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Abstract 
 

In this work, we study linear systems with Mass, Damping Force, Gyroscopic Force, Stiffness and 
Circulatory Force (MDGKN systems) with control parameters. The relationship between the parameters 
determines the stability or otherwise of the system. The Lyapunov direct method is used to analyse  
MDGKN system. Stability theorem for determining the stability or otherwise of MDGKN is formulated. 
The results are illustrated on a 2x2 and a 3x3 matrix systems to show the effectiveness of the results 
obtained. 
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1 Introduction 
 
Linear systems involving Mass, Damping Force, Gyroscopic Force, Stiffness and Circulatory Force describe 
the damped gyroscopic system with circulatory effect known as the MDGKN systems. These systems arise 
in the modeling of mechanical systems with follower forces, in formulation of rotor systems with internal 
damping and with sliding bearings, in turbines with unsymmetrical steam flow, in articulated pipes, etc [1]. 
For almost a century it has been well known that circulatory forces can cause instabilities [2]. In many 
engineering and physical applications, it is vital to know how the stability is improved or destroyed when 
these forces are taken into account [3-9].  In this work, we study the stability properties of the MDGKN 
systems and formulate stability theorem for determining the stability or otherwise of MDGKN systems with 
control parameters. Examples are given to demonstrate the results obtained. 
 

2 Methodology 
 
 Consider the non-conservative linear system of the form 
 ��� + ��� + �	
�� + �� + 
�
� = ���
                                                                                         (1)  

 
where the dot denotes the time derivative; � ∈ �� ; and 
 � = �∗ > 0, 	 = −	∗ > 0 ���  � = −�∗  are real matrices corresponding to dissipative, gyroscopic and 
circulatory forces. The magnitudes are controlled by the parameters �, � and 
, respectively while ���
 
describes excitation. The relationship between the control parameters determines the stability or instability 
status of system (1). We now examine the following cases: 
 
Case 1: �~
≪� 
 
The most interesting in practice is the situation when these forces in the system are small as compared with 
the gyroscopic force. The critical gyroscopic parameter � on the boundary of the gyroscopic stabilization 
domain of the non-conservative system is a function of the parameters corresponding to the dissipative and 
circulatory forces. Moreover, stability is extremely sensitive to the choice of a perturbation while the balance 
of forces leading to the asymptotic stability is not obvious. 
 
Case 2: � ≪ �~
 
 
This case with a tendency for high perturbation arising from very small gyroscopic effect may be unstable 
and will not be considered since the bounds of solutions are not obtained for unstable systems. 
 
In the following we assume the situation of case 1 where the stability is ensured and for simplicity we omit 
the parameters and proceed with the analysis.  
 
If excitation in eqn (1) is negligible  �. !  ���
 = 0, we obtain the following homogeneous linear system 
 ��� + �� + 	
�� + �� + �
� = 0                                                                                                    (2) 

 
The stability or otherwise of system (2) can be determined by eigenvalue method and also by Routh-Hurwitz 
method [10]. In this work, we shall use Lyapunov direct method to analyse the stability or otherwise of the 
system. The advantage of this method over eigenvalue method is that the stability status of the system can be 
determined easily in cases where the eigenvalues cannot be found easily. Applying the direct method of 
Lyapunov, we have the following: 
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The system (2) is equivalent to the system 
 

 ��" = �# ��# = −�$"�� + 	
�# − �$"�� + �
�"                                                                                        (3) 
 
Putting (3) in the equivalent form of a first order system we have the following 
 %� = &%                                                                                                                                                (4) 
 

where  & = ' ( )−�$"�� + �
 −�$"�� + 	
*  (I  is the identity matrix and ( is the zero matrix). 

 
We define a function V(z(t)) called a Lyapunov function for system (4) if V > 0 and the time derivative

0≤V&  for all solutions z(t) of (4).  The existence of such a Lyapunov function implies stability of the 

system (asymptotic stability if 0<V& ) [11,12].  Let 
 

( ) ( )tPztzV *=       

                                                                                                                     
be the Lyapunov function with a Hermitian matrix  P>0.  For the solutions of (4) we then have 

( ) ( ) ( )tzPAPAtzV += ** , such that condition  0≤V&   is expressed by the matrix 0* ≥= QQ  of 
the Lyapunov matrix equation. 
 

QPAPA −=+*    

                                                                                                                   
The system (4) (and therefore also system (2) is asymptotically stable, if there exist Hermitian matrices P>0 
and Q>0 which satisfy the Lyapunov matrix equation. 
 

