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Abstract 
 

Our study is made up two sections: Non-smokers, problem- smokers, smokers-in-treatment and 
counselling, and removed-smokers (�����) mathematical model that explains the dynamics of smoking 
epidemic without considering the recovery class to susceptible class transferring followed by modelling 
smoking epidemic where the recovery class is considered to revert to susceptible class to become problem 
smokers again after treatment and recovery respectively. We discussed the existence and stability of the 
smoking-free and endemic equilibria of both models. Our mathematical analysis of both models establish 
that the global dynamics of smoking epidemic transmission can be determined by the basic reproductive 
number. The smoking-free equilibrium was locally asymptotically stable if �� < 1  and unstable if 
�� > 1 in both models. Global stability of smoking-free and endemic equilibria was also discussed in our 
first model, using Lassalle’s invariance principle of Lyapunov functions. Numerical simulations were 
conducted using Matlab software to confirm our analytic results in both models. Our findings were that 
reducing the contact rate between the non-smokers and problem smokers, increasing the number of 
smokers that go into treatment and educating smokers to refrain from smoking can be useful in combating 
the smoking epidemic. 
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Keywords: Basic reproduction number; smoking-free equilibrium; second additive compound matrix; 
global Stability; Lyapunov function. 

 

1 Introduction 
 
Smoking not only affects health of individuals but also creates burden on society as well as on economy of a 
country [1]. Almost 6 million people die from tobacco use each year, both from direct tobacco use and 
second-hand smoking. It is estimated that by the year 2020, the annual tobacco related deaths will be 
increased to 7.5 million which will account for 10% of total deaths worldwide [1,2]. 
 
Smoking is the primary cause of lungs diseases such as Lungs Cancer and Chronic Obstructive Pulmonary 
diseases(COPD) [3]. It has been reported that there is a relation between tobacco use and Pulmonary 
Tuberculosis (TB), and there is increasing evidence of this association. Smoking has been positively 
associated with the development of TB infection, active TB-relapse and related mortality rates [4]. Smoking 
is also a cause of heart disease, stroke, peripheral vascular disease and other respiratory diseases and low-
birth weight in babies [5,7]. Among adolescents, smoking is also connected to social factors. Adolescents 
whose families and friends smoke are more likely to start smoking earlier than their counterparts [5]. Figs. 1 
and 2 indicate comparisons of smoking prevalence among adults in some selected five countries of five 
continents in the world. Due to unavailability of continuous data on smoking for the selected countries and 
for simplicity, we decided to use one country from each continent and 2013 data [6] respectively for our 
comparisons.  
 

 
 

Fig. 1. Prevalence of tobacco use among adults in selected five countries—males and females, age-
standardised [6] 

 
Tobacco use is considered as a disease that can spread through social contact in a way similar to the spread 
of infectious diseases. Mathematical models can be used to understand the spread of smoking and predict the 
impact of smoking on the community in order to help reduce the number of smokers [8].  
 
In 2015, [1] proposed mathematical models to study the dynamics of smoking behaviour under the influence 
of educational programs and also individual determination to quit smoking. They divided their total 
population into three classes: potential smokers (�), smokers (�) and quitters (�). They performed stability 
analysis of smoking free and endemic equilibria, sensitivity analysis and numerical simulations of their 
model. According to their results, determination and education play an important role in reducing the 
smoking prevalence but determination alone cannot eradicate it.  
 
van Voorn et al. [3], presented a simple but dynamical eco-epidemiological model on smoking. Their model 
formulation consists of a resource-population dynamic part coupled with an epidemiological part similar to 
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an SIR type model for the three compartments: non-smokers, smokers and ex-smokers. According to their 
model, the coupling is via birth of non-smokers and death of the three classes with different death rates. 
They used brute force simulations for the short-term dynamics and bifurcation analysis for the long-term 
dynamics to study the final four-dimensional systems of Ordinary Differential Equations in their model. Due 
to a feed-back mechanism of the two coupling terms there is a codim-two tangent transcritical bifurcation. 
This leads to bi-stability of one smoker epidemic interior equilibrium and a smoker-free boundary 
equilibrium. They concluded that changing parameters beyond the emerging tangent bifurcation leads on the 
short-term to eradicate smoking. 
 
Lahrouz et al. [7], studied a deterministic and stochastic stability of mathematical model of smoking. They 
constructed a Lyapunov function to prove the global stability of the unique smoking-present equilibrium 
state of a mathematical model of smoking. They incorporated random noise into their deterministic model. 
They also proved that the stochastic model established in their paper possesses non-negative solutions. They 
then used a Stochastic Lyapunov method to obtain the sufficient conditions for mean square and asymptotic 
stability in probability of the stochastic model. Their analysis indicate that the stochastic stability of the 
smoking present equilibrium state depends on the magnitude of the intensities of the noise as well as the 
parameters involved within the model system.  
 

