
Journal of Advances in Mathematics and Computer Science

25(5): 1-16, 2017; Article no.JAMCS.38065

Previously known as British Journal of Mathematics & Computer Science

ISSN: 2231-0851

1P-ABC, a Simplified ABC Variant for Continuous
Optimization Problems

George Anescu1∗

1Power Plant Engineering Faculty, Polytechnic University of Bucharest, Romania.

Author’s contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/JAMCS/2017/38065
Editor(s):

(1) Junjie Chen, Professor, Department of Electrical Engineering, University of Texas at
Arlington, USA.

(2) Huchang Liao, Professor, Business School, Sichuan University, P. R. China.
(3) Kai-Long Hsiao, Associate Professor, Taiwan Shoufu University, Taiwan.

Reviewers:
(1) S. K. Srivatsa, Retired, Anna University, India.

(2) P. Amudha, Avinashilingam Institute for Home Science and Higher Education for Women,
India.

(3) Osman Ozkaraca, Mugla Stk Kocman University, Turkey.
(4) Anand Nayyar, KCL Institute of Management and Technology, India.

Complete Peer review History: http://www.sciencedomain.org/review-history/22263

Received: 9th November 2017

Accepted: 11th December 2017

Original Research Article Published: 12th December 2017

Abstract

In this paper a novel simplified and fast variant of the ABC algorithm is proposed, 1 Population
ABC (1P-ABC), with the aim to increase the efficiency of the ABC algorithm by using only one
population of bees, the employed bees, while maintaining a good effectiveness of the algorithm in
solving difficult nonlinear optimization problems. The novel 1P-ABC algorithm was tested, both
regarding the efficiency and the success rate, against three known variants of ABC, the original
ABC algorithm, an improved variant, Gbest-guided Artificial Bee Colony (GABC), and another
improved variant, Fast ABC (F-ABC). The testing was conducted by employing an original
testing methodology over a set of 11 scalable, multimodal, continuous optimization functions (10
unconstrained and 1 constrained) most of them with known global solutions. The novel proposed
1P-ABC algorithm outperformed the other ABC variants in efficiency, while for the success rate
the results were mixed.

*Corresponding author: E-mail: george.anescu@gmail.com;

http://www.sciencedomain.org/review-history/22263

Anescu; JAMCS, 25(5): 1-16, 2017; Article no.JAMCS.38065

Keywords: Optimization; Continuous Global Optimization Problem (CGOP);
Swarm Intelligence (SI); Artificial Bee Colony Algorithm (ABC);
Gbest-guided Artificial Bee Colony Algorithm (GABC); Keane’s Bump Function
Fast Artificial Bee Colony Algorithm (F-ABC); 1 Population ABC (1P-ABC).

2010 Mathematics Subject Classification: 68T 20, 68W 10, 90C 26, 90C 56, 90C 59.

1 Introduction

Due to the difficulty of solving some real world optimization problems from a variety of scientific and
engineering fields, in the last decades some modern optimization nature inspired algorithms were
developed. A special class of such nature inspired optimization algorithms is represented by the
Swarm Intelligence (SI) algorithms. SI can be briefly defined as the collective intelligent behavior
of decentralized and self-organized swarms (populations) of agents (individuals), for example bird
flocks, fish schools and colonies of social insects such as termites, ants and bees. Several algorithms
have been developed inspired from different intelligent behaviors of honey bee swarms, among which
Artificial Bee Colony (ABC), originally proposed in [1] and published in [2], is the one which has
been most widely studied on and applied to solve some real world optimization problems. The ABC
algorithm presents many advantages compared to the traditional optimization methods and modern
meta-heuristic methods: does not assume continuity and differentiability of the objective function (it
is derivative free), needs fewer control parameters (it is parameter free), has a simple design which is
easy to implement and can be easily modified and hybridized with other meta-heuristic algorithms.
From the application perspective, ABC has been tailored successfully to solve a wide variety of
discrete, continuous (constrained and unconstrained) and combinatorial optimization problems in
a wide variety of fields: decision making, engineering design, pattern recognition, image processing,
machine learning, scheduling, protein structure prediction, etc.

Since its first introduction in 2005, many variants and hybridization variants of ABC were advanced
in order to improve the efficiency and effectiveness of the algorithm. Two comprehensive surveys
concerning the state of the art in the ABC algorithm research and its applications are presented
in the papers [3] and [4]. From the numerical performance perspective, the ABC algorithm was
compared to many other meta-heuristic population-based algorithms and the numerical results
showed that it is competitive, although there was room for enhancements. The main two problems
(which will also be emphasized in the experimental results section of the present paper) are related
to a poor exploitation capability (which makes the algorithm relatively slow) and poor success
rates reported when optimization problems with a highly non-regular arrangement of the modes
are approached. The main goal of the present paper is to propose a variant of the ABC algorithm
which is able to overcome the mentioned problems.

The rest of this paper is organized as follows:

Section 2 shortly presents the general formulation of the Continuous Global Optimization Problem
(CGOP); Section 3 presents the Deb’s Rules for Constraints Handling as they were adapted and
implemented for the 1P-ABC method; Section 4 presents the original ABC algorithm and the
modifications implemented in the GABC variant; Section 5 presents the modifications introduced
in the implementation and design of the new 1P-ABC variant; Section 6 presents the set of
test optimization problems used in the testing experiments and the statistical results obtained
by comparing the novel 1P-ABC variant with the other three ABC variants: the original ABC
algorithm [1], the GABC variant [5] and the F-ABC variant [6]; and finally, Section 7 summarizes
the paper and draws some conclusions.

