boundary condition [1], but not for the impendence condition. 
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Diagram 1. Cross section of the superellipsoid and the external points. 

 

2 Definitions 

 
It is necessary to develop a method which is uniquely solvable for all frequencies k which is a 

challenge. Let S be a closed bounded surface in ℜ3 and assume it belongs to the class of C2. Let 

D_, D+, denote the interior and exterior of S respectively. We use Green's theorem as the 

background for the problem. The exterior Robin problem for the Helmholtz's equation is given by 
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≥+∈==+∆                                                 (2.1) 

 

with f a given function and u satisfying the Sommerfeld radiation condition. 

 

2.1 Framework of the Boundary Value Problems 

 
The exterior Robin problem was written as an integral equation. We represented the solution as a 

modified single layer potential, based on the modified fundamental solution [2,6,7,8]. 
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The series of radiating waves is given by 
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This addition of the infinite series to the fundamental solution was in order to remove the 

singularity that occurs when .qA =  

 

Here )1(
nh denote the spherical Hankel function of the first kind and of order ,n ,m

nY mmn ,...−= are 

the linearly independent spherical harmonics of order .m  

 

By letting A tend to a point ,Sp ∈ we obtained the following integral equation based on the 

Fredholm equations of the second kind  
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where 

).,(4 qp
r

e qpikr

πχ−
−

=Ψ  

 

Kleinman and Roach [3] gave an explicit form of the coefficient nma that minimizes the upper 

bound on the spectral radius. If B is the exterior of a sphere radius R with center at the origin then 

the optimal coefficient for the Robin problem was given by [4]. 
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Diagram 2. Coefficient anm 
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This choice of the coefficient minimizes the condition number, and as seen in Diagram 

2 01 <<− nma for all .n  Further the coefficient converges to 0.5 and is applicable for spherical 

regions [5]. 

 

This coefficient choice gave good results for the superellipsoid for the Dirichlet condition [1]. 

 

3 Properties of the Integral Operator K 
 
We know that the series χ can be differentiated term by term with respect to any of the variables 

and that the resulting series is uniformly convergent. Also the series χ is a solution to the 

Helmholtz equation satisfying the Sommerfeld radiation condition for ,, Ryx > when 

{ }RxxB ≤= : is contained in D. 

 
By (Theorem 3.5 [2] any two times continuously differentiable solution of the Helmholtz's 

equation is analytic and analytic functions are infinitely differentiable. So the series ),( qpχ is 

infinitely differentiable with respect to any of the variables .,qp  Furthermore it is easy to see that 

if µ is bounded and integrable and l
CS ∈   

then )()(),( SCdqqp l
qS

∈∫ σµχ and ).()(
),(

SCdq
qp l

q
q

S
∈

∂

∂
∫ σµ
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4 The Framework 

 
By converting to a new integral equation defined on the unit sphere we could apply the Galerkin 

Method to this new equation, using spherical polynomials to define the approximating subspaces. 

Then we obtained the new equation over ,U  

 

πµµπ 42 −=+−
)))

K ).(, UCff ∈
))

                                                                                  (4.1) 

 

The notation “^” denotes the change of variable from S to .U  Galerkin's method for solving (4.1) 

for the Impendence boundary condition is given by 

 

                                                                 (4.2) 

 

The solution is given by 

 

 
 

( ) ( ) .,...1,,4,),(2

1

11 dihfhhKhh i

d

j

ijji ==+− ∑
=

))
παπα                                                    (4.3) 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(18), 2676-2685, 2014 

 

 

2680 

 

The convergence of Nµ
 
to µ in )(

2
SL

 
is straightforward. We know from previous literature that 

µµ
))

→NP  for all )(2
UL∈µ

)
. From standard results it follows that 0→− KPK N

))
and we can 

obtain the desired convergence. 

 

4.1 The Approximation of True Solutions for the Robin Problem 

 
Given Nµ an approximate solution, we defined the approximate solution Nu by 
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To show the convergence of ),(AuN  we used the following lemma. 

 

Lemma 1 
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where K  is any compact subset of D [9,10]. 