 
 

Fig. 2. Prevalence of tobacco use among adults in selected five countries—males and females, age-
standardised [6] 

 
Another model which is related to this model is that of Alkhudhari et al. [8], they presented a model to 
investigate the stability analysis of giving up smoking, in which smoking can be temporary or permanent. In 
their model, they studied a population with peer pressure effect on temporary quitters and they considered 
also the possibility of temporary quitters becoming permanent quitters and the impact of this transformation 
on the existence and stability equilibrium points. Their results show that the number of smokers may be 
controlled by reducing the contact rate between the potential smokers and smokers. 
 
Also Zeb et al. [9], developed a square-root dynamics of given up smoking. Their model is made up of four 
compartments: potential smokers, occasional smokers, smokers and quit smokers. In their model, they 
considered the interaction between the potential smokers and occasional smokers in the form of a square-
root followed by a finite difference scheme using the non-standard finite difference(NSFD). According to 
the results of their model, the NSFD method gives a highly accurate and valid approximate solution for a 
long time. Also the reliability of the method and reduction in the size of computational domain give this 
method wider applicability. 
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Although the previous related research discussed above considered the various ways by which smoking 
epidemic can be minimised, they did not consider the possibility of smokers under treatment becoming 
problem smokers again due to inadequate counselling. They also fail to consider recovered smokers to 
potential smokers compartment transfer. 
 
In this paper, the following assumptions were made in the first model: that the problem smoker under 
treatment may either recover from smoking or become a problem smoker again during treatment; a problem 
smoker in treatment who recovers from smoking will not become a smoker again. In our second model of 
this paper we considered a problem smoker in treatment who recovers from smoking to become a smoker 
again. The paper is organized as follows: In section 2, we present the model description and the basic 
reproduction number. Model analysis consisting of the stability analysis of smoking- free and endemic 
equilibria is discussed in section 3. In Section 4, we use numerical example to show the dynamical behaviour 
of our results in the first model. In Section 5, we discuss smoking model with temporary immunity. In 
section 6, we discuss the numerical simulations and sensitivity analysis of our second model, Section 7 is 
made up discussion of our results. We end the paper with a conclusion in section 8.  
 

2 Mathematical Model 
 
2.1 Model Description  
 
The Population of our model is divided into four compartments: non-smokers (�), problem- smokers (�), 
smokers-in-treatment and counselling (��), and removed-smokers (�). The schematic diagram below shows 
the  interaction between the four smoking states mentioned above. 
 

 
 

Fig. 3. Schematic diagram of the four smoking classes in the model 
 

2.2 Model Assumptions 
 
The following assumptions were made in the model: 
 

(i) The smoking epidemic occurs in a closed environment. 
(ii) Problem smoking is transmitted to non-smokers when they are in contact with problem Smokers. 

(iii) The members of the population mix homogeneously (have the same interactions with one another to 
the same degree). 

(iv) Smokers-in-treatment may become problem smokers again due to inadequate counselling. 
 
The smoking epidemic is modelled using the system of nonlinear Differential Equations below: 
 

��

��
= �� − ���� − �� 

��

��
= ���� + ���� − (� + �� + ��)�                                                                      (1) 

���

��
= ��� − ���� − (� + �� + ��)�� 
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��

��
= ���� − �� 

 
with  � > 0, � ≥ 0, �� ≥ 0 and � ≥ 0. 
 
where, �� is the recruitment rate of the population, K is the number of all individuals in the population, �� is 
the transmission rate from � to �, � is the natural death rate, �� is the smoking induced death rate of �, �� is 
the smoking induced death rate of ��, �� is the proportion of smokers entering ��, �� is the proportion of 
smokers entering � from �� and �� is the recovered rate of ��. 
 

Table 1. Model parameters 
 

Parameter Description Value Source 
� Number of all individuals in the population 100 Assumption 
�� Transmission rate from � to � 0.003 Assumption 
�� The proportion of smokers entering ��, 0.01 Assumption 
�� The proportion of smokers entering � from �� 0.025 Assumption 
� The natural death rate 0.02 [1] 
�� Smoking induced death rate of � 0.44 Assumption 
�� Smoking induced death rate of �� 0.03 [9] 
��  Recovered rate of ��. 0.02 Assumption 
� Recurrence rate coefficient 0.001 Assumption 

 
Since the variable � of the system (1) does not appear in the first three equations in the subsequent analysis, 
we only consider the system 
 

��

��
= �� − ���� − �� 

��

��
= ���� + ���� − (� + �� + ��)�                                                                      (2) 

���

��
= ��� − ���� − (� + �� + ��)�� 

 
We also consider the following equations: 
 

� (�) = �(�)+ �(�)+  ��(�) 
 

and this implies that  
 

��

��
=

��

��
+

��

��
+

���

��
 

(� + � + ��)′ = �[� − (� + � + ��)]− ��� − (�� + ��)�� 
≤ �[� − (� + � + ��)]                                                          (3) 
 

From (3), it follows that: 
 

lim �→ ∞ ��� (� + � + ��)≤ �. 
 