2

Anescu; JAMCS, 25(5): 1-16, 2017; Article no.JAMCS.38065

2 Continuous Global Optimization Problem

The Continuous Global Optimization Problem (CGOP) is a general model for representing the
optimization problems formulated as [7], [8]:

minimize f(x) (1)

subject to x ∈ D,
with

D = {x : l ≤ x ≤ u; and gi(x) ≤ 0, i = 1, . . . , G;

and hj(x) = 0, j = 1, . . . , H},
(2)

where x ∈ Rn is a real n-dimensional vector of decision variables (x = (x1, x2, . . . , xn)), f : Rn → R
is the continuous objective function, D ⊂ Rn is the non-empty set of feasible decisions (a proper
subset of Rn), l and u are explicit, finite (component-wise) lower and upper bounds on x, gi :
Rn → R, i = 1, . . . , G is a finite collection of continuous inequality constraint functions, and
hj : Rn → R, j = 1, . . . , H is a finite collection of continuous equality constraint functions. No
other additional suppositions are made on the CGOP problem and it is assumed that no additional
knowledge about the collections of real continuous functions can be obtained, in this way treating the
CGOP problem as a black box, i.e. for any point x in the boxed domain {x : l ≤ x ≤ u} it is assumed
the ability to calculate the values of the functions f(x), gi(x), i = 1, . . . , G, hj(x), j = 1, . . . , H,
but nothing more.

3 Deb’s Rules for Constraints Handling

The Deb’s rules [9] offer a methodology to efficiently handle the constraints in constrained optimization
problems. The presentation in this section is adapted from [10] and [8] with the notations from
equations (1) and (2). The inequality constraints that satisfy gi(x) = 0, i = 1, . . . , G at the global
optimum solution are called active constraints. According to his definition all equality constraints
are active constraints. The equality constraints can be transformed into an inequality formulation
and can be combined with other inequality constraints as the auxiliary functions g̃i(x):

g̃i(x) =

{
max[0, gi(x)], i = 1, . . . , G
max[0, |hi−G(x)| − δ], i = G+ 1, . . . , G+H,

(3)

where δ is a tolerance parameter for the equality constraints. Therefore, the objective becomes
to minimize the objective function f(x) such that the obtained optimal solution satisfies all the
inequality constraints g̃i(x) ≤ 0 as active constraints. The overall constraint violation for an
infeasible solution is the summation of all the constraints expressed as:

v(x) =

G+H∑
i=1

g̃i(x)2. (4)

There are a number of constraint handling techniques based on constraint violation, the one used
here being the Superiority of Feasible Solutions (SF) technique. SF applies the Deb’s rules when
comparing two solutions xi1 and xi2 . According to Deb’s rules xi1 is regarded superior to xi2 when:

• xi1 is feasible and xi2 is not feasible.

• xi1 and xi2 are both feasible, but xi1 has a smaller objective value than xi2 .

3

Anescu; JAMCS, 25(5): 1-16, 2017; Article no.JAMCS.38065

• xi1 and xi2 are both infeasible, but xi1 has a smaller overall constraint violation than xi2 .

Therefore, in SF the feasible solutions are always considered superior to the infeasible ones. Two
infeasible solutions are compared based on their overall constraint violations only, while two feasible
solutions are compared based on their objective function values only. The comparison of infeasible
solutions based on the overall constraint violation aims to push the infeasible solutions toward the
feasible regions, while the comparison of two feasible solutions based on the objective function value
improves the overall solution of the optimization problem.

In order to be able to correctly compare the infeasible solutions which are near feasible regions, the
following modification to the constraint violation is proposed:

v(x) =

G+H∑
i=1

g̃i(x)2 +Gns +Hns, (5)

where Gns (Gns ≤ G) is the number of not satisfied inequality constraints, and Hns (Hns ≤ H) is
the number of not satisfied equality constraints.

Another important proposed improvement for the handling of the equality constraints is to make
the δ tolerance parameter dependent on the current iteration index k:

δ = k(δ2 − δ1)/itermax + δ1, (6)

where δ1 is the initial tolerance parameter (at k = 0), δ2 is the final tolerance parameter (at
k = itermax) with δ1 � δ2, and itermax is the maximum iteration count. In this way δ tends to
final δ2 with the increase of the iteration count k.

4 Artificial Bee Colony Optimization

The detailed description of the ABC algorithm given in this section is based on [6] and [11], but it
is respecting the general principles proposed in [2] for the foraging behavior of honey bee colonies.
In the ABC model the colony of artificial bees contains three groups (types) of bees: employed
bees, onlooker bees and scouts. A bee searching around the food source visited by itself previously
(its position at the previous iteration step) is called an employed bee, a bee waiting in the ”‘dance
area”’ for making the decision to choose a food source is called an onlooker bee (the bees’ ”‘dance”’
is assumed as the method of communication), and a bee carrying out random search is called a
scout bee. The main steps of the algorithm are given below:

Step 1 : Initialization;

while (true)
Step 2 : Check termination conditions, break the

loop if any applies;
Step 3 : Employed Bees Phase;
Step 4 : Onlooker Bees Phase;
Step 5 : Scout Bees Phase;

end while

The method’s parameters are: N the number of employed bees and onlooker bees (a total population
of 2×N bees), ε the required precision, limit the stagnation count and itermax the maximum number
of iterations. The N employed bees and N onlooker bees are represented as the respective vector
positions xe

i and xo
i , i = 1, . . . , N in the the limiting box (hyper-rectangle) defined by the lower

limits lj , j = 1, . . . , n and upper limits uj , j = 1, . . . , n (lj < uj).

