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ABSTRACT

Eigenvalues are a special set of scalars associated with a linear system of equations, that are
sometimes also known as characteristic roots. In this work, a Java-based algorithm is developed to
find the eigenvalues for Toeplitz matrices using Adomian’s decomposition method (shortly, ADM).
Illustrative examples will be examined to support the proposed analysis.
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1 INTRODUCTION

Many interesting phenomena in scientific and
engineering applications are governed by
algebraic equations. It is also known that there
are two types of these equations, the linear,
or nonlinear equations, and could be system.
Most of these types of equations do not have
an analytical solution, these equations should
be solved by using numerical or approximate
methods. In using numerical methods, like Sinc
method, the solution reduces to the discrete
system Ax = b, in which the coefficient
matrix A is a combinations of Toeplitz matrices
and diagonal matrices. Hence, it is a basic
requirement to discuss the algebraic properties of
these Topeplitz matrices. Toeplitz matrices arise
in a variety of applications in Mathematics and
Engineering. In particular, when the Sinc method
is applied to discretize the differential equation
(Ordinary, partial or integral), we can often obtain
a linear system whose coefficients matrices are
combinations of Toeplitz and diagonal matrices,
see [1, 2]. One of the main advantages of using
the technique in this paper is discussing the
stability of the discrete system being obtained
by Sinc methodology, which is considered to be
a basic requirement in finding bounds for the
eigenvalues of Sinc matrices.

In the last decade, there has been some
advanced developments including, Adomian
decomposition method [3, 4, 5, 6], Differential
transform method [7], and Homotopy
perturbation method [8] for solving various types
algebraic equations. Eigenvalues are a special
set of scalars associated with a linear system
of equations, that are sometimes also known
as characteristic roots. The determination of
the eigenvalues of a system, like Ax = b, is
important in physics and engineering, where
it is equivalent to matrix diagonalization, and
arises in such common applications as, stability
analysis, the physics of rotating bodies, and small
oscillations of vibrating systems.

The basic motivation of this work, is to propose a
new modification of the ADM to find eigenvalues
for any n × n matrix. Therefore, as mentioned
above, the objective of this paper is to find

eigenvalues for Toeplitz matrices that comes from
the theory of sinc function. At the beginning of
the 80s, a new method, called ADM for solving
various kinds of nonlinear equations had been
proposed by Adomian [9, 10]. The convergence
of Adomian’s method has been investigated by
several authors [11]. ADM offers a reasonable,
reliable solution to algebraic equations. The
system is implemented for the full Java language,
and is used to statically verify the correctness of
Java. To demonstrate this we intend to solve two
examples in the succeeding sections considering
the symmetry of the given matrix. The outlines
of the paper is as follows. In section 2, we derive
the expression of the Toeplitz matrices from sinc
function. The basic ideas of the ADM for solving
algebraic equation is reviewed in Section 3.
Numerical experiments are presented in section
4. Finally we give a concluding remark on the
applications of the method.

2 TOEPLITZ MATRICES
We first give general expressions for the Toeplitz
matrices associated with the Sinc discretization
of various order. The goal of this section is
to recall notations and definitions of the Sinc
function that will be used in this paper. These are
discussed in [1, 2]. The Sinc function is defined
on the whole real line IR by

sinc (x) =
sin(πx)

πx
, x ∈ IR. (2.1)

the k-th Sinc function is defined as

S(k, h)(x) = sinc [(x−kh)/h] =
sin[π(x− kh)/h]

π(x− kh)/h

The properties of Sinc functions have been
extensively studied in [1, 2]. The sinc method
requires that the derivatives of sinc functions be
evaluated at the nodes. Technical calculations
provide the following results that will be useful in
formulating the discrete system [1, 2], and these
quantities are delineated by δ

(q)
jk = hq dq

dϕq [Sj ◦

ϕ(x)]
∣∣∣
x=xk

, q = 0, 1, 2.

