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Abstract 
 

Let � be left amenable semi-topological semigroup such that its weak almost periodic compactification 
��  is a topological semigroup. We show that every separately continuous, non-expansive and 
equicontinuous action of �  on a weakly compact convex subset of a Banach space with normal structure 
has a fixed point. 

 

Keywords: Non-expansive mapping; semi-topological semigroup; amenable; left reversible; weakly almost 
periodic function. 

 

1 Introduction 
 
Let �  be a subset of a Banach space � . A self mapping �  on �  is said to be non-expansive if              
‖�(�) − �(�)‖ ≤ ‖� − �‖ for all �, � ∈  �.  
 
If �  and �   are non-empty subsets of a Banach space �  and �  is bounded, for � ∈ � , define �(�, �) =
���{  ‖ℎ − �‖ ∶  ℎ ∈ � } . Put  �(�, �) = ���{ �(�, �) ∶  � ∈ � }  and let �(�, �) = { � ∈ � ∶  �(�, �) =
�(�, �) }. When � is convex, we say that � has normal structure if for each bounded closed convex subset 
�  of �  with more than one point, there exists � ∈ �  such that �(�, �) < �(�) = ����(�) , or 
equivalently, �(�, �) is a proper subset of �. DeMarr [1] showed that every compact convex subset of a 
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Banach space has normal structure, but Alspach [2] observed that this is not true for a weakly compact 
convex subset. 
 
In [3] Kirk proved the following theorem: 
 
Theorem 1.1. For any non-empty weakly compact convex subset �  of a Banach space �  with normal 
structure, each non-expansive self mappings � on � has a fixed point in �. 
 
Kirk’s theorem was a landmark in fixed point theory and inspired many subsequent works [4]. For example 
later on Lim [5] generalized Kirk’s theorem for some special families of non-expansive self-maps on � 
according to the following considerations. 
 
Let �  be a semi-topological semigroup, i.e. �  is a semigroup with a Hausdorff topology such that the 
multiplication is separately continuous, i.e. for each � ∈  �, the mappings � ⟶ �� and � ⟶ �� from � into 
� are continuous. � is called left reversible if any two closed right ideals of � have non-void intersection. 
 
An action of � on a topological space � is a mapping (�, �) → �(�) from � × � into � such that (��)(�) =
�(�(�)) for all �, � ∈ �, � ∈ �. The action is separately continuous if it is continuous in each variable when 
the other is kept fixed. Every action of � on � induces a representation of � as a semigroup of self-mappings 
on � denoted by �, and the two semigroups are usually identified. When the action is separately continuous, 
each member of � is a continuous mapping on �. A subset � ⊆ � is �-invariant if �� ⊆ � for each � ∈ �. 
We say that � has a common fixed point in �, if there exists a singleton �-invariant subset of �. When � is a 
normed space the action of � on � is non-expansive if ‖�(�) − �(�)‖ ≤ ‖ � − �‖ for all  � ∈ � and �, � ∈ �. 
 
Now we can state Lim’s theorem [5]: 
 
Theorem 1.2. Let �  be a non-empty weakly compact convex subset of a Banach space �  with normal 
structure and � be a left reversible semi-topological semigroup. Then every separately continuous and non-
expansive action of � on � has a common fixed point in �. 
 
One can also weaken the topology of set � in Lim’s result as in [6,7] but here we focus on changing the 
structure of semigroup �. 
 
Let  �∞(�) be the C*-algebra of all bounded complex-valued functions on � with supremum norm and point-
wise multiplication. For each � ∈ � and � ∈  �∞(�), denote by �� (�) and ��(�) the left and right translates of 
� by � respectively, that is �� (�)(�) = �(��) and ��(�)(�) = �(��) for all � ∈ �. Let � be a closed subspace 
of  �∞(�) containing constants and be invariant under translations. Then a linear functional � ∈ �∗ is called 
a mean if  ‖�‖ =  �(1) = 1, and a left invariant mean (LIM) if moreover �( �� (�)) =  �(�) for � ∈
�, � ∈ �. Let ��(�) be the space of all bounded continuous complex-valued functions on � with supremum 
norm and  ���(�) be the space of left uniformly continuous functions on �, i.e. all functions � ∈ ��(�) for 
which the mapping � → ���: � ⟶ ��(�)  is continuous when ��(�)  has the sup-norm topology. Then  
���(�) is a C*-subalgebra of ��(�) invariant under translations and containing constant functions. �  is 
called left  amenable if  ���(�)  has a LIM. The space of all right uniformly continuous functions, ���(�), 
and right amenability can be defined similarly. The semi-topological semigroup � is called amenable if it is 
both left and right amenable, in this situation there is a mean which is both left and right invariant. Left 
amenable semi-topological semigroups include commutative semigroups, as well as compact and solvable 
groups. The free (semi)group on two or more generators is not left amenable, however. For more details on 
amenability, examples and relations see [8,9,10,11,12,13,14]. 
 