4

Anescu; JAMCS, 25(5): 1-16, 2017; Article no.JAMCS.38065

Each time an employed bee moves to a better position, it sets a food source and the nectar amount
of a food source corresponds to the quality (fitness) of the associated solution. Food sources around
which the searching takes place are considered only the positions of the employed bees, while possible
solutions are considered all the bee positions (employed bees, onlooker bees, scout bees).

At initialization, the employed bees and the onlooker bees take random values in the limiting box:

xei,j = lj + rndei,j × (uj − lj), i = 1, . . . , N, j = 1, . . . , n (7)

xoi,j = lj + rndoi,j × (uj − lj), i = 1, . . . , N, j = 1, . . . , n, (8)

where rndei,j and rndoi,j are uniformly generated pseudo-random numbers in the [0, 1) real interval.
The iteration index is initialized to k = 0. The objective function f(x) is evaluated for the current
bees positions xe

i (0),xo
i (0): fe

i (0) = f(xe
i (0)), fo

i (0) = f(xo
i (0)), i = 1, . . . , N .

Each iteration of the optimization method consists of three phases: sending the employed bees to
the food sources and then measuring their nectar amounts (Employed Bees Phase); selecting the
food sources by the onlooker bees after sharing the information of the employed bees and measuring
the nectar amount of the food sources (Onlooker Bees Phase); determining the scout bees and then
sending them to possible food sources (Scout Bees Phase).

During the Employed Bees Phase each employed bee goes to the food source area visited at the
previous iteration (since that food source exists in its memory), and chooses a new candidate
food source by means of visual information in the neighborhood of the current one. The visual
information is based on the comparison of food source positions. For each employed bee with index
i another employed bee with index m ∈ {1, . . . , N}, m 6= i, is selected in a discrete uniform pseudo-
random manner. In order to produce a candidate food source position, the ABC algorithm uses
the following equation:

x′ei,j(k + 1) = xei,j(k) + rei,j × (xem,j(k)− xei,j(k)), (9)

where j ∈ {1, . . . , n}, is an uniform pseudo-randomly selected index and rei,j are pseudo-random
numbers uniformly sampled from the [−1, 1) real interval. Equation (9) controls the generation of a
neighbor food source position around xe

i (k) and the modification represents the visual comparison
of the neighbor food positions visually by the bee. Note that only one component of x′

e
i , namely

the one with index j, is different from the corresponding component of xe
i . The new candidate food

source position is taken as the current food source position only if it is better than the old one: i.e.
if f(x′

e
i (k + 1)) < f(xe

i (k)) then xe
i (k + 1) := x′

e
i (k + 1). Equation (9) shows that as the difference

between the position components xei,j(k) and xem,j(k) decreases, the perturbation on the position
xe
i,j(k) decreases too. Thus, as the search approaches the optimal solution in the search space, the

perturbation is adaptively reduced.

During the Onlooker Bees Phase, first the employed bees go into the hive and share the nectar
information of the food sources with the onlooker bees waiting in the ”‘dance area”’ within the
hive. After sharing the nectar information, the food sources are given by the new positions of the
employed bees calculated at the current iteration. In order to choose a food source an onlooker bee
needs a selection mechanism. An onlooker bee prefers a food source area depending on the nectar
information distributed by the employed bees in the ”‘dance area”’. As the nectar amount of a food
source increases, the probability with which that food source is chosen by an onlooker bee increases,
too. Hence, the ”‘dance”’ of employed bees carrying higher nectar recruits the onlooker bees for
the food source areas with higher nectar amount. The selection mechanism proposed originally
was the roulette wheel selection (widely applied in Genetic Algorithms, see [12]), but in the present
implementation a ternary tournament selection (also widely applied in Genetic Algorithms, see [12])

5

Anescu; JAMCS, 25(5): 1-16, 2017; Article no.JAMCS.38065

was preferred, based on considerations that Deb’s Rules are used for constraints handling and that
they provide only the possibility to compare solutions, but they do not provide the possibility to
precisely determine the selection probabilities needed for roulette wheel selection. Let’s denote by
l the index of the food source selected based on the adopted selection mechanism. After arriving
at the selected area l the onlooker bee chooses a candidate food source in the neighborhood of
the selected one depending on the visual information. In order to produce a candidate onlooker
position, the ABC algorithm uses the following expression:

x′oi,j′(k + 1) = xel,j′(k + 1) + roi,j′ × (xem′,j′(k + 1)− xel,j′(k + 1)), (10)

where m′ ∈ {1, . . . , N}, m′ 6= l, and j′ ∈ {1, . . . , n}, are discretely uniformly pseudo-randomly
sampled indexes and roi,j′ are pseudo-random numbers uniformly sampled from the [−1, 1) real
interval. Note that only one component of x′

o
i , namely the one with index j′, is different from

the corresponding component of xe
l . The new candidate onlooker position is taken as the current

onlooker position only if it is better than the old onlooker position: if f(x′
o
i (k+1)) < f(xo

i (k)) then
xo
i (k+1) := x′

o
i (k+1). Equation (10) shows that as the difference between the component positions

xel,j′(k) and xem′,j′(k) decreases, the perturbation on the position xe
l (k + 1) decreases too. Thus,

as the search approaches the optimum solution in the search space, the perturbation is adaptively
reduced.

In the ABC algorithm, if a food source cannot be improved further over a predetermined number of
limit iterations (stagnation count), then that food source is abandoned. Originally the stagnation
count was proposed as limit = n×N . The food source whose nectar is abandoned is replaced with
a new food source by the scouts (note that only the employed bees can become scouts). This is
simulated by randomly generating a position in the search space and replacing the abandoned one
with it. At each iteration during the Scout Bees Phase, at most one scout goes outside for searching
a new food source, the one with the highest stagnation count, but only if it is higher than limit.