In particular, the following convenient notation will
be useful in formulating the discrete system
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δ
(0)
jk = [S(j, h) ◦ ϕ(x)]

∣∣∣
x=xk

=


1, j = k

0, j ̸= k,

δ
(1)
jk = h

d

dϕ
[S(j, h) ◦ ϕ(x)]

∣∣∣
x=xk

=


0, j = k

(−1)k−j

(k−j)
, j ̸= k

δ
(2)
jk = h2 d2

dϕ2
[S(j, h) ◦ ϕ(x)]

∣∣∣
x=xk

=


−π2

3
, j = k

−2(−1)k−j

(k−j)2
, j ̸= k

and,

δ
(3)
jk = h3 d3

dϕ3
[S(j, h) ◦ ϕ(x)]

∣∣∣
x=xk

=


0, j = k

(−1)k−j [6−(k−j)2π2]

(k−j)3
, j ̸= k

Then define the m × m, (m = 2N + 1) Toeplitz matrices I
(q)
m = [δ

(q)
jk ], q = 0, 1, 2, 3, ... i.e., the

matrix whose jk− entry is given by δ
(q)
jk , q = 0, 1, 2, 3, ... Also define the diagonal matrix D(g) =

diag [g(x−N ), ..., g(xN )]. Note that the matrix I(2) is a symmetric matrix, i.e., I(2)jk = I
(2)
kj . The matrix

I(1) is skew-symmetric matrix, i.e., I(1)jk = −I
(1)
kj and I(3) takes the form

I(3)m =



0 −(6− π2) 6−22π2

23
. . . (−1)m−1[6−(m−1)2π2]

(m−1)3

6− π2 0
. . .

. . .
...

−(6−22π2)

23
6− π2

. . . −(6− π2) 6−22π2

23

...
. . .

. . . 0 −(6− π2)
(−1)m[6−(m−1)2π2]

(m−1)3
. . . −(6−22π2)

23
6− π2 0


, (2.2)

I(2)m =


−π2

3
2

... −2(−1)m−1

(m−1)2

2 . . .
... . .

...

−2(−1)m−1

(m−1)2

... 2 −π2

3

 , (2.3)

I(1)m =


0 −1 . . . (−1)m−1

m−1

1 0
...

...
...

(−1)m−1

m−1
. . . 1 0

 (2.4)

Let A be an n × n matrix, if a vector x ∈ IRn, (x ̸= 0) such that Ax = λx for some scalar λ is called
the eigenvalue of the matrix A with corresponding eigenvector x. With λ as an eigenvalue of A, we
need to solve 

a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n

... . . .
...

an1 . . . . . . ann




x1

x2

...
xn

 =


0
0
...
0

 (2.5)
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which can be written as (A− λI)x = 0, where I is the identity matrix. To solve (2.5), we need to find
det(A − λI) = 0. The determinant on the right hand of the previous equation can be expanded to
give what is called the characteristic equation of A.

pA(λ) = λn − trac(A)λn−1 + (Polynomial of degreen− 2)

which can be written in more general form as

pA(λ) = a0λ
n + a1λ

n−1 + a2λ
n−2 + ...+ an−1λ+ an (2.6)

The eigenvalues of A are those numbers λ for which pλ(x) = 0. In general, from the fundamental
theorem of algebra, there are n of these, in which our main goal in this paper is find these numbers. In
most cases it is difficult to obtain an analytical solution of (2.6). Therefore the exploitation of numerical
techniques for solving such equations becomes a main subject of considerable interests. Probably
the most well-known and widely used algorithm to find a roots of equation (2.6) is Newton’s method
[5].

3 BASIC IDEA OF THE ADM
We apply the Adomian decomposition method (ADM) to find the smallest eigenvalue for a given
matrix, for that we solve the obtained characteristic equation via the use of ADM [9, 10]. To illustrate
the basic idea of this method.

a0λ
n + a1λ

n−1 + a2λ
n−2 + ....+ an−1λ+ an = 0, (3.1)

Which can be written in a fixed-point form, via λ = G(λ). Provided that an−1 ̸= 0 as

λ = − a0

an−1
λn − a1

an−1
λn−1 − ...− an−2

an−1
λ2 − an

an−1
(3.2)

The standard Adomian decomposition method uses the solution λ in terms of the series

λ =

∞∑
j=0

λj (3.3)

and the nonlinear functions λ2, λ3, ..., λn are expressed in terms of an infinite series called Adomian’s
polynomials, such that for any nonlinear function G(λ), we have

G(λ) =

∞∑
j=0

Aj (3.4)

where Aj are called the Adomian’s polynomials obtained by the traditional formula

