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Abstract 
Heat transfer and thermochemical energy storage process of methane dry re-
forming in a disk reactor with focused solar simulator was modeled and ana-
lyzed. The results showed that thermochemical energy storage efficiency of 
disk reactor can reach 28.4%, and that is higher than that of tubular reactor. 
The maximum reaction rate occurs at catalyst bed corner near the baffle, be-
cause the corner has high temperature and high reactant molar fraction. As 
reactant flow increases, methane conversion and thermochemical energy sto-
rage efficiency decrease as catalyst bed temperature and heat loss decrease. 
The thermochemical energy storage efficiency increased first and then de-
creased with methane molar ratio increasing, while methane conversion and 
the thermochemical energy storage efficiency increased with reactant tem-
perature increasing. As catalyst bed porosity rises, methane conversion and 
thermochemical energy storage efficiency increased first and then decreased, 
and optimum porosity is 0.31. 
 

Keywords 
Methane Dry Reforming, Thermochemical Energy Storage, Focused Solar 
Simulator, Disk Reactor 

 

1. Introduction 

Solar energy is a kind of abundant clean energy, but the cost of energy develop-
ment and utilization is high and the efficiency is low due to its dispersion and 
instability. Thermochemical energy storage technology is the most promising 
high-temperature energy storage method. Research in the past two decades has 
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shown that solar thermal energy can effectively drive chemical conversion reac-
tions [1] [2]. Methane dry reforming thermochemical energy storage is a form of 
efficient energy utilization that can convert solar energy into stable chemical 
combustion energy [1]. Its main advantages [2] include large storage capacity 
per unit of methane, high temperature reaction condition (>600˚C), and full use 
of greenhouse gases CH4 and CO2. 

In recent years, solar reforming reactors are mainly developed into three 
types: indirectly heated reformer, tubular reformer-receiver and the windowed 
or volumetric reformer-receiver [3]. ASTERIX [4] [5] carried out solar steam 
reforming experiment of methane in the early 1990s, and studied details and re-
lated problems of process heat demand of industrial chemical process with solar 
energy and high temperature using indirect heating converter. The catalytically 
enhanced solar absorption receiver (CAESAR) [6] [7] test was used to determine 
the thermal, chemical, and mechanical properties of a commercial scale 
dish-shaped direct catalytic absorption receiver reactor under a series of 
steady-state and transient operating conditions. In order to perform an efficient 
carbon dioxide and water vapor reforming reaction, Weizmann Institute of 
Science designed a solar receiver with storage and transportation for 
high-temperature technology development, and tested it in a 480 kW reformer 
[8]. Jin et al. [9] proposed a methane reforming reactor with a compound para-
boloid concentrator and a mesh porous ceramic. The simulation results show 
that compared with the traditional reactor design, the reactor design proposed in 
this study can improve the photochemical efficiency of solar methane conver-
sion. 

In addition to experimental research, the researchers conducted a large num-
ber of numerical simulation studies. Rubin et al. [10] proposed a numerical 
model based on Arrhenius equation for simulating methane steam reforming, 
and simulation results were in agreement with experimental results. Akpan et al. 
[11] established a reaction kinetics model for carbon dioxide methane reforming 
under Ni/CeO2-ZrO2 catalyst through experiments and simulations. Akbanri et 
al. [12] established a three-dimensional microreactor model for simulating me-
thane autothermal reforming in fuel cells, and studied the effects of airspeed, 
air/fuel ratio, water-fuel ratio and inlet temperature on the reaction. Wang et al. 
[13] [14] [15] used combined method with Monte Carlo Ray Tracing method 
and Finite Volume Method to establish heat and mass transfer model coupled 
with thermochemical reaction kinetics for porous medium solar thermochemical 
reactor. The numerical results showed that concentrated solar irradiation affects 
reactor thermal performance, methane steam reforming chemical reaction rate 
and hydrogen production. Gu et al. [16] analyzed heat transfer and storage per-
formance of steam methane reforming in tubular reactor with focused solar si-
mulator by measurement and simulation. Fernando et al. [17] found that me-
thane steam reforming in a fixed-bed reactor can efficiently store thermal energy 
in high temperature. Benguerba et al. [18] analyzed the effect of using different 
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temperatures on the methane dry reforming performance in a fixed-bed catalytic 
reactor by a one-dimensional heterogeneous model.  

At present, the research on methane dry reforming thermochemical energy 
storage process in enhanced reactor still need to be further investigated. In this 
paper, the thermochemical storage performance of methane dry reforming disk 
reactor was studied with focused solar simulator. The reactant flow, reactant 
methane molar ratio, reactant temperature and catalyst bed porosity were ana-
lyzed for mechanism of methane dry reforming process in the disk reactor, to 
find a new method to improve the methane conversion and energy storage effi-
ciency of the system. 

