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Abstract 
 

The paper presents the law of large numbers followed by a multicriterial analysis of the six theorems that 
compose the weak form. This group of theorems work on issues of sequences limit laws of sums of 
random variables in the sense of convergence almost surely of such sequences. 
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1 Introduction 
 
The fundamental limit theorems of the probability theory can be classified into two groups. A group dealt 
with the limit laws problems of the sums of sequences of random variables in the sense of convergence 
almost sure of such sequences. The Central Limit Problem development for independent terms can be 
divided into three periods. The first refers to the case of Bernoulli with corresponding to limit theorems of 
Bernoulli, DeMoivre and Poisson. The first two theorems gave birth to concepts, from which the classic 
problem of the Central Limit Law of Large Numbers and normal convergence.  
 
The development is to simplify the existing demonstrations, modeling and consolidation; determining the 
general concepts underlying their results and expanding their fields. Analysis of this growth will put into 
relief the role and the interconnections of fundamental limit theorems. 
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First, the italian mathematician G. Cardano (1501-1576) affirmed, without demonstrations, that the precision 
of an empirical statistics tends to improve with the sample sizes. This was formalized then as a law of large 
numbers. Later on, another great mathematician, J. Bernoulli (1654-1705) established in his work "Ars 
conjectandi" published in 1713, that the new mathematical theory it would be the foundation of the study of 
mass phenomenon. It took him more than 20 years to develop a rigorous demonstration of this, which was 
published in opera that we cited earlier. By "theorem of large numbers" or "law of large numbers" this is a 
direct connection between frequency and probability, after a large number of samples. This theorem is the 
foundation of mathematical statistics. Obviously, probability theory and statistics are in a continuous 
development. Thus, it is justified the application of probability theory in so many areas. 
 
The purpose of this paper is to expose the six theorems that make up the weak form of the law of large 
numbers. Here, we detail the present theorems demonstrations, then we make a multicriterial analysis 
thereof. From the discussions with researchers in other domains than statistics or probability, the author 
noticed that they encountered difficulties in applying the theorems in their fields of research, so using 
multicriterial analysis, we make a ranking to urge the one who applied, from which point of view to take one 
or the other. As we have mentioned, the applicability of probability theory being so ample in so many 
domains; we come to be helpful to a nonmatematician to help him making a decision as best and fastest. We 
emphasize that this multicriterial analysis applied in this paper is an own contribution. 
 

2. The Law of Large Numbers (The Weak Form) 
 
Theorem 1. [1,2] Let (��)�∈ℕ∗ be a string of random variables and mean values and finite variances 
 

�[��] = �� < ∞, ���[��] = ��
� < ∞. 

 
If there exist a constant M such that 
 

���
�→∞

�� = � 

 
and 

 
 ����→∞ ��

� = 0                                                                                                                                 (1) 
 

Then        {��}
�
→ �. 

 
Demonstration   
 
We observe that for any � > 0 

 

{|�� − �| > �} ⊆ �|�� − ��| >
�

�
� ∪ �|�� − �| >

�

�
�. 

 
we can write 

 

�({|�� − �| > �}) ≤ � ��|�� − ��| >
�

�
�� + � ��|�� − �| >

�

�
��.                                              (2) 

 
Applying random variable �� on Chebyshev's inequality we obtain 
 

�({|�� − �| > �}) ≤
���[��]

�� =
��

�

��.                                                                                                   (3) 

 
Since 
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lim
�→∞

�� = � 

 

It results that ∀� > 0, ∃�(�) ∈ ℕ such that ∀� ≥ �(�) the inequality |�� − �| >
�

�
 becomes imposible, ie 

 
∀� ≥ �(�): �({|�� − �| > �}) = 0. 

 
Passing to the limit in (2), taking into account of (3) and the ipothesis (1) it results that 
 

lim
�→∞

�({|�� − �| > �}) = 0. 

 
Theorem 2. (the weak form of the Jacob Bernoulli theorem) 
 

The first formulation [2,3]: If A is an event caracterized by �(�) = � ≠ 0 and 
��

�
 of the relative frequency 

achievement of the event A in the first n samples of an infinite number of independent samples, then  
 

∀� > 0 ∶  ���
�→∞

� ���
��

�
− �� > ��� = 0 

 
or, equivalent,  
 

∀� > 0 ∶  ���
�→∞

� ���
��

�
− �� ≤ ��� = 1. 