Thus the feasible region of the system (2) is  
 

Ω = {(�,�,�):� + � + �� ≤ �,� > 0,� ≥ 0, �� ≥ 0} 
 

is positively invariant.  
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2.3 Basic reproduction number  
 
The basic reproduction number is defined as the number of new infective individuals produced by a single 
infective individual during his or her infective infectious period when introduced into susceptible population 
[15]. 
 
Next, we investigate the basic reproduction number of the system (2) by using the next generation matrix 
approach [10]. It is obvious to see that the system (2) has the smoking-free equilibrium �� = (�,0,0).  
 
Let � = (�,�,�)� , then system (2) can be written as  
 

�′ = �(�)− �(�), 
 
Where 
 

�(�) = �
����

0
0

�  and     �(�)= �

(� + �� + ��)�
−��� + ���� + (� + �� + ��)��

−�� + ���� + ��
� 

 

The Jacobian matrices of  �(�) and �(�) at the smoking-free equilibrium, �� are respectively 
 

��(��)= �
� 0
0 0

� , ��(��)= �
� 0

��� 0
� 

 
Where 
 

� = �
��� 0

0 0
� and � = �

� + �� + �� 0
−�� � + �� + ��

� 

 

The reproduction number is given by the spectral radius of  ��� � and that is   
 

�� =
��

(�� ��� ��)
                                                                                                                               (4) 

 

Theorem 1: The smoking-free equilibrium ��(�,0,0,) of the system (2) is asymptotically stable if �� < 1 
and unstable if �� > 1 
 

3 Model Analysis 
 
3.1 Smoking-free Equilibrium  
 
In this section, we investigate the local geometrical properties of the smoking-free equilibrium �� =
(�,0,0) by considering the linearised system of ODE’s (2), taking the Jacobian matrix and obtained 
 

�(�,�,�) = �

−(��� + �) −��� 0
0 ��� − (� + �� + ��) ��

0 �� −�� − (� + �� + ��)
�                                  (5) 

 
The local stability of the equilibrium may be determined from the Jacobian matrix (5). This implies that the 
Jacobian matrix for the smoking-free equilibrium is given by 
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�(��) = �

−� −�� 0
0 �� − (� + �� + ��) ��

0 �� −�� − (� + �� + ��)
�                                                        (6) 

 
The determinant of (6) is given by 
 

|�(��)− ��|= �

−� − � −�� 0

0 �� − (� + �� + ��)− � ��

0 �� −�� − (� + �� + ��)− �
�= 0                   (7) 

 

It follows that the characteristic equation of �(��) is computed from equation (7) and is given by 

 

�� + (3� + �� + �� + �� + �� + �� − ��)�� +  

(3�� + 2��� + 2��� + 2��� + 2��� + 2��� − 2��� + ���� + ���� + ���� + ���� + ���� 

−���� − ���� − ����)� + (�� + ���� + ���� + ����+���� + ���� − ���� + ����� + ����� 

+ ����� + ����� + ����� − ����� − ����� − �����)= 0 
 

We can write the characteristic equation above as: 

 

�� + ���� + ��� + �� = 0                                                                                          (8) 

 

Where 

 

�� = 3� + �� + �� + �� + �� + �� − �� 

�� = 3�� + 2��� + 2��� + 2��� + 2��� + 2��� − 2��� + ���� + ���� + ���� + ���� 

+ ���� − ���� − ���� − ���� 

�� = �� + ���� + ���� + ����+���� + ���� − ���� + ����� + ����� + ����� + ����� 

+ ����� − ����� − ����� − ����� 

���� − �� = (9 + 8�� + 8�� + 8�� + 8�� + 8�� − 8�� − �)�� + (6���� + 6���� + 6����
�+ 6���� 