 

4.2 Implementation of the Galerkin Method for the Robin Problem 

 

The coefficients ( )ij hhK ,
)

 are fourfold integrals with a singular integrand. Because the Galerkin 

coefficients ( )ij hhK ,
)

 depends only on the surface ,S we calculated them separately 

for .maxNN ≤ To decrease the effect of the singularity in computing )( phK j

))
in the Robin case, we 

used the identity 
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5 Numerical Examples/Experimental Surfaces 

 
We used the true solution 

 

r

e
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for our calculations. 

 

For this analysis it is important to realize that the superellipsoid is simply connected and is of 

infinite extent. 
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Table 1. Absolute error for varying interior integration nodes 
 

Points Absolute errors 

16, 8 32, 8 32, 16 

(-4,-7,2) 2.42E-04 2.20E-04 2.06E-04 

(5,5,5) 2.35E-04 2.16E-04 2.04E-04 

(-6,1,7) 2.22E-04 2.06E-04 1.96E-04 

(8,-3,5) 2.05E-04 1.88E-04 1.77E-04 

(10,2,3) 1.90E-04 1.72E-04 1.61E-04 

(-3,10,4) 1.81E-04 1.65E-04 1.54E-04 

(8,9,2) 1.66E-04 1.50E-04 1.39E-04 

(5,-8,11) 1.41E-04 1.62E-04 1.26E-04 

(1,9,12) 1.36E-04 1.27E-04 1.22E-04 

(-1,-9,20) 9.34E-05 8.80E-05 8.57E-05 

 

Series 1

Series 2

Series 3

0.000001

0.000101

0.000201

0.000301

0.000401

0.000501

0.000601

0.000701

0.000801

0.000901

Absolute Error

Series 1:  NINTI = 16, NINTE = 8

Series 2:  NINTI = 32, NINTE = 8

Series 3:  NINTI = 32, NINTE = 16  
 

Fig. 1. Further the points from the boundary better the convergence 
 

Table 2. Convergence results for varying wave numbers 
 

         

             k-value 

Absolute Errors 

0.1 0.5 0.9 1 1.1 1.9 2.8 5.2 

Points         

(-4,-7,2) 1.20E-04 1.69E-04 2.29E-04 2.42E-04 2.54E-04 2.84E-04 5.81E-04 1.08E-03 

(5,5,5) 1.15E-04 1.60E-04 2.21E-04 2.35E-04 2.49E-04 3.46E-04 4.77E-04 1.91E-03 

(-6,1,7) 1.08E-04 1.50E-04 2.08E-04 2.22E-04 2.36E-04 3.74E-04 4.95E-04 1.64E-03 

(8,-3,5) 1.01E-04 1.40E-04 1.93E-04 2.05E-04 2.16E-04 2.86E-04 4.20E-04 1.36E-03 

(10,2,3) 9.36E-05 1.31E-04 9.44E-05 1.90E-04 2.00E-04 2.28E-04 4.37E-04 7.83E-04 

(-3,10,4) 8.90E-05 1.22E-04 1.71E-04 1.81E-04 1.91E-04 2.27E-04 3.96E-04 7.18E-04 

(8,9,2) 8.15E-05 1.14E-04 1.57E-04 1.66E-04 1.74E-04 1.88E-04 4.01E-04 9.34E-04 

(5,-8,11) 6.88E-05 9.56E-05 1.32E-04 1.41E-04 1.50E-04 2.40E-04 3.28E-04 1.03E-03 

(1,9,12) 6.63E-05 9.20E-05 1.28E-04 1.36E-04 1.45E-04 2.39E-04 3.26E-04 7.97E-04 
(-1,-9,20) 4.54E-05 6.27E-05 8.71E-05 9.34E-05 1.00E-04 1.78E-04 2.39E-04 2.98E-04 

 

From the above Table 1 and Fig. 1, we see that for the points away from the boundary there is 

much greater accuracy than for points near the boundary. This is because the integrand is more 
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singular at points near the boundary. Also the convergence results are much better for small values 

of .k  

 

From the above Table 2 and Fig. 2 we see that increasing the number of Galerkin coefficients give 

a better result. This is due to the following fact: the kernel function involves krsin and ,cos kr  

these trigonometric functions are much more oscillatory when k becomes large. Therefore in this 

case we must increase the integration nodes to achieve the same accuracy. 