 
The second formulation: [4,5] If {��}�∈ℕ  is a set of independent random variables such that 
��: ��(�, �), � ∈ ℕ, then the string of random variables converges in probabiliy to p. 

 

�
1

�
� ��

�

���

�

�∈ℕ

 

 
Demonstration  
 
We demonstrate Bernoulli's theorem in the second form. We note 
 

�� =
1

�
� ��

�

���

 

 
and considering that 
 

�[��] =
1

�
� �[��] =

1

�
�� = �

�

���

, 

 

���[��] =
1

��
� ���[��] =

���

��
=

��

�

�

���

. 

 
So 

lim
�→∞

�[��] = � 

 
and  
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lim
�→∞

���[��] = 0 

 
which indicates that the hypotheses of the theorem 1 are satisfied, then 
 

�
1

�
� ��

�

���

�
�
→ �. 

 
Remark 1. The first statement of the Bernoulli theorem approach is theoretical justification made between 
the concepts of relative frequency and probability of an event. It expresses the fact that for very large strings 
evidence any significant difference between the relative frequency and probability of an event is very 
improbable. So convergence of relative frequencies to probability of the event it does not to be understood as 
a common numerical convergence. It is not apparent from the above theorem and is not accepted the 
intuitive idea that with increasing number of relative samples frequency values are necessarily closer to 
probability. 
 
Remark 2. The two formulations result one of the other if we consider the absolute frequency of realization 
of � in � samples. Let �� be a random variable distributed ��(�, �). If we note 
 

�� = � ��

�

���

 

 
then   

��

�
=

1

�
� ��

�

���

 

 
and  

 

lim
�→∞

� ���
��

�
− �� > ��� = 0 

 
which means that the 
 

�
1

�
� ��

�

���

�
�
→ � 

 
Remark 3. The theorem result is the theoretical justification of the definition of a parameter estimation of a 
distribution. 
 
Theorem 3. [6,7] (Chebyshev) If (��)�∈ℕ∗  is a set of independent random variables two by two having 
dispersions bounded by the same constant 
 

���[��] ≤ ��, � ∈ ℕ 
 

then 
 

∀� > 0 ∶  ���
�→∞

� ���
1

�
� ��

�

���

−
1

�
� �[��]

�

���

� > ��� = 0 

 
or, equivalent,  
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∀� > 0 ∶  ���
�→∞

� ���
1

�
� ��

�

���

−
1

�
� �[��]

�

���

� ≤ ��� = 1, 

 
i.e. occurs the convergence in probability string of random variables, 
 

�
1

�
�(�� − �[��])

�

���

�
�
→ 0 

 
Demonstration 
 
If 

 

�� =
1

�
�(�� − �[��])

�

���

 

 
then  

 

�[��] = �[
1

�
�(�� − �[��])] =

1

�
� �[��]

�

���

−
1

�
� �[��]

�

���

= 0

�

���

 

 
and because the random variables ��  are independent two by two, it results that (�� − �[��])  are 
independent two by two and therefore 
 

���[��] = ��� �
1

�
�(�� − �[��])

�

���

� =
1

��
� ���(�� − �[��]) =

1

�
� ���[��]

�

���

�

���

. 

 
Applying to random variable �� the Chebyshev's inequality and taking into account the assumptions of the 
problem, we can write  
 

� ���
1

�
� �� −

1

�
� �[��]

�

���

�

���

� > ��� ≤
1

����
� ���[��] <

���

����
=

��

���

�

���

 

 
and so 

lim
�→∞

� ���
1

�
� �� −

1

�
� �[��]

�

���

�

���

� > ��� ≤ lim
�→∞

��

���
= 0 

 
Theorem 4. [8,2] (Markov) If the random variables ��, ��, … , ��, … have the property that: 
 

��� �


n

i
iX

1

�

��
→ 0, � → ∞ 

 
then we have the law of large numbers. 
 
Demonstration 
 
It must be demonstrated that the string {��}�∈ℕ verifies the relation:  
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∀� > 0 ∶  lim
�→∞

� ���
1

�
� ��

�

���

−
1

�
� �[��]

�

���

� ≤ ��� = 1. 