+ 6���� − 6���� − 6���� − 6���� + 4���� + ��
� − 4���� + 4���� + 2��

� + 4���� + 4���� +  

�2��
� + 2��

� + 4���� + 2��
� − 4���� + 2��

��� + (2������ + 2������ + ��
��� + ��

��� + ��
��� 

−2������ − 2������ + ����
� + 2������ − 2������ − ����

� − 2������ + ������ + ����
� 

+ 2������ + ����
� − 2������ − ����

� + ������ + ������ + ��
��� − ����

� + ��
��� + ��

��� + ������

− ������ − 2������ − 2������ + ��
��� + ��

��� + ��
���) 

 

Using the Routh-Hurwitz criterion [14], it can be seen that all the eigenvalues of the characteristic equation 
(8) have negative real part if and only if: 

 

�� > 0, �� > 0, �� > 0, ���� − �� > 0                                                                      (9) 

 
Theorem 2: �� is asymptotically stable if and only if inequalities (9) is satisfied. 

 

3.2 Existence of endemic equilibrium  
 
In this section, we consider a situation in which all the smoking states coexist in the equilibrium. We denote 
�∗ = (�∗,�∗,��

∗) as the endemic equilibrium of the system (2). We also obtain  
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�∗ =
(� + �� + ��)(�� + � + �� + ��)− ����

��(�� + � + �� + ��)
 

�∗ =
����(�� + � + �� + ��)− �[(� + �� + ��)(�� + � + �� + ��)− ����]

(� + �� + ��)(�� + � + �� + ��)[(� + �� + ��)(�� + � + �� + ��)− ����]
 

��
∗ =

��[����(�� + � + �� + ��)− �[(� + �� + ��)(�� + � + �� + ��)− ����]]

(� + �� + ��)(�� + � + �� + ��)[(� + �� + ��)(�� + � + �� + ��)− ����]
 

 
from system of ODE’s (2) and linearized the same system to obtained: 
 

�(�∗)= �

−(���∗ + �) −���∗ 0
0 ���∗ − (� + �� + ��) ��

0 �� −�� − (� + �� + ��)
�                                    (10) 

 
We determine the local stability of the positive equilibrium �∗, by using the following lemma. 
 
Lemma 1 [11,14]: Let �  be a 3 × 3 real matrix. If ��(� ), ��� (� ) and ��� (� [�]) are all negative, then all 
the eigenvalues of �  have negative real part. 
 
Definition 1 [8,11,14] (Second additive compound matrix). Let �  be a real � × �  matrix. The second 
additive compound matrix of � = (���) for � = 3 is defined as 

 

�[�] = �

��� + ��� ��� −���

��� ��� + ��� ���

−��� ��� ��� + ���

�                                                                   (11) 

 
Theorem 3: The positive equilibrium �∗ of the system (2) is locally asymptotically stable if �� > 1. 
 

Proof: We first construct a second additive compound matrix �[�](�∗) of �(�∗) and obtain 
 

�[�](�∗) = �

��(�∗ − �∗)− 2� − �� − �� �� 0
�� −(���∗ + �)− �� + �� −���∗

0 0 ���∗ − �� − �� + ��

�     (12) 

 
Where  �� = � + �� + �� and �� = � + �� + ��. 
 
It follows that: 
 

��(�(�∗)) = −(���∗ + �)+ ���∗ − (� + �� + ��)− �� − (� + �� + ��)< 0, 
 
If (� + �� + ��) > ���∗. 
 

det (�(�∗))= −(���∗ + �)�(���∗ − (� + �� + ��)��−�� − (� + �� + ��)�− ����]< 0 
 

If  �(���∗ − (� + �� + ��)��−�� − (� + �� + ��)�]> ����. 
 

Next, we compute the determinant of �[�](�∗) in (12) and obtained 
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3.3 Global stability of the equilibrium points 
 
3.3.1 Global stability of the smoking free equilibrium 
 
We prove the global stability when �� ≤ �. 
 
Theorem 4: The global stability of the smoking free equilibrium, ��  is asymptotically stable in the region 
Ω = {(�,�,�):� + � + �� ≤ �,� > 0,� ≥ 0,� ≥ 0}  if �� ≤ � (note that �� ≤ � implies �� < 1).  
 
Proof: it should be noted that  � < 1  in Ω  for time (�)>  1. Consider the Lyaponov function: 
 

� = � + �� 
��

��
= ���� − (� + ��)� − (� + �� + ��)�� 

≤ (�� − � + ��)� − (� + ��)��                                                                      (13) 
 

��

��
< 0 for  �� ≤ �  and  

��

��
= 0 if (�� − � + ��)� − (� + ��)�� = 0. Therefore, the only trajectory of the 

system in which 
��

��
= 0 is ��. Hence, Lasalle’s invariance principle, ��  is globally asymptotically stable in 

Ω [8,12]. 
 