Aj = Aj(λ0, λ1, ..., λj) =
1

j!

dj

dµj
G
( ∞∑

k=0

λkµ
k
)∣∣∣

µ=0
(3.5)

where µ is the parameter introduced for convenience. Given a nonlinear function G(λ), the first few
Adomian’s polynomials are given by

A0 = G(λ0), A1 = λ1G
′(λ0), A2 = λ2G

′(λ0) +
1

2!
λ2
1G

′′(λ0),

and
A3 = λ3G

′(λ0) + λ1λ2G
′′(λ0) +

1

3!
λ3
1G

′′′(λ0)
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Wazwaz [3] developed a new algorithm for calculating Adomian polynomials for all forms of nonlinearity.
In this paper we are dealing with nonlinear polynomials only, so if G(λ) = λ2, then set λ =

∑∞
n=0 λn,

so that
G(λ) = (λ0 + λ1 + λ2 + λ3 + ...)2

Expanding the expression at the right hand side gives

G(λ) = λ2
0 + 2λ0λ1 + 2λ0λ2 + λ2

1 + 2λ0λ3 + 2λ1λ2 + ...

rearrange the above terms by grouping all terms with the sum of the subscript of the components of
λn is the same, we obtain

G(λ) = λ2
0︸︷︷︸

A0

+2λ0λ1︸ ︷︷ ︸
A1

+2λ0λ2 + λ2
1︸ ︷︷ ︸

A2

+2λ0λ3 + 2λ1λ2︸ ︷︷ ︸
A3

+...

Similarly, if G(λ) = λ3, then
G(λ) = (λ0 + λ1 + λ2 + λ3 + ...)3

Expanding the expression at the right hand side, and rearrange terms, by grouping all terms with the
sum of the subscript of the components of λn is the same, we obtain

G(λ) = λ3
0︸︷︷︸

A0

+3λ2
0λ1︸ ︷︷ ︸
A1

+3λ2
0λ2 + 3λ0λ

2
1︸ ︷︷ ︸

A2

+3λ2
0λ3 + 6λ0λ1λ2 + λ3

1︸ ︷︷ ︸
A3

+...

Now back to the procedure, upon substituting equations (3.3) and (3.4) into equation (3.2) we arrive
at

∞∑
j=0

λj = − an

an−1
− a0

an−1

∞∑
j=0

An,j −
a1

an−1

∞∑
j=0

An−1,j − ...− an−2

an−1

∞∑
j=0

A2,j (3.6)

where An,j , An−1,j , ..., A2,j represent the Adomian polynomials for the nonlinear functions λn, λn−1, ..., λ2

respectively. To determine the components λn, n ≥, we first identify the zeroth component λ0 by all
terms that are constant in equation (3.2). The remaining components of the series (3.3) can be
determined in a way that each component is determined by using the preceding components, i.e.,
each term of the series (3.3) is given by by the following recursive relation

λ0 = − an
an−1

λj+1 = − a0
an−1

An,j − a1
an−1

An−1,j − ...− an−2

an−1
A2,j , j = 0, 1, 2, ...

(3.7)

Finally, the solution λj can be approximated by
the truncated series

ϕk =

k−1∑
j=0

λj (3.8)

that
lim
k→∞

ϕk = λ (3.9)

In computing λn, choosing large values for
n, increasing the number of terms in the
expression of Aj and this causes propagation
of round off errors. The ADM reduces
significantly the massive computation which may
arise if discretization methods are used. The

convergence series was investigated by several
authors [12, 11].

4 NUMERICAL EXAMPLES
In this section we shall illustrate the technique
by different matrices. Dealing with matrices of
known eigenvalues allow for more error analysis,
in the first example we consider a 3 × 3 matrix
in which we examine the accuracy and validity of
our algorithm
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Example 4.1. Consider the matrix

A =

 2 0 1
−1 2 0
1 0 2


The matrix A has distinct eigenvalues 1, 2, 3,
where the characteristic equation is given by
pA(λ) = λ3 − 12λ2 + 29λ− 18 = 0, or, in a fixed-
point form, λ = −1