2.1 Derivation of P and Q   
 
To derive suitable positive definite Hermitian matrices P and Q from the Lyapunov function of the 
dynamical system (2), we start with the energy equation which is a first integral of the equations of motion. 
By multiplying (2) from the left with �� ∗��
 and adding the complex transpose of this equation we get 
  �� ∗��� + �∗�� + 2 , �∗-. ����� + , ��� ∗-. �� − �∗���
�� = 2/.                                                       (5) 

 

where /. = 1 21 ��� ∗�0
�� � �0
 + �∗�0
���0

 is the initial mechanical energy of the system. It is obvious 

that we cannot use the energy  2 = �� ∗��� + �∗�� > 0 as a Lyapunov function since the sign of  V& is 
indefinite due to the circulatory forces described by � ≠ 0. The idea is now to  add terms to (5) to obtain a 
function V for which 2�  is negative definite. For this purpose, we construct a new first integral of the system 
(2) by now multiplying from left with  ẋ(t) and adding the complex transpose of this new equation. This 
leads to 
 ��� ∗�� + �∗��� + �∗��
 + , �2�∗-. ��� − 2�� ∗��� + ��∗	�� − �� ∗	�

�� = 4                                 (6) 
 

where c is an integration constant. To find a Lyapunov function we introduce a proper positive constant 5, 
which has to be determined. Multiplying equation (6) by 5 21   and adding (5) and (6) we get after rearranging 
terms the following: 
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�∗ 6� + 52 �7 � + �� ∗��� + 52 ��� ∗�� + �∗��� 
 = 2/. + 52 4 

− , �5�∗-. �� + 8# ��∗	�� − �� ∗	�
 + ��� ∗�� − �∗���
 + �� ∗�2� − 5�
��
��                                   (7) 

 
putting (7) in the quadratic form, 2 = %∗9%   
 

where %∗ = :�∗�� ∗;  and % = :��� ;   
   
we have that 
 2 = :�∗�� ∗; '9"" 9"#9#" 9##* [�  �� ]          ,       2 = '�∗9""� �∗9"#���� ∗9#"� �� ∗9##�� *      
                                                                                      
But eqn (7) is in the form 
 

2 = 9 + > ?�@
�@-
.  

 
Where using (7) we have 
 

( )8

2*
2

2
,

2

2
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γ

 
where γ is a real number.  
 

3 Stability Analysis 
 
Considering the MDGKN system with control parameters, we proceed with the analysis as follows: We 
assume that � = �∗ > 0,   � = �∗ > 0  ��� � = �∗ > 0. Since P and Q must be positive definite, we are 
interested in finding the condition for the existence of a real number γ that guarantees the positive 
definiteness of P and Q. Schur’s lemma provides this condition. 
 
3.1 Schur’s lemma  
 

& A��B�� � '�" �#�#∗ �C*    D��ℎ F!BA����� @GHA��B�4!@ �" ��� �C �@ IJ@���K! �!�����!  �� ��� J�LM �� �" ��� �C − �#∗�"$"�# �B! IJ@���K! �!�����![11]. 
 
Applying the lemma to Q given by (8), we get that Q>0 if and only if there exists γ >0 such that  
 2� − 5� − 6−� + 8# 	7∗ �5�
$" 6−� + 8# 	7 > 0  

 
Rearranging terms we get the following conditions 
 −5# 6� + "N 	∗�$"	7 + 5 O2� + "# �	∗�$"� + �∗�$"	
P − �∗�$"� > 0                                (9) 

 
We define all % ∈ Q�, then (9) is equivalent to the inequality 
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−5#%∗ 6� + "N 	∗�$"	7 % + 5%∗ O2� + "# �	∗�$"� + �∗�$"	
P % − %∗�∗�$"�% > 0            (10) 

 
Taking %∗% = ),  the coefficients of the quadratic polynomial in γ are Rayleigh quotients for Hermitian 
matrices. These Rayleigh quotients are limited by the smallest eigenvalue RST� and the largest eigenvalue RSUV  of the respective matrices [11,13]. The Rayleigh quotients for the matrices �, �, 	∗�$"	, � +"N 	∗�$"	 ��� �∗�$"�   are all positive since �, �, ��� �$"  are assumed to be positive definite. 