A first termination condition is defined when the current iteration index k attains the maximum
number of iterations itermax. A second termination condition is defined when the diameter of the
current onlooker bees swarm becomes less than the required precision ε:

d(k) =

(
n∑

j=1

(dj(k))2
) 1

2

< ε, (11)

where the overall population diameter d(k) is calculated according to the Euclidian distance, and
the diameters on each dimension are calculated as the maximum absolute difference between two
position values on that dimension over all the onlooker bees in the population:

dj(k) = max
1≤i1,i2≤N,i1 6=i2

{|xoi1,j(k)− xoi2,j(k)|},

j = 1, 2, . . . , n.
(12)

A still further termination condition is defined when a flat region is detected. It can appear when
the objective function f(x) depends only on a subset of its decision variables, and it can be easily
checked as:

fo
max(k)− fo

min(k) < εf , (13)

with

fo
max(k) = max

1≤i1≤N
{fo

i1(k)}, (14)

6

Anescu; JAMCS, 25(5): 1-16, 2017; Article no.JAMCS.38065

fo
min(k) = min

1≤i2≤N
{fo

i2(k)}, (15)

where fe
i (k) = f(xe

i (k)), fo
i (k) = f(xo

i (k)), i = 1, . . . , N and εf is a very small value. If any of the
termination conditions is satisfied, then the iterative process is stopped (the loop is broken) and
the onlooker bee position which gives fo

min(k) (positioned in xo
min(k)) is taken into consideration

as the solution of the global optimization problem. Otherwise the iteration index is incremented to
k + 1 and the computation continues to the next iteration.

Inspired by PSO [13] the Gbest-guided ABC (GABC) method [5] improves the original ABC method
by taking advantage of the global best (gbest) solution’s information to guide the search of candidate
solutions in order to improve the exploitation. The equations (9) and (10) are modified as follows:

x′ei,j(k + 1) = xei,j(k) + rei,j × (xem,j(k)− xei,j(k))+

+ C × r1e
i,j × (xgbestj (k)− xei,j(k)),

(16)

x′oi,j′(k + 1) = xel,j′(k + 1) + roi,j′ × (xem′,j′(k + 1)− xel,j′(k + 1))+

+ C × r1o
i,j′ × (xgbestj′ (k)− xel,j′(k + 1)),

(17)

where xgbest(k) is the current global best food source position (as determined at iteration k), r1e
i,j

and r1o
i,j′ are pseudo-random numbers uniformly sampled from the [0, 1) real interval and C > 0

is a real positive constant. The global best food source is updated at each iteration. Experiments
conducted in [5] showed that the best results are obtained when taking C = 1.5.

The third ABC variant used in the testing section, Fast ABC (F-ABC) was published in [6], and
its design improvements present similarities with the design improvements introduced in 1P-ABC
variant, although F-ABC is still a two populations ABC variant.

5 1 Population ABC Optimization

In order to improve the performance of the ABC optimization algorithm in both speed and success
rate, a set of modifications were designed, implemented and tested, the new resulting optimization
algorithm being named 1 Population ABC (1P-ABC), based on the main and foremost modification,
namely the use of only one population of bees, the employed bees. The scout bees are still used,
but in reality they cannot be considered as a separate population from the employed bees, as an
employed bee can only temporarily become a scout bee when its position is reset.

The main steps of the 1P-ABC become:

Step 1 : Initialization;
while (true)

Step 2 : Check termination conditions, break the
loop if any applies;

Step 3 : Employed Bees Phase;
Step 4 : Scout Bees Phase;

end while

The initialization step is similar to the one of the original ABC method, but it takes place for only
one population (for simplification, the notation with e superscript was eliminated):

xi,j = lj + rndi,j × (uj − lj), i = 1, . . . , N, j = 1, . . . , n. (18)

7

Anescu; JAMCS, 25(5): 1-16, 2017; Article no.JAMCS.38065

The termination conditions are similar to the ones of the original ABC method presented in the
previous section, but this time they are applied to the population of employed bees.

In the Employed Bees Phase, the current bee with index i is interacting with another bee with index
m now determined by applying a binary tournament selection mechanism, i.e. first two different
employed bees with indices m1 and m2 (m1 6= m2 6= i) are randomly selected, and then the best one
of the two is selected as the candidate position: if f(xm1) < f(xm1) then m := m1, else m := m2.
The new candidate position equation becomes:

x′i,j(k + 1) = xi,j(k) + ri,j × (xm,j(k)− xi,j(k)), (19)

with the numbers ri,j now uniformly pseudo-randomly sampled from the [−0.5, 1.5) real interval.
Also, in order to make the algorithm able to cope with highly non-linear objective functions, there
is a need to give chances of change to all the dimensions. Therefore, a weight wi(k) is associated
to each food source, and it is calculated using the formula:

wi(k) =
f(xi(k))− fmin(k)

fmax(k)− fmin(k)
, i = 1, . . . , N, (20)

where

fmin(k) = min
1≤i≤N

f(xi(k)) = f(xmin(k)), fmax(k) = max
1≤i≤N

f(xi(k)). (21)