3.3.2 Global stability analysis of endemic equilibrium (�∗) 
 
We investigate the global stability of the endemic equilibrium �∗ in this section, by using Lemma 2 to prove 
that the system (2) has no periodic solutions, homoclinic loops and oriented phase polygons inside the 
invariant region.  
 
Lemma 2: Let �(�,�,��) = {��(�,�,��),��(�,�,��),��(�,�,��)  } be a vector field on Ω∗  and which 
satisfies the conditions .� = 0, (∇ × �).��⃗ < 0, in the interior of Ω∗, where ��⃗ is the normal vector to Ω∗ and 
 � = (��,��,��) is a Lipschitz continuous field in the interior of Ω∗, and  
 

∇ × � = �

� � �
�

��

�

��

�

���
�� �� ��

� 

 

∇ × � = �

�

��

�

���
�� ��

��− �

�

��

�

���
�� ��

��+ �
�

��

�

��
�� ��

�� 

 

= �
���

��
−

���

���
��− �

���

��
−

���

���
��+ �

���

��
−

���

��
��                                                      (14) 

 
Thus, the differential equation of the system � = ��,� = ��,�� = �� has no periodic solutions, homoclinic 
loops and oriented phase polygons inside Ω∗. 
 

We consider Ω∗ = {(�,�,��):� + �
�� ��

�
�� + �

�� ��� ��

�
��� = �,� > 0,� ≥ 0,�� ≥ 0}. Then Ω∗ ⊂ Ω, Ω∗is 

positively invariant and Ω∗ and �∗ ∈ Ω∗. 
 
Theorem 5: The system (2) has no periodic solutions, homoclinic loops and oriented phase polygons inside 
the invariant region Ω∗ 
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Proof: Let ��,��  and ��  represent the right-hand side of equations in model (2), respectively. We use 

� +
(�� ��)

�
+

(�� ��� ��)

�
= � to rewrite ��,�� and �� inequivalent forms and obtain: 

 
��(�,�) = �� − ���� − ��                (15) 
 

��(�,��) = �� − ��� �� − � − �
�� ��� ��

�
�����

�

�� ��
� − ��             (16) 

 

��(�,�) = ���� + �� �� − � − �
�� ��

�
����

�

�� ��� ��
�− (� + �� + ��)�           (17) 

 

��(�,��)= ��� �� − �
�� ��

�
�� − �

�� ��� ��

�
����+ ���� − (� + �� + ��)�           (18) 

 

��(�,��) = �� �� − � − �
�� ��� ��

�
�����

�

�� ��
�− ���� − (� + �� + ��)��          (19) 

 
��(�,��)= ��� − ���� − (� + �� + ��)��               (20) 

 
Let � = (��,��,��), denote a vector field, where 

 

�� =
��(�,��)

���

−
��(�,�)

��
= 

=
����

���(� + ��)
− �

� + �� + ��

�(� + ��)
+

��

�
+

(�� + ��)

�
−

��(� + ��)

�(� + �� + ��)
−

(�� + ��)

�
� 

−
����

(�� ��� ��)��
+

���

(�� ��� ��)�
− �

���

�� ��
+ ���              (21) 

 

�� =
��(�,�)

��
−

��(� ,��)

���
=

��

��
−

��

��
+

�

�
[�� + �� + ��]− ��            (22) 

 

�� =
��(�,��)

���

−
��(�,��)

���

=
���

��

−
��(� + ��)�

���

−
��(� + �� + ��)

�
+

��

�
− �

� + �� + ��

��

� 

−
��

���
−

����

(�� ��)��
−

����

(�� ��)��
−

��(�� ��� ��)

�� ��
−

�

��
              (23) 

 
�.� = ���� + ���� + ���� 

�.� = �
��

���

−
��

��
��� + �

��

��
−

��

���

��� + �
��

���

−
��

���

��� 

=
����

���
−

����

��
+

����

��
−

����

� ��
+

����

� ��
−

����

���
= 0                                          (24) 

 
on Ω∗. Since the alternate forms of  ��,�� and �� are equivalent in Ω∗. 
 
From lemma 2, it is easy to see that 
 

∇ × � = �−
��(� + ��)

���

−
��

��
−

��

��
�� �− �

��

����

−
���

(� + ��)��

+
����

���
�(� + ��)

� � 

+ �−
��

��� −
��� �

(�� ��� ��)��� +
���

(�� ��� ��)����.                                            (25) 

 

Using ��⃗ = �
�

�
,

�� ��

��
,

�� ��� ��

��
� to Ω∗, it can be shown that,  
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(∇ × �).��⃗ = −
1

�
�

��(� + ��)

���

+
��

��
+

��

��
�� − �

�

����

−
��

(� + ��)��

+
���

���
�(� + ��)

� �
� + ��

�
� 

− �
�

��� −
���

(�� ��� ��)��� +
��

(�� ��� ��)����
�� ��� ��

�
� < 0.                       (26)                

 

Since � + �
�� ��

�
�� + �

�� ��� ��

�
��� = �. Thus, by lemma 2, the system (2) has no periodic solutions, 

homoclinic loops and oriented phase polygons inside the invariant region Ω∗[8,12]. 
 
