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ABSTRACT 
 

In the evolving realm of autonomous vehicle navigation, the integration of fuzzy logic and neural 
networks presents a formidable challenge, particularly in the context of real-time, on-the-fly neural 
network training. This paper addresses the gap in dynamic and adaptable training methods 
necessary for navigating unpredictable environments with limited computational resources. The 
primary objective of our study is to empirically validate a hybrid training approach that combines 
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fuzzy logic with back-propagation learning algorithms, aiming to optimize neural network 
performance under hardware constraints. Our methodology leverages a fuzzy logic trainer to 
provide initial training sets dynamically, which guide the neural network in adjusting its weights in 
real time, thus facilitating adaptive learning during navigation tasks. The findings reveal that this 
integrated approach not only enhances the learning efficiency of neural networks but also 
significantly improves navigation accuracy in real-time scenarios. These advancements contribute 
to the field by demonstrating the feasibility of deploying more adaptable and robust autonomous 
navigation systems, potentially expanding their application in more diverse and challenging 
environments. 
 

 

Keywords: Autonomous vehicle; navigation; fuzzy logic; neural network; optimization. 
 

1. INTRODUCTION  
 

Crafting an autonomous vehicle apt for 
navigating uncertain terrains remains an intricate 
puzzle, laden with multifaceted challenges such 
as adept path planning and nimble obstacle 
evasion. Given the intricate dynamics governing 
vehicle control juxtaposed with the unpredictable 
nature of uncharted territories, many theoretical 
navigation strategies find their application 
restrained. The sphere of intelligent solutions has 
witnessed the proliferation of methods 
harnessing the prowess of fuzzy logic and neural 
networks, targeting the conundrums of 
autonomous exploration. 
 

The research problem at the heart of this study is 
the effective integration of fuzzy logic with neural 
network training in real-time scenarios for 
autonomous vehicle navigation. Despite 
significant advancements in both fields, 
autonomous systems still struggle with dynamic 
and unpredictable environments when limited 
computational resources are available. This 
paper aims to address these challenges by 
proposing a hybrid training methodology that 
enhances both the adaptability and efficiency of 
neural networks in real-world navigation tasks. 
 

Systems rooted in fuzzy logic, as evidenced in 
references [1-8], employ a semantically rich rule 
base epitomized by IF {antecedent} THEN 
{consequent} rule structures. These guide 
vehicle actions steered by fuzzified sensory 
interpretations. Remarkably, such systems 
circumvent the intricate nuances of 
comprehensive vehicle dynamic modeling and 
yet endow control mechanisms resilient to 
sensory discrepancies. However, the static 
essence of their fuzzy rule architecture curtails 
adaptability, rendering them less equipped to 
counter unforeseen environmental challenges. 
 

In juxtaposition, neural network-centric methods 
dismantle this adaptability barricade, empowered 

by their intrinsic learning algorithms. The 
conceptual synthesis of fuzzy-neural networks, 
as illustrated in studies [9-16], amalgamates the 
merits of both paradigms, laying the groundwork 
for a potentially more robust autonomous 
navigation apparatus. Yet, even as fuzzy-neural 
networks emanate promise as a beacon for 
navigating the unknown, tangible impediments 
hinder their ubiquitous embrace in real-world 
applications. 
 
The universe of neural networks often grapples 
with the twin challenges of curating pertinent, 
actionable training datasets and deploying real-
time learning algorithms. While a diverse array of 
learning algorithms, as showcased in references 
[17-20], [21-23], and [24-27], have been 
introduced to train neural networks, their 
application is constrained, especially in scenarios 
demanding rapid vehicular responses to 
unforeseen obstacles with scant online training 
data. Independent of the algorithmic blueprint, 
the herculean task of sculpting an actionable 
training dataset remains. It is an arduous 
endeavor for specialists to create the 
multitudinous input-output data vectors crucial for 
training the network. While there are 
methodologies, as highlighted in [28-30] and  
[30-33], to curate impactful training data, their 
generalizability across varied scenarios remains 
challenging. 
 
A unique remedy to this training data conundrum 
emerges in the form of a fuzzy logic trainer that 
offers the requisite data for training the vehicle's 
neural network, as illustrated in reference [34-
35]. Herein, a vehicle steered by a neural 
network, initialized with randomized weights, is 
maneuvered within a racetrack. Concurrently, the 
fuzzy logic trainer churns out data, instructing the 
neural network via the classic back-propagation 
learning algorithm. This dynamic on-the-go 
training, with ideal outputs emanating from the 
fuzzy logic trainer, fine-tunes the neural network 
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to closely mirror the performance of the trainer. 
The slight mathematical discrepancies between 
the fuzzy logic trainer and the neural network 
metamorphose into unique, and often superior, 
navigational performances by the latter. 
Additionally, the inherent noise in the training 
dataset potentially wards off the back-
propagation algorithm from stagnating in local 
minima. Thus, crafting the perfect training 
dataset transforms into the art of designing the 
apt racetrack. 
 

This study specifically addresses the challenge 
of real-time neural network training in 
autonomous vehicle navigation. Despite the 
advancements in fuzzy logic and neural network 
technologies, the integration of these systems in 
dynamic and uncharted environments remains a 
significant gap. Our research aims to bridge this 
by optimizing neural network training 
effectiveness and efficiency on limited hardware 
setups, a common constraint in practical 
autonomous navigation systems. 
 

The primary objectives of this study are twofold: 
First, to empirically validate the feasibility of real-
time neural network training for autonomous 
vehicle navigation using fuzzy logic. Second, to 
determine the optimal neural network 
configuration that balances training speed and 
navigation accuracy in real-time scenarios. 
 