For constrained optimization problems, in the context of applying the Deb’s Rules for handling the
constraints (as presented in Section 3), the weights cannot be defined as in (20), since the objective
function’s values are considered for comparisons only in the feasible regions. Therefore the weights
for constrained optimization problems are defined as:

wi(k) =
i

N
, i = 1, . . . , N, (22)

with the assumption that the food sources are sorted in the increasing order (from the best to the
worst), and the sorting is done according to the Deb’s Rules, in this way the index i also being the
rank of the food source. As defined above, the weights are in the [0, 1] real interval and therefore
it is safe to use them as limit probabilities. The candidate food source position is determined by
applying equation (19), like in the original ABC algorithm, on one dimension uniformly pseudo-
randomly sampled between 1 and n, but unlike in the original ABC algorithm, equation (19) is
also applied on the remaining dimensions, but only after successfully passing a simple probabilistic
test: rnd() < wi(k). Through the defined probabilistic test there is possible to induce a more
exploratory behavior at the food sources with large weights (poor fitness) and a more exploitative
behavior at the food sources with small weights (good fitness values, close to the best value). It was
found experimentally that the weights defined by (22) provide a better convergence (exploitation)
even for global optimization problems without constraints. Therefore, as a final design decision, a
hybridization of the weights defined by (20) and (20) was adopted, with the definition (20) favored
at the beginning of the iterations for a better exploration, and the definition (22) favored at the
end of the iterations for a better convergence of the method. As a rule, for each bee the decision is
taken at iteration k + 1 based on a simple probabilistic test: if rnd() < [(k + 1)/itermax]1/2 then
definition (22) is adopted, else definition (20) is adopted.

For the Scout Bees Phase, it was found experimentally that the originally proposed formula for the
stagnation count parameter limit gives a too high value. Therefore there were experimentally tried
different values of limit as multiples of the search space dimension n. The experiments showed
that balanced results can be obtained from the efficiency perspective over the set of used test
optimization problems with limit = 4×n (see also [11], [6]), which was proposed as an appropriate
formula. It is admitted that some further research is necessary in order to confirm the proposed

8

Anescu; JAMCS, 25(5): 1-16, 2017; Article no.JAMCS.38065

formula by broadening the set of test optimization problems.

The second modification in the Scout Bees Phase proposed the determination of the reset position of
the scout bee in a uniformly pseudo-random manner inside a current hyper-sphere H(c(k+1), r(k+
1)), with the center in c(k + 1) and the radius r(k + 1) given by:

r(k + 1) = max
1≤i≤N

{‖c(k + 1)− xi(k + 1)‖2}, (23)

where c(k + 1) is the weighted mass center of the employed bees population:

c(k + 1) =

N∑
i=1

w′i(k + 1)xi(k + 1)

N∑
i=1

w′i(k + 1)

, (24)

with the weights w′i(k + 1) given by:

w′i(k + 1) = 1− wi(k + 1), i = 1, . . . , N, (25)

and the weights wi(k + 1) defined in (20).

Note: the design of the 1P-ABC algorithm allows approaching constrained optimization problems
without any changes, provided that a constrained optimization methodology based on Deb’s rules
is employed.

6 Testing and Results

The purpose of the testing phase was to prove that the new proposed 1P-ABC algorithm is
competitive when compared to other known ABC variants. For comparison three ABC variants
were chosen: the original ABC algorithm, the improved GABC variant [5], and another improved
F-ABC variant ([6]).

In order to conduct the tests, an appropriate testing methodology was devised (see also [11], [14],
[6]). When the quality of an optimization method is estimated, two (often conflicting) characteristics
are of interest: a small number of function evaluations (NFE) and a high success rate (SR). For test
functions with known solutions the success can be simply defined as the achievement of an absolute
or relative precision tolerance to the known solutions. By fixing the tolerance and choosing itermax

high enough so that it is never attained before the tolerance is attained, it is easy to measure the
SR and average NFE to success (µ(NFE)). There are other testing methodologies frequently
applied in practice, like for example based on fixing NFE and reporting the best, the worst and the
median results obtained after a number o runs, but in the author’s opinion such methodologies are
not recognizing the importance of success rate and are concealing it from reporting. A very efficient
method (with a fast convergence), but having a low success rate, cannot be considered better than
a less efficient method, but having a high success rate, because the former may need many repeated
runs in order to obtain the correct result, while the later may get the correct result in less runs,
which can entail a larger overall NFE (obtaining by summation) for the former compared to the
later.

9

Anescu; JAMCS, 25(5): 1-16, 2017; Article no.JAMCS.38065

In the testing phase of a meta-heuristic optimization method, it is important to select an appropriate
testbed of diverse test functions for comparison purposes. Depending on the quality of the selected
testbed, the results can somewhat be extrapolated to the general set of optimization problems,
although due to the difficulty of the general global optimization problem (an NP-complete problem),
there is still no guarantee that the proposed method can successfully approach any mathematical
model. A testbed of 11 known scalable multimodal optimization functions (10 unconstrained and 1
constrained, see [15], [16], [17], [18], [19]) was for the tests run on the four compared optimization
methods. The analytical expressions of the test functions in the used testbed are given below
respecting the CGOP model.

• Rastrigin’s Function - highly multimodal with the locations of the minima regularly distributed,
global minimum value of 0 at (0, 0, . . . , 0):

f1(x) = 10n+

n∑
j=1

[x2j − 10 cos(2πxj)],

− 5.12 ≤ xj ≤ 5.12, j = 1, . . . , n.

(26)

• Alpine 1 Function - highly multimodal, global minimum value of 0 at (0, 0, . . . , 0):

f2(x) =

n∑
j=1

(|xj sin(xj)|+ 0.1|xj |),

− 10 ≤ xj ≤ 10, j = 1, . . . , n.