Theorem 5: The endemic equilibrium point  �∗ of model (2) is globally asymptotically stable if �� > 1(This 
means that  �� ≤ ��). 
 
Proof: From theorem 1, if  �� > 1 in  Ω∗, then �� is unstable. Also   Ω∗is positively invariant subset of Ω 
and the � -limit set of each solution of model (2) is a single point in Ω∗since there is no periodic solutions, 
homoclinic loops and oriented phase polygons inside Ω∗if �� ≤ ��. Therefore �∗ is globally asymptotically 
stable [8]. 
 

4 Numerical Simulations  
 
In this section, we use numerical simulations to show the dynamical behavior of our model. Then we carry 
out some sensitivity analysis of the basic reproduction number using the model parameters. The parameter 
values used in this section are displayed in Table 1.  
 

 
 

Fig. 4. Time series plot of model 2, with initial parameter values � = ���, �� = �.���,  �� =
�.��,� = �.��,�� = �.��,�� = �.��,�� = �.��, �� = �.��� when �� < 1. Only non-smokers are 
present in the population. The populations of problem smokers and smokers in treatment approach 

zero and reach disease free equilibrium. 
 

4.1 Sensitivity of the reproduction number 
 
We study how the �� depends on the model parameters especially �� and ��, that is the transmission rate 
coefficient and the coefficient of the proportion of smokers entering � from ��. We consider the following 
cases: 
 

i. At Fig. 4 (which depicts the graph of disease free equilibrium), we increased the value of ��from 
0.003 to 0.55 and obtained Fig. 5 (which depicts graph of endemic equilibrium). 

ii. At Fig. 5 we increased the value of �� from 0.025 to 48 and obtained the graph in Fig. 6 (which 
depicts graph of disease free- equilibrium).  
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Fig. 5. Time series plot of model 2, with parameter values � = ���, �� = �.��,  �� = �.��, 
� = �.��,�� = �.��, �� = �.��,�� = �.��, �� = �.��� when �� = �.�����. All the distinct 

smoking classes coexist and therefore approach endemic equilibrium 

 
 

Fig. 6. Time series plot of model 2, with parameter values � = ���, �� = �.��,  �� = �.��, 
� = �.��,�� = �.��, �� = �.��,�� = �.��, �� = ��, when �� = �.�����. Only non-smokers are 
present in the population. The populations of problem-smokers and smokers-in-treatment approach 

zero and reach disease free equilibrium. 
 

5 �����  Smoking Model with Temporal Immunity 
 
In this section, we assume that problem smokers who have stopped smoking enter into recovery 
compartment after treatment and become problem smokers again.  
 

 
 

Fig. 7. Schematic diagram of the four-smoking model with temporal immunity 
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Therefore, our model equations become:   
 

��

��
= �� + �� − ���� − �� 

��

��
= ���� + ���� − (� + �� + ��)�                                                                   (27) 

���

��
= ��� − ���� − (� + �� + ��)�� 

��

��
= ���� − (� + �)� 

 
with initial conditions � > 0, � ≥ 0, �� ≥ 0 and � ≥ 0 and  
 
 

��

��
=

��

��
+

��

��
+

���

��
+

��

��
 

(� + � + �� + �)′ = �[� − (� + � + ��)]− ��� − (�� + ��)��  
≤ �[� − (� + � + �� + �)]                                         (28) 

 
From (28), it follows that: 
 

lim �→ ∞ ��� (� + � + �� + �)≤ �. 
 
Thus, the feasible region of the system (27) is  
 

Ω∗∗ = {(�,�,��,�):� + � + �� + � ≤ �,� > 0,� ≥ 0, �� ≥ 0,� ≥ 0} 
 
is positively invariant. 
 