 

Remark: 

We chose more interior nodes because the integrand of ),( ji hKh
)

 is smoother than the integrand 

of .jhK
)

 

 

 
 

Fig. 2. The best convergence results were for smaller wave numbers 

 

Table 3. The absolute errors for a range of superellipsoids ranging from [0.5 – 1.8] 
 

  Absolute errors 

                n-value 0.5 0.9 1.2 1.4 1.7 1.8 

Points       

(-4,-7,2) 6.48E-03 3.23E-04 1.34E-04 2.42E-04 6.27E-04 8.03E-04 

(5,5,5) 4.91E-03 2.63E-04 1.39E-04 2.35E-04 6.29E-04 8.18E-04 

(-6,1,7) 3.63E-03 2.09E-04 1.38E-04 2.22E-04 6.10E-04 8.03E-04 

(8,-3,5) 4.61E-03 2.41E-04 1.19E-04 2.05E-04 5.43E-04 7.03E-04 

(10,2,3) 5.01E-03 2.49E-04 1.06E-04 1.90E-04 4.91E-04 6.29E-04 

(-3,10,4) 4.57E-03 2.30E-04 1.02E-04 1.81E-04 4.70E-04 6.04E-04 

(8,9,2) 4.57E-03 2.24E-04 9.23E-05 1.66E-04 4.23E-04 5.40E-04 

(5,-8,11) 2.25E-03 1.34E-04 8.75E-05 1.41E-04 3.91E-04 5.16E-04 

(1,9,12) 2.02E-03 1.23E-04 8.56E-05 1.36E-04 3.81E-04 5.04E-04 

(-1,-9,20) 1.05E-03 7.37E-05 6.07E-05 9.34E-05 2.70E-04 3.61E-04 
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Fig. 3. Convergence result for varying n values. The best result was for the superellipsoid 

with n = 1.4 

 

When n  is changed, see Fig. 3 and above Table 3, we obtained new shapes of superellipsoids. 

The optimal results were given when n  is between 1.2 and 1.4. 
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Fig. 4. More terms better the convergence 
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Table 4. Absolute error for varying number of terms from the infinite series 

 
  Absolute errors 

                       Terms  5 10 15 20 

Points     

(5,5,5) 8.96E-03 8.71E-04 5.35E-04 3.45E-04 

(30,4,60) 1.38E-03 7.14E-04 3.02E-04 1.11E-04 

(2,70,80) 8.00E-04 6.08E-04 1.91E-04 8.62E-05 

(90,50,7) 6.51E-04 4.49E-04 1.98E-04 7.10E-05 

(100,110,120) 4.16E-04 1.20E-05 1.06E-05 6.66E-06 

 

The above Fig. 4 and Table 4 shows that further the points are from the boundary the better the 

convergence results are for this problem, which is the expected result. 

 

6 Conclusion 
 
We allowed only a finite number of the coefficients nma to be different from zero. According [11] 

this is sufficient to ensure uniqueness for the modified integral equation in a finite range of wave 

numbers .k  In practical applications, one is usually concerned with a finite range of k . From the 

above examples, we see that the error is effected by the boundary ,S  interior nodes, exterior 

nodes, k and n . If we want to obtain more accuracy, we must increase the number of integration 

nodes for calculating the Galerkin coefficients ),( ij hhK
)

. Some of the increased cost comes from 

the complex number calculations, which is an intrinsic property of the Helmholtz equation 

[12,13,14]. 

 

Furthermore any integration method is affected by k , due to the oscillatory behavior of the 

fundamental solution .
r

e
ikr

 Thus the superellipsoid shape is a viable shape for testing incoming 

waves that absorb and reflect at the boundary (Robin condition) for smooth simply connected 

surfaces. 
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