(27)

• Alpine 2 Function - highly multimodal, global maximum value of 2.808n at (7.917, 7.917, . . . ,
7.917): (30476.9172 for n = 10, 928842479.5682 for n = 20 and 28308255304346.7530 for
n = 30):

f3(x) =

n∏
j=1

√
xj sin(xj),

0 ≤ xj ≤ 10, j = 1, . . . , n.

(28)

• Griewangk’s Function - many widespread local minima regularly distributed with the global
minimum of 0 at (0, 0, . . . , 0):

f4(x) =
1

4000

n∑
j=1

x2j −
n∏

j=1

cos

(
xj√
j

)
+ 1,

− 100 ≤ xj ≤ 100, j = 1, . . . , n.

(29)

• Schwefel’s Function - many widespread local minima distributed at distance from the origin
with the global minimum of −418.9829 at (420.9687, 420.9687, . . . , 420.9687):

f5(x) = − 1

n

n∑
j=1

xj sin
(√
|xj |
)
,

− 500 ≤ xj ≤ 500, j = 1, . . . , n.

(30)

10

Anescu; JAMCS, 25(5): 1-16, 2017; Article no.JAMCS.38065

• Paviani’s Function - many local minima with the global minimum of−45.77847 at (9.351, 9.351,
. . . , 9.351) for n = 10, −9549.89061 at (9.9658, 9.9658, . . . , 9.9658) for n = 20, and respectively
−997867.45525 at (9.9993, 9.9993, . . . , 9.9993) for n = 30:

f6(x) =

n−1∑
j=1

[
log(xj − 2)2 + log(10− xj)2

]
−

(
n−1∏
j=1

xj

)0.2

,

2.0001 ≤ xj ≤ 9.9999, j = 1, . . . , n.

(31)

• Expanded Schaffer’s Function - many local minima with the global minimum of 0 at
(0, 0, . . . , 0):

f7(x) = g(x1, x2) + g(x2, x3) + . . .+ g(xn, x1),

− 10 ≤ xj ≤ 10, j = 1, . . . , n,
(32)

where

g(x, y) = 0.5 +
sin2(

√
x2 + y2)− 0.5

1 + 0.001(x2 + y2)2
. (33)

• Michaelwitz’s Function - highly multimodal with global minimum of: −0.966015 for n = 10,
−0.9818507 for n = 20, and respectively −0.9876481 for n = 30:

f8(x) = − 1

n

n∑
j=1

sin(xj) sin2m

(
jx2j
π

)
,

m = 10, 0 ≤ xj ≤ π, j = 1, . . . , n.

(34)

• Ackley’s Function - highly multimodal with global minimum of 0 at (0, 0, . . . , 0):

f9(x) = 20 + e− 20e

−0.2

 1
n

n∑
j=1

x2j

1/2

− e

1
n

n∑
j=1

cos(2πxj)

,

− 30 ≤ xj ≤ 30, j = 1, . . . , n.

(35)

• Non-Linear Function - highly multimodal, many global minima of 0:

f10(x) = n− 1 +

n−1∑
j=1

cos

(
|xj+1 − xj |

|xj + xj+1|+ 10−10

)
,

− 10 ≤ xj ≤ 10, j = 1, . . . , n.

(36)

• Keane’s Bump Function - highly multimodal open constrained problem, best known global
minima for different search space dimensions were used during testing (−0.747310362 for
n = 10, −0.803619104 for n = 20, and respectively −0.821884162 for n = 30):

11

Anescu; JAMCS, 25(5): 1-16, 2017; Article no.JAMCS.38065

f11(x) = −

∣∣∣∣∣
{

n∑
j=1

cos(xj)
4 − 2

n∏
j=1

cos(xj)
2

}
/

(
n∑

j=1

jx2j

)0.5∣∣∣∣∣ ,
g1(x) = 0.75−

n∏
j=1

xj ≤ 0.0,

g2(x) =

n∑
j=1

xj − 7.5n ≤ 0.0,

0.0 ≤ xj ≤ 10.0, j = 1, . . . , n.

(37)

Note that the global minimum −0.821884162 for n = 30 was found during testing and it is
an improvement over −0.818056222 reported in [19].

All the test functions with global optima in origin were shifted, considering that the origin is favored
by ABC type methods and this peculiarity could interfere in the results. In order to preserve the
total number of particles when different ABC variants were compared the number of employed bees
in the 1P-ABC variant was the double (2×N) of the number of employed bees in the other ABC
variants (N). In the tables the star sign (∗) in the first column signifies that the test was repeated
with increased tolerance (tolerance = 1%), while the double star sign (∗∗) signifies that a different
value of the N parameter was used (it applied only to f11 and it was N = 200 for n = 10, 20 and
N = 400 for n = 30). N/A in the tables, depending on the context, means Not Available when a
method already gave good results for a more restrictive tolerance and in this case it was not further
tested for a less restrictive tolerance, or Not Applicable when the success rate of a method is 0% for
the tested tolerance and therefore µ(NFE) could not be reported.

Table 1 presents the comparative testing results obtained for n = 10. From the success rate
perspective, it can be observed that 1P-ABC and F-ABC obtained the maximum percentage for
all the test functions, while ABC was not able to solve f11 and showed incipient problems with
f3, f4 and f10, and GABC showed incipient problems with f3 and f11. Nevertheless, both ABC
and GABC provided excellent results for the test functions they were able to solve. From the
efficiency perspective, 1P-ABC surpassed all the other ABC variants for all the test functions with
the exception of f1, for which GABC was faster.