5.1 Model Analysis  
 
5.1.1 Smoking- free equilibrium and the basic reproduction number 
 
In this section, we study the basic properties of the model (27). We first find the smoking- free equilibrium 
and then continue with the reproduction number. We denote the smoking-free equilibrium by �� =
(�,0,0,0) and consider the linearized system of the system of ODE’s (27), by taking the Jacobian matrix 
under �� and obtain 
 

�(��)= �

−� −��              0                                   �      

0 �� − (� + �� + ��)               ��                                  0        

0
0

��

0
−�� − (� + �� + ��)

��   
             0         

−(� + �) 

�            (29) 

 
The eigenvalues of the characteristic equation of �(��) are �� = −�, �� = −(� + �) and the solution of the 
cubic equation 
 

�� + ��� + �� = 0                                                        (30) 
 

where  
 
�� = 2�� + 2� + �� + �� + �� − ��, 
�� = 2��� + ���� + ��

� + �� + ��� + ��� + ��� + ���� + ���� + ���� + ���� − ���� 
−���� − ���� − ����, 

���� = 4��
�� + 2��

��� + 2��
� + 2���� + 2����� + 2����� + 2����� + 2������ 
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+ 2������ + 2��
��� + 2��

��� − 2����
� − 2������ − 2������ − 2����

� + 2���� 
+ 2����� + 2���

� + 2�� + 2���� + 2���� + 2���� + 2����� + 2����� + 2����� 
+ 2����� − 2����� − 2����� − 2����� − 2����� + 2����� + ������ + ����

� + ���� 

+ ����� + ��
�� + ����� + ����

� + 2������ + ��
��� + ������ − ������ − ��

��� − ������ 

−������ + 2����� + ������ + ����
� + ���� + ����� + ����� + ��� + ����

� + ������ 

+ ��
��� − ������ − ������ − ����

� − ������ + 2����� + ��
��� + ����

� + ���� + ��
�� 

+ ����� + ����� + ��
��� + ��

��� + ������ + ������ − ������ − ������ − ������ − ������ 
−2����� − ������ − ����

� − ���� − ����� − ����� − ����� − ������ − ������ − ������ 
  −������ + ��

��� + ��
��� + ��

��� + ������. 
 
Using the Routh-Hurwitz criterion [13], it can be seen that all eigenvalues of the characteristics equation 
(30) has negative real part if and only if 
 

�� > 0, �� > 0,   �� > 0,���� − �� > 0                                                                                      (31) 
 

Theorem 1: �� is locally asymptotically stable if and only if inequalities (31) is satisfied. 
 
The basic reproduction number of the Smoking Model with Temporal Immunity (�����) is the same as that 
of our first model and is given by  
 

�� =
��

(�� ��� ��)
. 

 
5.1.2 Endemic equilibrium 
 
We denote the endemic equilibrium, �� = (��,��,��

�,��) and evaluate the equilibrium points of the model 
by setting the left-hand side of system (28), equal to zero, solve for the equilibrium points and obtain the 
following 
 

�� =
��(� + �)(�� + � + �� + ��)+ �����)

(� + �)(�� + � + �� + ��)(���� + �)
 

��
� =

����

(�� + � + �� + ��)
 

�� =
��

(� + �)

����

(�� + � + �� + ��)
 

 
The local stability of the endemic equilibrium is determined from the Jacobian matrix �(��) below 
 

�(��)=

⎣
⎢
⎢
⎡

−� −����           0                                 �

���� ���� − (� + �� + ��)          ��                               0

0
0

��

0
 
−�� − (� + �� + ��)

��

    0
−(� + �)⎦

⎥
⎥
⎤

          (32) 

 
The characteristic �(��) is given by 
 

�� + ���� + ���� + ��� + �� = 0                                                        (33) 
 

Where 
 

�� = −��� − ��� − ��� − ���, 
�� = ������ + ������ + ������ + ������ + ������ − ������, 
�� = ��������� + ��������� − ��������� − ���������, 
�� = −������������. 
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And 
 

��� = −�,  ��� = −����,  ��� = �,  ��� = ����,  ��� = ���� − (� + �� + ��),  ��� = ��, 
��� = ��, ��� = −�� − (� + �� + ��), ��� = ��, ��� = −(� + �). 

 
It follows from Routh-Hurtwitz criteria [14] that all the eigenvalues associated to �(��) have negative real 
parts if only if �� > 0 for �= 1,2,3,4 and  
 

������ > ��
� + ��

���                                                                      (34) 
 

Thus, the system (27) is locally asymptotically stable if �� > 1 and the condition (34) is satisfied. 
 

6 Numerical Simulations and Sensitivity Analysis 
 
In order to see the dynamical behaviour of our model, we performed numerical Simulation in this section 
using the parameters in Table 1. Sensitivity Analysis of model (27) and that of the basic reproduction 
number were also performed. 
 

 
Fig. 8. Time series plot of model (28) with parameter values � = ���,� = �.��,�� = �.���, �� =

�.��,�� = �.���,�� = �.��,�� = �.��,�� = �.��,� = �.��� when �� < 1. Only non-smokers are 
present in the population. The populations of problem smokers and smokers in treatment approach 

zero and reach disease free equilibrium. 
 