29
λ3 + 12

29
λ2 + 18

29
. According to

what we discussed, we set

λ0 =
18

29
, λj+1 =

−1

29
Aj +

12

29
Bj , j = 0, 1, ...

where Aj , Bj are the Adomian polynomials for
λ3, λ2 respectively. The first 10 decomposition

components are listed as: with λ0 = 0.62069,
λ1 = −1

29
A0 + 12

29
B0, where the Adomian

polynomials A0 = λ3
0 and B0 = λ2

0

λ2 = 0.0716276, λ3 = 0.0419275, λ4 =
0.0273175, λ5 = 0.0189993, λ6 =
0.0189993, λ7 = 0.0138099, λ8 =
0.0128217, λ9 = 0.0091533, λ10 = 0.00716222.
Approximately we have λ =

∑10
i=0 λi = 0.993678.

The accurate value of this eigenvalue is 1.
Of course the accuracy can be improved by
computing more terms of the approximate
solution by taking more terms of the series in
(3.3).

Example 4.2. Consider the Toplitz matrix I(2) of size 4,

I
(2)
4 =


−π2

3
2 −1

2
2
9

2 −π2

3
2 −1

2
−1
2

2 −π2

3
2

2
9

−1
2

2 −π2

3


Using Mathematica, it is easy to verify that the smallest eigenvalue is | − 0.4351| = 0.4351, and the
characteristic equation for finding the eigenvalues is given by

pI2(λ) = λ4 + 13.1595λ3 + 52.39λ2 + 68.7453λ+ 21.043.

The characteristic equation can be written in fixed-point form as

λ =
−21.043

68.7453
− 52.39

13.1595
λ2 − 13.1595

68.7453
λ3 − 1

68.7453
λ4

According to equation (3.7), we set

λ0 =
−21.043

68.7453
, λj+1 = − 52.39

13.1595
A2j −

13.1595

68.7453
A3j −

1

68.7453
A4j , j = 0, 1, 2, ... (4.1)

where A2j , A3j , A4j are the Adomian’s polynomials for λ2, λ3, λ4 respectively. The first few Adomian’s
polynomials are given by

A20 = λ2
0, A21 = 2λ0λ1, A22 = 2λ0λ2 + λ2

1, ...

A30 = λ3
0, A31 = 3λ2

0λ1, A32 = 3λ2
0λ2 + 3λ0λ

2
1, ...

and,
A40 = λ4

0, A41 = 4λ3
0λ1, A42 = 6λ2

0λ
2
1 + 4λ3

0λ2, ...

From equation (4.1), the first three iterations are given by

λ1 = − 52.39

13.1595
A20 −

13.1595

68.7453
A30 −

1

68.7453
A40 = −0.0660435

λ2 = − 52.39

13.1595
A21 −

13.1595

68.7453
A31 −

1

68.7453
A41 = −0.0273693

λ3 = − 52.39

13.1595
A22 −

13.1595

68.7453
A32 −

1

68.7453
A42 = −0.0139351
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and so for the remaining components. Consequently, the series solution

ϕ6 = ϕk =

5∑
j=0

λj = −0.433766

The absolute error relative to the exact solution is

Error = |Exact− ϕ6| = 1.33× 10−3

To find the second eigenvalue, we treat a new characteristic function given by

λ4 + 13.1595λ3 + 52.39λ2 + 68.7453λ+ 21.043

λ+ 0.433766

then we repeat the same procedure as in above.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Return Eq 
Elements left in 

matrix M row 0? 
NO 

Y=findMatrix(M,e0,i) 

X= e0,i * findEquation(Y) 

 

Eq=Eq-X; flag=1 

i=i+1(next element) 

 

Eq=Eq+X; flag=0 

i=i+1(next element) 

Start 

findEquation(M) 

If Msize is 

2X2 

Eq=(e0,0*e1,1)-(e1,0*e0,1) 

Return Eq 

i = 0;flag = 1 

Eq= null 

 

If flag equals to 

1? 

YES 

NO 

YES 

YES NO 

Fig. 1. General Flow Chart to find the characteristic polynomial
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5 CONCLUDING REMARKS
We have shown that a novel algorithm based on Adomian decomposition method is proposed to
obtain eigenvalues of some Toeplitz matrices. The algorithm is simple and computationally durable.
It is concluded that the ADM is reliable and efficient.
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