A semigroup can be left amenable without being left reversible as the following example shows [12]: 
 
Example 1.4. Let � be a topological space which is regular and Hausdorff. Then ��(�) consists of constant 
functions only. Define on � the multiplication �� = � for all �, � ∈ �. Let � ∈ �  be fixed. Define �(�) =
�(�) for all � ∈ �. Then � is a left invariant mean on �(�), but � is not left reversible. 
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Now the question naturally arises as to whether this is true if one considers a left amenable semi-topological 
semigroup in Lim’s theorem instead of left reversible semi-topological semigroup? In this paper, we show 
that the answer is affirmative. Our theorem is new and not a result of any previous work. 
 

2 Main Theorem 
 
The space of almost periodic functions on �, is the space of all � ∈ �(�) such that { ���: � ∈ � } is relatively 
compact in the sup-norm topology of �(�) and is denoted by ��(�). Also the space of all � ∈ �(�) such 
that { ���: � ∈ � } is relatively compact in the weak topology of �(�) is denoted by ���(�) and called the 
space of weakly almost periodic functions on � . For any semi-topological semigroup �  we have the 
following theorem ([8], p.131 and p.164): 
 
Theorem 2.1. For a semi-topological semigroup � the following assertions hold: 
 

a) � ∈ ��(�) if and only if  { ���: � ∈ � } is relatively compact in the sup-norm topology of �(�). 
b) � ∈ ���(�) if and only if  { ���: � ∈ � } is relatively compact in the weak topology of �(�). 
c) ��(�) ⊆ ���(�)⋂���(�). 

 
A topological semigroup is a semi-topological semigroup with jointly continuous multiplication. Let �� 
(respectively ��) be the almost periodic ( respectively weakly almost periodic) compactification of �, i.e. �� 
(respectively ��) be the spectrum of C*-algebra ��(�) (respectively ���(�) ). Then �� and �� are semi-
topological semigroups with the multiplication given by: < �. �, � >=< �, �. � > , where �. �(�) =<
�, ��� >, �, � ∈ ��  (respectively �� ), � ∈ ��(�) (respectively ���(�) ). The following theorem can be 
found in ([10], p.7). 
 
Theorem 2.2. If �� is a topological semigroup, then ��(�) = ���(�).  
 
The action of a semigroup � on a weakly compact Hausdorff space � is equicontinuous if, for each � ∈ � 
and � ∈ �, where � is the unique uniformity which determines the topology of � (see [15], p.197), there is 
a � ∈ � such that (��, ��) ∈ � for all � ∈ � whenever (�, �) ∈ �.  
 
Lemma 2.3. Let �  be a semi-topological semigroup with separately continuous, non-expansive and 
equicontinuous action on a weakly compact subset �  of a Banach space � . Let � ∈ � , � ∈ �(�) and 
define ��(�) = �(��)   (� ∈  �). If �� is a topological semigroup, then �� ∈ ���(�). 
 
Proof: Put pointwise convergence topology on �(�). We claim that the mapping: � ⟶ �(�) defined by 
� ⟶ ��  is continuous. Obviously ��  is in �(�) , since �  is continuous and the action is separately 
continuous. Let  �� ⟶ � and �� be the Stone-Cech compactification of S. We show that the net (���

) 

converges pointwisely to ��, i.e. ���
(�) ⟶ ��(�) for any � ∈ ��. The element � is not necessarily in �, so 

we must find a suitable convergent net and relate its convergence to the convergence of net (���
(�)) in 

some ways. Note that the Stone-Cech compactification of � is precisely the spectrum of C*-algebra �(�) 
and it is well-known that the set of all point-mass measures is weak*-dense in the spectrum of �(�), so there 
must be a net (��) in � such that the corresponding net (���

) of point-mass measures converges to � in the 

weak*-topology of the dual space. Hence ���
(�) ⟶ �(�) for any � ∈ �(�), especially for  �� ∈ �(�) we 

have 
 

�(���) = ��(��) = � �� ����
= ���

(��) ⟶ �(��) 

 
On the other hand, (��) is a net of self-mappings on � and converges pointwisely to a continuous self-
mapping  � on M, by equicontinuity of the action. So ��� ⟶ �� in �, and then �(���) ⟶ �(��)  by 
continuity of � . Now the net (�(���))  converges to limits �(��)  and �(��) , hence �(��) = �(��) . 
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Now �����
� = �(���) ⟶ �(��) = �(��) , but �(��) = ��(�)  and �����

� = ���
(�)  by the very 

definition of Gelfand transform. Therefore ���
(�) ⟶ ��(�), which proves the claim. 

 
For each right translate of �� we have 
 

��(��)(�) = ��(��) = �(���) = ���(�);   (�, � ∈ �) 
 
hence { ����: � ∈ �} = { ���: � ∈ �} = ��� . The set �� is relatively compact in � and the set ���  is the 
image of ��  under the continuous mapping � ⟶ �� , so ���  is relatively compact in the pointwise 
convergence topology of �(�). Now by ([8], theorem 4.2.3) and theorem 2.1 part (b) we see that �� ∈
���(�), but according to theorem 2.2 ���(�) = ��(�). Applying theorem 2.1 this time part (c), we see 
that �� ∈ ���(�).  
 