 
Applying Chebyshev's inequality for the random variables: 
 

� = �
��

�
, ���[�] = ��� ��

��

�

�

���

� =
1

��
��� �� ��

�

���

� → 0,   � → ∞

�

���

 

 
Therefore ���[�] < ∞ and then Chebyshev's inequality holds: 
 

�(|� − �[�]| ≤ �) ≥ 1 −
1

��

1

��
��� �� ��

�

���

� . 

 
But 

 

1

��
��� �� ��

�

���

� → 0, � → ∞ 

 
Passing to the limit in the previous inequality, we obtain the assertion of the theorem. 
 
Remark 4. [9] In the particular case when the random variables are independent, provided the statement is 
written: 
 

��� �


n

i
iX

1

�

�
→ 0, � → ∞ 

 
Theorem 5. [4,2] (Khincin) If {��}�∈ℕ is a set of independent random variables with the same distribution 
two by two and having  finite dispersions, then 
 

���
�→∞

� ���
1

�
� �� − �

�

���

� > ��� = 0 

 
where � = �[��], � ∈ ℕ. 

 
Demonstration 
 
If the random variable {��}�∈ℕ follow the same distribution, it results that ���[��] = ��, � ∈ ℕ, which 
implies satisfying the assumptions of Chebyshev’s theorem. 
 
Remark 5. This result substantiates the usual theory of approximation of the average of statistical 
characteristic of a population studied by the arithmetic mean of the observed values. Indeed, if 
��, ��, … , ��, … are seen as potential values of a random variable � obtained by a number of independent 
samples, the theorem shows that their average converges to � = �[�]. 
 
As a special case of Chebyshev’s theorem we obtain Poisson's theorem. 
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Theorem 6. [4,9] (Poisson) Let A an event of which the probability to output varies during a series of 

independent samples so that the sample of rank k, �(�) = ��, � = 1,2, …  and let  
��

�
 the frequency of 

execution of the event � in the first n samples. Then 
 

lim
�→∞

� ���
��

�
−

�� + �� + ⋯ + ��

�
� > ��� = 0 

 
Demonstration 
 
We define for each � = 1,2, … , �, … the random variable ��  takes the values 1 or 0 as � is realized or not in 
the sample with the rank k. Hereupon, ��  is definited 
 

�� : �
0 1

1 − �� ��
� 

 
Noting with �� the number of realisations of  � in the first n samples, we denote that 
 

��(�) =
��

�
=

1

�
� ��

�

���

 

 
Because ��, ��, … , ��, … are independent random variables and because  
 

�[��] = �� ,���[��] = �[��
�] − �[��]� = �� − ��

� = ��(1 − ��) ≤
1

4
 

 
it results that the string {��}�∈ℕ verify the  hypotheses of the Chebyshev’s theorem and so 
 

lim
�→∞

� ���
��

�
−

�� + �� + ⋯ + ��

�
� > ��� = lim

�→∞
� ���

1

�
� ��

�

���

−
1

�
� �[��]

�

���

� > ��� = 0. 

 

3. The Multicriterial Analysis of the Dynamics That Make up the 
Application Form Weak Theorems of Law of Large Numbers  

 
Multicriterial analysis can serve very well in obtaining all kinds of rankings with subjects in the same area or 
in different areas of activity, contemporaries or not, in that the subjectivism is greatly removed. It is very 
important that this kind of analysis is in relation to the criteria chosen, an analysis that gives – in a large 
proportion – an objective character of its results. 
 
We have the following variants: 
 

- Variant (a): The extent of which one applies more frequently theorems 
- Variant (b): The difficulty to apply the 6th theorems  
- Variant (c): The reliable of application of the 6th theorems  

 
6 criteria have been chosen (Table 1): 
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Table 1. The criteria table 
 

Current no. The theorem 
1. T. Bernoulli 1 
2. T. Bernoulli 2 
3. T. Chebyshev 
4. T. Markov 
5. T. Khincin 
6. T. Poisson 

 
Based bet on score, weighting of the criteria resulted as follows (Table 2): 
 