2. Numerical Model 
2.1. Model Introduction 

Figure 1 describes physical model of a methane dry reforming disk reactor with  
 

 
Figure 1. Physical model of disk reactor with solar simulator. (a) x = 0 section, (b) y = 0 
section. 
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focused solar simulator. The reformer is a disk with radius of R3 and height of H, 
and catalyst is also a disk with radius of R1. The inlet region and outlet region are 
separated by catalyst bed and two baffles. The outer surface with quartz glass 
at y = 0 is heated by concentrated heat flow from solar simulator. 

The main reaction of methane dry reforming reaction is: 

4 2 2CH CO 2CO 2H , 247.3 kJ molmH+ ↔ + ∆ = +            (1) 

The main side reaction is: 

2 2 2CO H CO H O, 41.1 kJ molsH+ ↔ + ∆ = +             (2) 

Inlet mole fraction of methane is: 

4

4 2

CH ,

CH , CO ,

i

i i

F
y

F F+
=                          (3) 

where 
4CH ,iF  and 

2CO ,iF  denote inlet flow rates of methane and carbon dioxide 
under standard condition (1 atm, 20˚C), respectively. 

Methane conversion is: 
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where 
4CH ,oF  is methane outlet flow under standard condition. 

Carbon dioxide conversion rate is: 
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where 
2CO ,oF  is carbon dioxide outlet flow under standard condition. 

The energy flow received by reactor from solar simulator is: 

d
w

in r
S

E q S= ∫∫                            (6) 

where rq  is concentrated radiant heat flux on reactor surface, wS  is surface 
area of reactor irradiate by solar simulator. 

( )2exp 1464.3r cq q r= −                        (7) 

where cq  denotes central heat flux, and r denotes radius from focus. 
Thermochemical energy storage is: 

( )2 2 44 4

4 2

CO CO CHCH CH

CH CO

sm
ch

F X X HF X H
Q

v v
⋅ − ⋅ ∆⋅ ⋅ ∆

= +           (8) 

where v denote mole volume under standard condition. mH∆  and sH∆  are 
reaction heat of main reaction and side reaction. 

Sensible heat increment is [18]: 
0

, , , , d
s

T
se o i o i p o ii T

Q F c Tρ= ∑ ∫                       (9) 

where ,o iρ , , ,p o ic  are density and specific heat of species i in product, sT  and 

0T  are surrounding and outlet temperatures. 
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Thermochemical energy storage efficiency and total energy storage efficiency 
are: 

ch
ch

in

Q
E

η =                            (10) 

total ch se
total

in in

Q Q Q
E E

η +
= =                      (11) 

2.2. Theoretical Assumption and Model 

Based on existing experimental data, a three-dimensional model of disk reactor 
with solar simulator is established. The entire process is assumed to be steady, 
and fluid is assumed to be ideal gas. The model contains solid domain of reactor 
wall, fluid domain with porous media inside reactor. Catalyst bed is assumed as 
porous media. 

The fluid zone includes inlet and outlet regions, and porous zone of catalyst 
bed. Continuity equation can be expressed as: 

( )
0f i

i

u
x
ρ∂

=
∂

                          (12) 

where fρ  is density of mixed fluid, iu  is superficial velocity vector based on 
the total cross-sectional area of fluid and porous medium. 

Momentum conservation equation is expressed as: 

( ) ,
i

f i j f i m i
j j j i

u pu u g S
x x x x

ρ µ ρ
 ∂ ∂ ∂ ∂

= − + +  ∂ ∂ ∂ ∂ 
            (13) 

where µ  is dynamic viscosity, p is fluid pressure, ig  is gravitational accelera-
tion and ,m iS  is momentum source caused by flow in porous media. In the in-
let and outlet regions, , 0m iS = .  

The momentum source for homogeneous porous media consists of viscosity 
loss term and inertia term as [19]: 

, 2
1
2m i i f iS u C u uµ ρ

α
 = + 
 

                   (14) 

The permeability and internal resistance factor [20] can be calculated as:  

( )

2 3

2150 1
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−
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where pD  is the diameter of catalyst particles. 
During chemical reaction process, the fractions of reactants and products 

change, and mass transport equation is [19]: 

( ) ,i j
f i j i
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where iY , ,i jJ  and ir  are respectively mass fraction, diffusion flux and reac-
tion rate for species. 