Now we use the above lemma to prove our theorem: 
 
Theorem 2.4. Let �  be a non-empty weakly compact convex subset of a Banach space �  with normal 
structure and � be a left amenable semi-topological semigroup for which ��  is a topological semigroup. 
Then every separately continuous, non-expansive and equicontinuous action of � on � has a common fixed 
point in �. 
 
Proof: An application of Zorn's lemma shows that there exists a minimal non-empty weakly compact 
convex and �-invariant subset � ⊆ �. If � is a singleton we are done, otherwise apply Zorn's lemma for the 
second time to get a minimal non-empty weakly compact and �-invariant subset � ⊆ �.  
 
If �  is singleton we are done, otherwise if �(�) = ����(�) > 0 , we get a contradiction by normal 
structure assumption of K which implies that 
 

∃ � ∈ �����(�) ���ℎ �ℎ�� �� = ���{ ‖� − �‖ ∶  � ∈ �} <  �(�). 
 
Let �� = ⋂ �[�, ��]�∈� ⋂�. Then �� is a non-empty (indeed � ∈ ��) convex proper subset of �. The set 
�� is weakly compact, since every closed convex ball is weakly compact. To arrive at a contradiction we 
need to show that �� is �-invariant, i.e. ��� ⊆ �� for each � in �. 
 
To this end we show that � is �-preserved, i.e. �� = �  for all  � ∈ �. Let � be a left invariant mean on 
���(�) and define �(�) = �(��), where �� is defined as in lemma 2.3. By Riesz representation theorem, � 
induces a regular probability measure on � (still denoted by �) such that �(��) = �(�) for all Borel sets 
� ⊆ � and � ∈ �. Let � be the support of �. Each � ∈ � defines a measurable continuous function from � 
into � , so by basic properties of the support, � ⊆ ��  and �(��) = �(�) = 1. Assume that ��  is the 
characteristic function of �. For each � ∈ �, 
 

1 = �(�) = ∫
�

��(�) �� = ∫
�

��(��) �� = �(����), 

 
(���� means the pre-image of �  under �) again by the definition and properties of support we see that 
� ⊆ ����, meaning that � is �-invariant. Hence � = � by the minimality of �. Consequently � = � ⊆ �� 
for each � ∈ �. But � was already �-invariant, so �� = � for each � in �. 
 
Let � ∈ ��, � ∈ � and � ∈ � be arbitrary. The element � defines an onto mapping on �, so there must be an 
�′ such that � = ��′. Hence 
 

‖�� − �‖ = ‖�� − ��′‖ ≤ ‖� − �′‖ ≤ �� 
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which show that �� is �-invariant. Therefore we conclude that ��  is a proper subset of � with the same 
properties as, but this contradicts the minimality of �. So � contains only one point which is a common 
fixed point for the action of �.   
 
Here is an application of our theorem: 
 
Example 2.5. Let � = {(�, �): 0 ≤  � ≤  1, 0 ≤  � < 2�}  be the closed unit disc in ℝ�  in polar 
coordinates. It is well-known that � is convex, weakly compact and has normal structure. Define the self 
mappings �  and �   on �  by �(�, �) = (�, � + �) and �(�, �) = (�, −�). Let �  be the discrete semigroup 
generated by � and � under composition. Then � is a finite group, hence amenable. Also �� = �, showing 
that ��  is a topological semigroup. The action of �  is non-expansive, since �  is a rotation and �  is a 
reflection and according to the elementary geometry, rotations and reflections are isometries in the plane. On 
the other hand � = { �(�): � > 0 } , where �(�) = { (�, �) ∈ � × � ∶  ‖� − �‖ < �} , is the unique 
uniformity which determines the topology of �. Suppose that � ∈ � and � = { (�, �) ∈ � × � ∶  ‖� − �‖ <

�} be in � , by Archimedean property of real numbers there exists an � ∈ ℕ  such that 
�

�
< � . Let � =

{ (�, �) ∈ � × � ∶  ‖� − �‖ <
�

�
}. Then for any (�, �) ∈ � and ∈ � , using the non-expansive property of the 

action we have 
 

‖�� − ��‖ ≤ ‖� − �‖ <
�

�
< �, 

 
so (��, ��) ∈ � . Hence the action of � is equicontinuous. Now theorem 2.4 is applicable and predicts a 
fixed point for the action of � on �. For example origin is a fixed point for this action, i.e. rotations and 
reflections do not change the position of the center of symmetry. 
 

3 Conclusion 
 
In this paper we have shown that when a left amenable semi-topological semigroup � acts on a non-empty 
weakly compact convex subset �  of a Banach space �  with normal structure such that the action is 
separately continuous, non-expansive and equicontinuous then there is a fixed point for this action provided 
that  the  weak almost periodic compactification of � is a topological semigroup. It is an open question if the 
condition of being topological semigroup for �� in our theorem can be dropped or not? 
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