Table 2. The weights of the criteria 
 

 T.  
Bernoulli 1 

T.  
Bernoulli 2 

T. 
Chebyshev 

T. 
Markov 

T. 
Khincin 

T. 
Poisson 

Points Level �� 

T. Bernoulli 1 1/2 1 0 0 0 1/2 2 6 0,5 
T. Bernoulli 2 0 1/2 0 1 1/2 1/2 2,5 3,5 1 
T. Chebyshev 1 1 1/2 1 0 0 3,5 2,5 2,4 
T. Markov 1 0 0 1/2 0 1 2,5 3,5 1 
T. Khincin 1 1/2 1 1 1/2 0 4 1 3,8 
T. Poisson 1/2 1/2 1 0 1 1/2 3,5 2,5 2,4 

                                                                                                                         
The �� weighting coefficients can be calculated with different formulas. We chose to use FRISCO practice 
formula (empirical formula given by a renowned creative group from San Francisco – US) that has been 
recognized worldwide as being the most performance and is long used. 
 
Therefore, with,  
 

�� =
� + �� + � + �, �

−��′ +
����

�

 

 
where, 
 

 � is the sum of points obtained (on line) of the considered element 
 �� the difference between the score of the considered element and the score at the top level 

element; if the element taken into account is the one located on the top floor, results �� with the 
value 0 

 � the number of outclassed criteria (exceeded from terms of score) the by the criteria taken into 
account 

 ���� the number of considered criterion  
 ��′ the difference between the score of the considered element and the score of the first element 

(resulting with a negative value); taken into account if the item is located on the first level, ��′ 
results with the value 0 

 
We obtain 
 

���������� � =
2 + (2 − 2) + 0 + 0,5

−(2 − 4) +
�

�

=
2,5

5
= 0,5 

 

���������� � =
2,5 + (2,5 − 2) + 1 + 0,5

−(2,5 − 4) +
�

�

=
4,5

4,5
= 1 = �������  
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�������� = ����âş�� =
3,5 + (3,5 − 2) + 3 + 0,5

−(3,5 − 4) +
�

�

=
8,5

3,5
= 2,4 

 

������� =
4 + (4 − 2) + 5 + 0,5

−(4 − 4) +
�

�

=
11,5

3
= 3,8 

 
It is noted that the main diagonal of the array contains only quadratic criteria for scoring 1/2 values because 
no criteria may be more important or less important than the criteria itself. 
 
According to the criteria there were given the following notes for each variant ��  (Table 3). 
 

Table 3. The scores of variants 
 

Criteria Variant (a) Variant (b) Variant (c) 
�� �� �� 

T. Bernoulli 1 7 6 8 
T. Bernoulli 2 9 9 9 
T. Chebyshev 10 10 7 
T. Markov 6 5 4 
T. Khincin 9 4 5 
T. Poisson 8 7 7 

 
It may take into account different weight now and consequence of each criterion, complementing and 
enhancing the Table 4 above notes (lines) with the coefficient of importance: 
 

Table 4. The products between notes and weighting coefficients 
 

Criteria ��    Variant (a)    Variant (b)    Variant (c) 
�� �� × �� �� �� × �� �� �� × �� 

T. Bernoulli 1 0,5 7 3,5 6 3 8 4 
T. Bernoulli 2 1 9 9 9 9 9 9 
T. Chebyshev 2,4 10 24 10 24 7 16,8 
T. Markov 1 6 6 5 5 4 4 
T. Khincin 3,8 9 34,2 4 15,2 5 19 
T. Poisson 2,4 8 19,2 7 16,8 7 16,8 
Final clasament  95,9  73  69,6 

 

4. Conclusions 
 
Multicriterial analysis technique is useful in the composition of an ranking, while qualitatively and 
quantitatively, of product variants, objects, methods, models, equipment, structures, creations, etc. A first 
valence would be that the result of such analysis in order not only put options, but it quantifies in value 
terms. 
 
Rankings, to a large extent, have a high degree of subjectivity and aims the most of the time only the 
qualitative aspect. Multicriterial analysis technique gives, from the viewpoint of its user, results found to a 
great extent objectives (ie, this technique objectifies in an important measure the results). 
 
It is noted that after the ranking did, the theorems of the weak large numbers law are preferred to be taken in 
the variant (a). 
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We want to emphasize that point III is our own creation. Efforts have been made to develop this 
multicriterial analysis applied to the law of large numbers, hoping that we will develop it in the future. It is 
useful specialy for nonmathematicians, because they can decide earlier which of the theorems they have to 
apply in genetics, management, mechanics etc. 
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