Chemical reaction is assumed as volumetric reaction, and the reaction rate is 
calculated by standard Arrhenius equation as: 

e aE RTk A −=                           (18) 

where A and aE  mean pre-reaction factor and activation energy. 
In solid zone of reactor wall, heat transfer is controlled by heat conduction, 

and its governing equation is: 

0w
w

i i

Tk
x x
 ∂ ∂

= ∂ ∂ 
                        (19) 

where wT  is temperature of reactor wall, and wk  is the thermal conductivity. 
In fluid zone, energy conservation equation can be expressed as: 

( )f p i eff h
i i i

Tc u T k S
x x x

ρ
 ∂ ∂ ∂

= + ∂ ∂ ∂ 
                 (20) 

where hS  is energy source caused by chemical reaction, and effk  is effective 
conductivity. hS  is directly calculated by enthalpy difference of reactants and 
products. 

The effective thermal conductivity is calculated as volume average of thermal 
conductivities of fluid and solid as [21]: 

( )1eff f sk k kγ γ= + −                       (21) 

where fk  and sk  are conductivity of fluid and porous medium, respectively. 
The heat loss from the reactor wall is primarily determined by natural convec-

tion and radiation. The boundary condition for heating surface is: 

( ) ( )4 4
w w n w s w s rk T h T T T T qεσ− ∇ = − + − −               (22) 

where nh  is heat transfer coefficient of natural convection, σ  is black body 
radiation constant, ε  is emissivity, and sT  is surrounding temperature. 

The boundary condition of back surface is: 

( ) ( )4 4
w w n w s w sk T h T T T Tεσ− ∇ = − + −                (23) 

2.3. Calculation Condition and Model Validation 

According to the experimental results, the pre-exponential factor and activation 
energy of the main reaction are 7

1 1.2 10A = ×  and 7
1 5.8 10 J kmolEa = × , and 

those of side reaction are 2 31900A =  and 7
2 1.69 10 J kmolEa = × . The heat-

ing surface of the reactor is affected by the air-cooling system, and 
212.6 W m Khh = ⋅ , while convective heat transfer coefficient on back side is 

24 W m Khh = ⋅ . The emissivity ε of the outer wall surface of the reactor is 0.93, 
the ambient temperature was 25˚C, and the flow of the reactant inlet was uni-
form. 

Yu et al. [22] experimentally measured tubular methane dry reforming reactor 
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based on solar radiation, which is similar to present model. Table 1 shows com-
parison of experimental and simulation results of methane conversion and 
thermochemical storage efficiency at different conditions. The results show that 
present numerical model is effective, and methane dry reforming energy storage 
system can be further analyzed. 

3. Results and Discussions 
3.1. Heat and Mass Transfer 

Figure 2 shows temperature and main reaction rate distribution of disk reactor. 
The heat flux distribution of solar simulator conforms to Gaussian distribu-
tion, resulting in high energy near the focus which causes high temperature, 
so the temperature of catalyst bed is a corresponding circular distribution 
from the center to boundary. Figure 3 shows molar fraction distribution of  
 
Table 1. Simulation and experimental comparison [22]. 

Condition 
(y = 0.5) 

Methane conversion (%) 
Thermochemical energy storage 

efficiency (%) 

Experiment Simulation 
Relative 

error 
Experiment Simulation 

Relative 
error 

qc = 702 
kW/m2, 

F = 3 L/min 
30.9 30.0 -2.90 4.02 3.69 8.15 

qc = 714 
kW/m2, 

F = 4 L/min 
36.2 38.3 5.81 5.74 6.10 -6.34 

qc = 678 
kW/m2, 

F = 6 L/min 
40.5 43.5 7.29 10.1 10.9 -7.66 

 

 
Figure 2. Cloud map of temperature and main reaction in heated surface (qc = 478 
kW/m2, y = 0.5, F = 3 L/min). 
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Figure 3. Cloud map of molar fraction (qc = 478 kW/m2, y = 0.5, F = 3 L/min). 
 
mixed gas. The main reaction rate reaches the maximum value at the corner 
of the catalyst bed near the baffle and decreases toward the center, because 
reactant molar fraction as methane increase correspondingly from the center 
to the boundary, while product molar fraction as hydrogen decrease from the 
center to the boundary. 

Figure 4 shows parameter change in radial direction of catalyst bed. In top 
boundary of catalyst bed, the temperature corresponds to the distribution of in-
cident energy flux, which gradually decreases from center to boundary. The 
main reaction rate first increases and then decreases in radial direction, and 
reaches a maximum value at the corner of catalyst bed baffle of x = 38.7 mm for 
the accumulation of reactants near the corners of catalyst bed baffle. 