Table 2 presents the comparative testing results obtained for n = 20. 1P-ABC and F-ABC were the
only methods able to solve all the test problems for the given testing conditions. From the success
rate perspective 1P-ABC showed incipient difficulties in solving f3, f8, f10 and f11. F-ABC showed
incipient difficulties in solving f1, f3, f8, f10 and f11. ABC was not able to solve f10 and f11, while
the success rates for f3 and f7 deteriorated substantially. GABC showed similar behavior with
ABC for exactly the same functions. From the efficiency perspective, 1P-ABC again surpassed the
other ABC variants for all the test functions, with the exceptions of f1 and f8, for which GABC
was faster.

Table 3 presents the comparative testing results obtained for n = 30. Again 1P-ABC and F-ABC
were the only methods capable to solve all the test problems for the given testing conditions. From
the success rate perspective 1P-ABC showed deterioration for f3, f8, f10 and f11. F-ABC showed
deterioration for f1, f3, f7, f8, f10 and f11. ABC was not able to solve f3, f7, f10 and f11, but
provided the maximum percentage for the remaining functions it was able to solve. GABC showed
similar behavior with ABC for exactly the same functions. From the efficiency perspective, 1P-ABC
again surpassed the other ABC variants for all the test functions with the exceptions of f1 and f8,
for which GABC was faster.

Note that 1P-ABC and F-ABC were the ABC variants able to solve all the test problems for all
the tested search space dimensions.

12

Anescu; JAMCS, 25(5): 1-16, 2017; Article no.JAMCS.38065

Table 1. 1P-ABC versus F-ABC, ABC and GABC, n = 10, runs = 100,

tolerance = 0.1%, N = 100

Fn SR% µ(NFE) SR% µ(NFE) SR% µ(NFE) SR% µ(NFE)
1P-ABC 1P-ABC F-ABC F-ABC ABC ABC GABC GABC

f1 100% 52160 100% 61940 100% 93774 100% 50350
f2 100% 22616 100% 24704 100% 60558 100% 33708
f3 100% 29166 100% 40476 84% 187084 99% 208131
f4 100% 31701 100% 38662 98% 90477 100% 64486
f5 100% 20796 100% 26541 100% 63672 100% 26188
f6 100% 10560 100% 11660 100% 34176 100% 14600
f7 100% 82601 100% 110778 100% 258828 100% 103454
f8 100% 46621 100% 54672 100% 98842 100% 61244
f9 100% 24708 100% 27976 100% 96998 100% 48602
f10 100% 152040 100% 220334 99% 645614 100% 566790
f∗∗11 100% 43554 100% 53621 0% N/A 89% 232420

Table 2. 1P-ABC versus F-ABC, ABC and GABC, n = 20, runs = 100,

tolerance = 0.1%, N = 100

Fn SR% µ(NFE) SR% µ(NFE) SR% µ(NFE) SR% µ(NFE)
1P-ABC 1P-ABC F-ABC F-ABC ABC ABC GABC GABC

f1 100% 136206 99% 164930 100% 250486 100% 129496
f2 100% 36208 100% 40668 100% 144244 100% 83410
f3 99% 73547 84% 105366 1% 125600 2% 918816
f4 100% 37620 100% 44094 100% 130602 100% 80360
f5 100% 43232 100% 58314 100% 228518 100% 71392
f6 100% 19988 100% 22754 100% 97352 100% 43862
f7 100% 250411 100% 507039 18% 1232733 26% 872115
f8 89% 344840 66% 360543 100% 446884 100% 280196
f9 100% 40288 100% 45974 100% 215866 100% 111490
f10 71% 631978 66% 897662 0% N/A 0% N/A
f∗10 N/A N/A N/A N/A 33% 1532945 78% 1232751
f∗∗11 70% 66109 94% 254994 0% N/A 0% N/A

Table 3. 1P-ABC versus F-ABC, ABC and GABC, n = 30, runs = 100,

tolerance = 0.1%, N = 100

Fn SR% µ(NFE) SR% µ(NFE) SR% µ(NFE) SR% µ(NFE)
1P-ABC 1P-ABC F-ABC F-ABC ABC ABC GABC GABC

f1 100% 236614 91% 289129 100% 436558 100% 218932
f2 100% 48200 100% 54936 100% 235984 100% 137964
f3 90% 137662 29% 180861 0% N/A 0% N/A
f4 100% 48978 100% 55412 100% 195762 100% 119122
f5 100% 66907 100% 91539 100% 473928 100% 124644
f6 100% 33230 100% 37790 100% 120422 100% 93148
f7 100% 429726 94% 1153975 0% N/A 0% N/A
f8 66% 982031 12% 1131014 100% 920902 100% 595538
f9 100% 53744 100% 61606 100% 339068 100% 177614
f10 18% 1151994 20% 1866919 0% N/A 0% N/A
f∗10 N/A N/A N/A N/A 0% N/A 6% 2579333
f∗∗11 27% 83072 42% 403339 0% N/A 0% N/A