Introducing the scalars �, H ��� 4 defined by  
 

W � = RSUV 6� + "N 	∗�$"	7 > 0
   H = RST��2� + "# �	∗�$"� + �∗�$"	
4 = RSUV��∗�$"�
 > 0

             
XY
Z

                                                                       (11) 

 
Inequality (10) is now satisfied if there exists γ>0  with  
 −5#� + 5H − 4 > 0                                                                                                                         (12) 
 
There are solutions if and only if  
 H# − 4�4 > 0      ���  H > 0                                                                                                           (13) 
 
In this case γ can be chosen as any number in the interval 
 

\$]\^$NU_#U < 5 < \a]\^$NU_#U                                                                                                             (14)  

 
and then matrix Q will be positive definite. 
 

Next, if ? > 0 then 2� − 5� > 0. This implies 
8# � − 8^

N � > 0.   
 
Also, 9 > 0  and applying the Schur’s lemma on P we have 
 � − 52 ��� + 52 �
$" 52 � > 0 

 

Multiplying through by �� + 8# �
  we have 

 

� 6� + 52 �7 − 52 � 6� + 52 �7$" 6� + 52 �7 52 � > 0 

� b� + 52 � − 5#
4 �c > 0 

⇒ � + 52 � − 5#
4 � > 0 

 
We now formulate the following theorem that provides the condition for the stability of system (1) and then 
asymptotic stability of system (2). 
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3.2 Stability theorem  
 &@@GA! �, H ��� 4 �!���!� HM �11
.  )� H# − 4�4 > 0 ��� H > 0, 
  �ℎ!� @M@�!A �1
 �@ �@MAI�J��4�LLM @��HL!. 
 
To apply the theorem, it will be beneficial and less cumbersome to estimate � and H  as follows 
 

� ≤ RSUV��
 + 14 RSUV�	∗�$"	
 
 H ≥ 2RST���
 + "# RST��	∗�$"� + �∗�$"	
                                                                               (15) 

 
Thus, 
 RSUV�	∗�$"	
 ≤ gSUV# /iST�  , 

 RSUV��∗�$"�
 ≤ �SUV# /iST�                                                                                                        (16) 
 RST��	∗�$"� + �∗�$"	
 ≥ −2gSUV�SUV/iST�  , 
 
where  gSUV = |R�	
|SUV   ,   �SUV = |R��
|SUV  are the maximum of the absolute values of the eigenvalues 
of G and N, respectively, and iST� is the smallest eigenvalue of � > 0 [14]. Additionally we use ASUV  for RSUV��
 and �ST�  for  RST���
. Applying (15) and (16) conditions (13) for the existence of 5 > 0 become 
 

62�ST� − klmn�lmnolpq 7# − NrSlmnastulmn^
vlpq w�lmn^

olpq > 0  ,                                                                       (17) 
 2�ST� − gSUV�SUViST� > 0 

 
Obviously, both inequalities in (17) are satisfied if   
 �ST�# iST� − �ST�gSUV�SUV − ASUV�SUV# > 0                                                                             (18) 
 
(18) is a more restrictive condition than (13) and contains the smallest and largest eigenvalues of the system 
matrices. It is therefore a simple sufficient condition for asymptotic stability of system (2). Choosing 

appropriate γ >0 by adding the two limits in (14) we have 5 = \U   
 
And using the estimates of � and H we have the following 
 5 = ��ST�iST� − "# gSUV�xyz
/�ASUViST� + "N gSUV# 
                                                                 (19) 

 
This condition is sufficient for asymptotic stability of (2) [15,16,11,17,18]. 
 

4 Applications 
 
Example 1 
 
To illustrate the formulas for response bounds for the inhomogeneous system let us consider the 2x2 system 
described by 
 :5 11 5; '��"��#* + 6:4 11 4; + : 0 2−2 0;7 '��"��#* + 6:3 22 3; + : 0 1−1 0;7 :�"�#; = ���
                            (20) 
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We obtain the constants �, H ��� 4  defined in (11) as follows: 
 

� = RSUV O� + 14 	∗�$"	P = 7
 H = RST��2� + 12 �	∗�$"� + �∗�$"	
 = 3254 = RSUV��∗�$"�
 = 1

 

 
Applying the values on the stability condition we have that 
 H# − 4�4 = 12.96 > 0 
 
The system is therefore stable according to the stability theorem. 
 