3.2. Effect of Reactant Flow 

Figure 5 describes the changes of methane conversion and thermochemical sto-
rage efficiency with reactant flow in disk reactor system. As the reactant flow in-
creases, catalyst bed temperature and mixed gas outlet temperature decrease, 
and conversion of methane and carbon dioxide both are reduced, while the 
thermochemical energy storage efficiency increases. Figure 6 describes the 
energy ratio of disk reactor as a function of reactant flow. As reactant flow in-
creases, although the mixture gas outlet temperature decreases slightly, the 
sensible heat storage efficiency increases due to the increase in the total gas vo-
lume. The heat loss is reduced for wall temperature decreasing, so the total 
energy storage efficiency increases. 

3.3. Effect of Reactant Mole Fraction 

Figure 7 presents methane conversion and storage efficiency in disk reactor with 
different methane molar ratio. As methane molar ratio of reactants increases, 
methane conversion gradually decreases. The thermochemical energy storage ef-
ficiency and total energy storage efficiency increase first and then decrease as  
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Figure 4. Parameter change in radial direction of catalyst 
bed (qc = 478 kW/m2, y = 0.5, F = 3 L/min). (a) Temper-
ature, (b) Molar fraction and main reaction rate. 

 

 
Figure 5. Methane conversion and thermochemical 
energy storage efficiency in disk reactor with different 
reactant flow (qc = 478 kW/m2, y = 0.5). 

 
methane molar ratio increases, reaching a maximum value at y = 0.5, which is 
due to the best chemical reaction rate under the ideal molar ratio. 

Figure 8 presents molar fraction in disk reactor. Increasing the proportion of 
carbon dioxide can promote the reverse reaction of water vapor shift reaction. 
As methane molar ratio of reactants increases, the amount of carbon dioxide 
gradually decreases, which reduces the likelihood of the reverse reaction of the  
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Figure 6. Energy ratio of disk reactor with different 
reactant flow (qc = 478 kW/m2, y = 0.5). 

 

 
Figure 7. Methane conversion and storage efficiency 
with different methane molar ratio in disk reactor (qc = 
478 kW/m2, F = 3 L/min). 

 

 
Figure 8. Molar fraction in disk reactor with different 
methane molar ratio (qc = 478 kW/m2, F = 3 L/min). 

 
water vapor shift reaction going forward, thus the amount of by-product H2O 
produced will decrease. On the other hand, the production of H2 gets the maxi-
mum at y = 0.5 under the ideal molar ratio. 

3.4. Effect of Reactant Temperature 

Figure 9 describes methane conversion and energy storage efficiency in disk  
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Figure 9. Simulation diagram of methane conversion 
and energy storage efficiency with reactant tempera-
ture in a disk reactor system (qc = 478 kW/m2, y = 0.5, 
F = 3 L/min). 

 
reactor with different reactant temperature. As reactant temperature rises, me-
thane conversion increases, because inside catalyst bed temperature increases, 
and then the reaction rate and methane conversion increase accordingly. Since 
the catalyst bed temperature in reactor does not increase significantly with the 
increase of reactant temperature, the sensible energy storage decreases signifi-
cantly. Therefore, the thermochemical energy storage efficiency increases, and 
the total energy storage efficiency increases slightly and then gradually decreases, 
as shown in Figure 10. 

3.5. Effect of Catalyst Bed Porosity 

The porosity of catalyst bed has important effect on heat and mass transfer 
process inside the reactor. Figure 11 describes methane conversion and ther-
mochemical energy storage efficiency in disk reactor with different catalyst bed 
porosity. The methane conversion and thermochemical energy storage efficiency 
both increase first and then decrease with the increase of catalyst bed porosity, 
and the optimal porosity is 0.31. 

4. Conclusions 

In this paper, heat transfer and energy storage performance of methane carbon 
dioxide disk reactor with concentrated heat flux were numerically studied, and 
conclusions are as follows: 

1) The thermochemical energy storage efficiency of disk reactor can reach 
28.4%, and that is remarkably higher than that of traditional tube reactor. 

2) The maximum reaction rate occurs at catalyst bed corner near the baffle, 
because catalyst bed corner has high temperature and high reactant molar frac-
tion. 

3) The trends of methane conversion and thermochemical energy storage effi-
ciency are similar. As the reactant flow increases, methane conversion and 
thermochemical energy storage efficiency decrease as catalyst bed temperature  
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Figure 10. Simulation diagram of energy ratio of disk 
reactor with reactant temperature (qc = 478 kW/m2, y = 
0.5, F = 3 L/min). 

 

 
Figure 11. Methane conversion and thermochemical 
energy storage efficiency in disk reactor with catalyst 
bed porosity (qc = 478 kW/m2, y = 0.5, F = 3 L/min). 

 
and heat loss decrease.  

4) Increasing reactant temperature is conducive to improving methane con-
version and thermochemical energy storage efficiency.  

5) As catalyst bed porosity increases, methane conversion and thermochemi-
cal storage efficiency increase first and then decrease, and optimum porosity is 
0.31. 
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