13

Anescu; JAMCS, 25(5): 1-16, 2017; Article no.JAMCS.38065

7 Conclusions

The paper proposed a novel global optimization method, 1P-ABC, as a variant of the known ABC
method, designed to eliminate some of the drawbacks experienced by ABC mainly related to a
poor exploitation capability (which makes the algorithm relatively slow) and poor success rates
when approaching optimization problems with a highly non-regular arrangement of the modes.
The proposed algorithm was described in details so that it can be easily implemented in any
programming language suitable for scientific computing applications. The novel 1P-ABC algorithm
was tested against three variants of ABC, the original one and other two variants, GABC and F-
ABC. The testing was conducted by employing an original testing methodology which emphasizes
the importance of both success rate and efficiency. There was also considered of interest the study
of the performance degradation with the increase of the search space dimension. A set of 11
scalable, multimodal, continuous optimization functions (10 unconstrained and 1 constrained) most
of them with known global solutions was constructed for testing purposes. The novel 1P-ABC
variant, together with F-ABC variant, were the only ones capable to solve all the test functions
for all the tested search space dimensions in the given testing conditions, but with the increase of
the search space dimension it was observed that the methods ABC and GABC provided better
success rates for the test functions with a regular arrangement of the modes (the modes disposed
in a lattice structure parallel with the coordinate system), while the methods 1P-ABC and F-ABC
clearly provided better success rates for the test functions presenting non-regularly arranged modes.
From the efficiency perspective, 1P-ABC surpassed the other ABC variants for almost all the test
functions and search space dimensions. The final conclusion can be considered as a confirmation
of the No Free Lunch theorem for optimization functions (see [20]), stating that no algorithm can
outperform any other algorithm when performance is amortized over all optimization functions.
The 1P-ABC optimization method needs to be further more extensively tested on larger sets of
optimization problems and using various testing methodologies in order to confirm its effectiveness,
and many further improvements are needed in order to make it a competitive method. Further
research directions should consider hybridizing 1P-ABC with other ABC variants in order to
obtain an optimization method that provides consistency in results over more extended classes of
test optimization functions. Also 1P-ABC, or improved variants of it, will be used in approaching
multimodal optimization problems that arise in Machine Learning applications.

Competing Interests

Author has declared that no competing interests exist.

References

[1] Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical
Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department;
2005.

[2] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function
optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization.
2007;33:459-471.

[3] Karaboga D, Gorkemli B, Ozturk C, Karaboga N. A comprehensive survey: Artificial bee
colony (ABC) algorithm and applications. Artificial Intelligence Review. 2014;42:21-57.

[4] Bolaji AL, Khader AT, Al-Betar MA, Awadallah MA. Artificial bee colony algorithm,
its variants and applications: A survey. Journal of Theoretical & Applied Information
Technology. 2013;47:434-459.

14

Anescu; JAMCS, 25(5): 1-16, 2017; Article no.JAMCS.38065

[5] Zhu G, Kwong S. Gbest-guided artificial bee colony algorithm for numerical function
optimization. Applied Mathematics and Computation. 2010;217:3166-3173.

[6] Anescu G. A fast artificial bee colony algorithm variant for continuous global optimization
problems. U.P.B. Sci. Bull., Series C. 2017;79(1):83-98.

[7] Pintér JD. Global Optimization: Software, Test Problems, and Applications, in: Pardalos,
P.M. and Romeijn, H.F. (Eds.), Handbook of Global Optimization, Volume 2, Ch. 15, Kluwer
Academic Publishers, Dordrecht, Boston, London. 2002;515-569.

[8] Anescu G. Gradual and Cumulative Improvements to the Classical Differential Evolution
Scheme through Experiments, Annals of West University of Timisoara - Mathematics and
Computer Science. 2016;54(2):13-35.

[9] Deb K. An efficient constraint handling method for genetic algorithms. Computer Methods in
Applied Mechanics and Engineering. 2000;186:311-338.

[10] Mallipeddi R, Suganthan PN. Differential Evolution with Ensemble of Constraint Handling
Techniques for solving CEC 2010 Benchmark Problems. In: 2010 IEEE Congress on
Evolutionary Computation (CEC), Barcelona, Spain: July (2010) 18-23.

[11] Anescu G, Prisecaru I. NSC-PSO, a novel PSO variant without speeds and coefficients.
In: Proceedings of he 17th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing, SYNASC 2015, Timisoara, Romania: September 21-24, 2015;460-467.

[12] Whitley D. A Genetic Algorithm Tutorial. Statistics and Computing. 1994;4:65-85.

[13] Kennedy J, Eberhart RC. Particle Swarm Optimization In: Proceedings of IEEE International
Conference on Neural Networks, Piscataway, NJ, (1995) 1942-1948.

[14] Anescu G. An Imperialistic Strategy Approach to Continuous Global Optimization
Problem. In: Proceedings of the 16th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, SYNASC 2014, Timisoara, Romania: September 22–25,
2014;549-556.

[15] Michaelwicz Z. Genetic Algorithms + Data structures = Evolution Programs. Springer,
Berlin; 1994.

[16] Momin J, Yang XS. A literature survey of benchmark functions for global optimization
problems. Int. Journal of Mathematical Modelling and Numerical Optimisation.
2013;4:150-194.

[17] Molga M, Smutnicki C. Test functions for optimization needs; 2005.

Available: http://www.robertmarks.org/Classes/ENGR5358/Papers/functions.pdf
(Accessed Date:03/11/17).

[18] Keane AJ. Experiences with optimizers in structural design. In: Proceedings of the 1st Conf.
on Adaptive Computing in Engineering Design and Control, University of Plymouth, UK.
1994;14-27.

15

Anescu; JAMCS, 25(5): 1-16, 2017; Article no.JAMCS.38065

[19] Mishra SK. Minimization of Keane’s Bump Function by the Repulsive Particle Swarm and
the Differential Evolution Methods; 2007.
Available: http://mpra.ub.uni-muenchen.de/3098/
(Accessed Date:03/11/17).

[20] Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Transactions on
Evolutionary Computation. 1997;1:67-82.

——–
c©2017 Anescu; This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser
address bar)
http://sciencedomain.org/review-history/22263

16

http://creativecommons.org/licenses/by/4.0

	Introduction
	 Continuous Global Optimization Problem
	 Deb's Rules for Constraints Handling
	 Artificial Bee Colony Optimization
	 1 Population ABC Optimization
	 Testing and Results
	Conclusions