6.1 Sensitivity analysis 
 
Sensitivity Analysis of system (28) with respect to  �� = �.���, �� = 0.44 and � = �.��� are displayed in 
Figs. 9 and 10 respectively. 
 

7 Discussion  
 
We studied two simple mathematical models capturing the transmission dynamics of smoking epidemic. The 
existence and stability of smoking-free and endemic equilibria and the sensitivity analysis of the 
reproductive number of both models were performed. Based on our parameter values, the basic reproductive 
number of the smoking-free equilibrium is estimated to be �� = 0.006186 < 1. This implies that only non-
smokers population is present and the problem smokers and smokers-in- treatment population reduces to 
zero in both models. This means that our models are asymptotically stable at �� < 1 and satisfies Theorem1. 
This has been verified numerically in Figures 4 and 8. At the sensitivity analysis of the basic reproductive 
number, if the value of  �� is increased from 0.003 to 0.55 and 0.003 to 2 in our first and second models 
respectively, �� > 1 . This indicates the existence of smoking problem in the population. People with 
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smoking problem will continue to transform more non-smokers into problem-smokers and the smoking-free 
equilibrium becomes unstable at �� > 1. This situation has been verified numerically in Fig. 5. Also, if the 
value of �� is increased from 0.025 to 48, and �,��,�� maintained the same in our first model, �� < 1 and 
the situation is reversed. This situation is also in line with our numerical results in Fig. 6 in our first model. It 
was observed in our second model that �� < 1 whenever the value of � is either increased or decreased. This 
implies that �  has no significant impact on the model. However, when the value of ��  is reduced from 
0.44 to 0.1 the situation is reversed in Fig. 11 and all the distinct smoking classes reappear in the population. 
Fig. 12 shows the relationship between our basic reproduction number with respect to the parameters ��, �, 
 �� and �� in the models. A Lyapunov function is used to prove the global stability of the smoking-free 
equilibrium when the transmission rate between non-smokers and problem smokers is less than or equal to 
the natural death rate (�� ≤ �) in our first model. This indicates that the smoking epidemic can be controlled 
by reducing �� to be less than �. On the other hand, if �� ≥ � and � ≥ �� then the endemic equilibrium state 
is locally asymptotically stable. In order to show that our model has no periodic solutions, homoclinic loops 
and oriented phase polygons inside the invariant region Ω∗, we used our first model to prove that the global 
asymptotic stability of the endemic equilibrium for �� ≥ ��. This indicates that the smoking epidemic will 
persist in the population if �� ≥ ��. 
 

 
 

Fig. 9. Time series plot of model (28) with parameter values � = ���,� = �.��,�� = �,�� =
�.��,�� = �.���,�� = �.��,�� = �.��,�� = �.��,� = �.���. All the distinct smoking classes are 

present in the population and therefore the model approach endemic equilibrium. 
 

 
 

Fig. 10. Time series plot of model (28) with parameter values = ���,� = �.��, �� = �.���,�� =
�.��,�� = �.���,�� = �.��,�� = �.��,�� = �.��,� = �. 
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Fig. 11. Time series plot of model (28) with parameter values = ���,� = �.��, �� = �.���,�� =
�.��,�� = �.���,�� = �.�,�� = �.��,�� = �.��,� = � 

 

 
 

(A) The relationship among  �� and ��.             (B) The relationship among  �� and �. 
 

 
(C) The relationship among  �� and ��.               (D) The relationship among  �� and �� 

 
Fig. 12. Sensitivity analysis of �� with respect to (�) ��, (�) �, (�) ��, (�) ��, other parameter values 

are in Table 1. 
 

R
0
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8 Conclusion  
 
In this paper, we presented two mathematical models using a deterministic system of Ordinary Differential 
Equations. These are the that ����� that explains the dynamics of smoking epidemic without considering 
the transfer of removed smokers to non-smokers compartment followed by an ������  model where 
recovered smokers are considered to re-join the non-smokers to become problem smokers again after 
treatment and recovery respectively. We discussed the existence and stability of smoking-free and endemic 
equilibria, performed sensitivity analysis and conducted numerical simulations of both models respectively. 
We established that our models are asymptotically stable when the associated reproduction numbers are less 
than one, but unstable when they are greater than one. According to the results of the two models, smoking 
epidemic can be reduced by minimising the contact rate between non-smokers and problem-smokers, 
increasing the number of smokers that go into treatment and educating smokers to refrain from smoking. We 
hope to modify these models in future by including passive smokers, bifurcation analysis and optimal 
control. 
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