Example 2 
 
Consider the 3x3 system 
 

� 3 1 −11 3 1−1 1 3 � ���"��#��C� + r� 8 −2 2−2 8 −22 −2 8 � + � 0 2 3−2 0 2−3 −2 0�w ���"��#��C� + 

                            r�4 2 32 4 23 2 4� + � 0 2 1−1 0 1−1 −1 0�w ��"�#�C
� = �000�                                                           (21) 

 
We compute the constants defined in (11) as follows: 
 � = RSUV 6� + "N 	∗�$"	7 = C�a√�.�� H = RST��2� + "# �	∗�$"� + �∗�$"	
 = 134 = RSUV��∗�$"�
 = 3

  

 
Since  H > 0  ���  H# − 4�4 = 70.8 > 0 , the system is stable according to the stability theorem. 
 

5 Conclusion 
 
The gyroscopic systems (damped and undamped) are generally stable systems but the addition of circulatory 
forces can destroy stability. For the MDGKN systems with control parameters, the relationship between the 
control parameters determines the stability or otherwise of the systems. Stability theorem for determining the 
stability or otherwise of MDGKN is formulated. The results are illustrated on a 2x2 and a 3x3 matrix 
systems to show the effectiveness of the obtained results. With these results, the stability status of MDGKN 
systems can be determined without explicit computation of eigenvalues or in situations where the 
eigenvalues cannot be computed easily. 
 

Competing Interests 
 
Authors have declared that no competing interests exist. 
 

References 
 
[1] Kliem W, Pommer C. Stability and response bounds of non-conservative linear systems. Archives of 

Applied Mechanics. 2004;73(9-10):627-637. 



 
 
 

Akpan and Oyesanya; JAMCS, 25(5): 1-8, 2017; Article no.JAMCS.35326 
 
 
 

8 
 
 

[2] Bernstein DS, Bhat SP. Lyapunov stability, semistability and asymptotic stability of matrix second-
order systems. ASME Journal of Applied Mechanics. 1995;11:145-153. 

 
[3] Ratchagit K, Phat VN. Stability and stabilization of switched linear discrete-time systems with 

interval time-varying delay.  Nonlinear Analysis: Hybrid Systems. 2011;5(4):605-612. 
 
[4] Kirillov ON. Gyroscopic stabilization of non-conservative systems. Physics Letters A. 2005;359(3):  

204-210. 
 
[5] Agafonov SA. The stability and stabilization of the motion of non-conservative mechanical systems. 

Journal of Applied Mathematics and Mechanics. 2010;74:401-405. 
 
[6] Zhang Ji-Shi, et al. ‘Stability analysis of switched positive linear systems with stable and unstable 

subsystems. International Journal of Systems Science. 2013;45:12. 
 
[7] Sun, Yuangong. Stability analysis of positive switched systems via joint linear co-positive lyapunov 

functions. Nonlinear Analysis: Hybrid Systems.  2016;19:146-152. 
 
[8] Xue Y, et al. A delay-range-partition approach to analyse stability of linear systems with time-varying 

delays. International Journal of Systems Science. 2016;47:16. 
 
[9] DaCunha JJ. Stability of time varying linear dynamic systems on time scales. Journal of 

Computational and Applied Mathematics. 2006;176(2):381-410. 
 

[10] Kliem W. The dynamics of viscoelastic rotors. Dynamics and Stability of Systems. 1987;2:113-123.  
 
[11] Muller PC. Stabilitat and Matrizen, Springer- Verlag, Berlin Heidelberg New York; 1977. 

 
[12] Kliem W, Pommer C, Stoustrup J. Stability of rotor systems: A complex modelling approach. Z. 

Angew. Math. Physics. 1998;49:644-655. 
 

[13] Parlet BN. The symmetric eigenvalue problem. SIAM, Classics in Applied Mathematics; 1998. 
 
[14] Horn R, Johnson CA. Matrix analysis. Cambridge University Press; 1985. 

 
[15] Frik M. Zur Stabilität nichtkonservativer Linear Systeme. ZAMM. 1972;52:T47-T49. 
 
[16] Kliem W, Pommer C. On the stability of nonconservative systems. Quart. Appl. Maths. 1986;XLIII: 

457-461. 
 
[17] Kirillov ON. Gyroscopic stabilization in the preserve of non-conservative forces. Doklady 

Mathematics. 2009;76(2):780-785. 
 
[18] Guopei C, Yang Y. New stability conditions for a class of linear time varying systems. Automatica.  

2016;71:342-347. 
_______________________________________________________________________________________ 
© 2017 Akpan and Oyesanya; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
 
 
 
 
 
 

Peer-review history: 
The peer review history for this paper can be accessed here (Please copy paste the total link in your 
browser address bar) 
http://sciencedomain.org/review-history/22340 