This paper dives into an experimental exploration 
of this innovative training paradigm. At its core is 
a robotic vehicle, dictated by an untrained neural 
network, governed by a fuzzy logic trainer. The 
vehicle's steering and speed are orchestrated by 
a feed-forward neural network, sporting a 
singular hidden layer. This study sets out with 
dual objectives: firstly, to empirically validate the 
feasibility of real-time neural network training for 
autonomous navigation, and secondly, to 
pinpoint the optimal neuron count for the hidden 
layer tailored to the experimental design. The 
neuron selection mechanism, driven more by 
empirical observations than theoretical musings, 
possesses a versatility extending beyond mere 
autonomous navigation. Furthermore, the paper 
sheds light on the implications of adding more 
neurons to the hidden layer concerning training 
efficacy and driving velocity. This real-time 
training blueprint, proven effective on this 
experimental platform, anticipates scalability to 
accommodate evolving system complexities. 
Thus, the insights garnered are poised to be 
relevant to real-time training ecosystems 
encompassing diverse neural network 
architectures and hardware paradigms. 

Autonomous vehicle navigation remains a 
formidable challenge in the field of robotics, 
particularly in real-time adaptive training of neural 
networks within dynamic and unpredictable 
environments. The primary aim of this study is to 
address these challenges by developing a hybrid 
system that integrates fuzzy logic with neural 
networks to optimize real-time training on 
constrained hardware platforms. This research is 
significant as it explores a novel approach to 
enhance the learning capabilities of autonomous 
vehicles, which is crucial for navigating complex 
environments. By achieving this, we contribute to 
the broader goal of deploying autonomous 
vehicles in more varied and unstructured settings 
than currently possible. 
 
Having established the context and significance 
of integrating fuzzy logic with neural network 
training for autonomous navigation, we now 
explore how these technologies have been 
applied historically, highlighting the gap our study 
aims to fill. 

 

2. BRIEF PREVIOUS WORK DISCUSSION 
 

Introduction: In recent years, the realms of 
autonomous vehicle navigation have witnessed a 
resurgence in interest, owing to technological 
advancements and the quest for more efficient, 
real-time solutions. Central to this discourse is 
the integration of neural networks and fuzzy logic 
systems, both robust computational models, 
designed to mimic human thinking and decision-
making. 
 

Neural Networks in Autonomous Navigation: 
Neural networks, specifically feed-forward neural 
networks, have been a mainstay in the field of 
machine learning and have demonstrated their 
prowess in numerous applications, including 
autonomous navigation. Their architecture, which 
mirrors the human neural structure, allows them 
to recognize patterns, learn from data, and make 
decisions. While their efficacy is recognized, the 
key challenge lies in training these networks 
efficiently to respond in real-time scenarios, 
especially when the environment is 
unpredictable, such as uncharted racetracks. 
 

Fuzzy Logic Systems: Fuzzy logic systems 
operate on the principle of handling degrees of 
uncertainty, rather than absolute truths. This 
characteristic makes them particularly suited for 
complex decision-making tasks where 
conventional logic systems might falter. In 
autonomous navigation, fuzzy logic controllers 
(FLCs) aid in translating these degrees of 
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uncertainties into actionable control decisions. 
While FLCs have been successfully deployed in 
several autonomous systems, their potential as 
trainers for neural networks has been an area of 
latent exploration. 
 
Real-time Training Challenges: Real-time 
training remains a coveted milestone for 
autonomous vehicle systems. The challenges 
include but are not limited to computational 
limitations, ensuring initial feasibility, optimizing 
error rates, and scaling neural networks to align 
with specific tasks. Prior research primarily 
revolved around optimizing post-training 
performance, with limited emphasis on the 
training phase itself, especially in real-world, 
dynamic environments. 
 
Impact of Neural Network Size: The 
relationship between the size of a neural network 
and its performance has been a recurrent theme. 
Previous studies have underscored that 
increasing the number of neurons could lead to 
enhanced performance. However, the challenge 
lies in balancing performance enhancements 
against computational costs, especially in 
applications demanding real-time responses. 
 
The Uniqueness and Novelty of the Current 
Study: The reviewed study presents a distinct 
approach by amalgamating fuzzy logic trainers 
with neural networks in the context of real-time 
autonomous vehicle navigation. While individual 
merits of neural networks and fuzzy logic have 
been extolled in the literature, their synergistic 
application is relatively nascent. 
 
The root of the study's novelty lies in its 
methodology: 
 

• It showcases the efficacy of a minimalistic 
fuzzy logic implementation in training 
neural networks, even under significant 
hardware constraints. 

• Instead of a traditional approach that 
emphasizes reducing final error rates, this 
study shifts its focus on the feasibility of 
initial training. 

• The establishment of a comprehensive 
criterion for determining the optimal size of 
the neural network, factoring in real-world 
challenges and constraints, offers a more 
pragmatic approach than purely theoretical 
models. 

 
Furthermore, the study's emphasis on real-world, 
dynamic environments, such as navigating 

unknown racetracks, offers valuable insights into 
the application-driven aspects of neural network 
optimization, as opposed to simulations that 
might not always replicate real-world intricacies. 
 
In essence, while the individual components 
(neural networks, fuzzy logic, autonomous 
navigation) have been discussed extensively in 
literature, the present study's unique 
amalgamation and its approach towards real-
time, practical application-driven optimization 
signify its novelty in the domain of autonomous 
navigation research. 
 
Our review of existing literature reveals a 
fragmented landscape where studies focus either 
on fuzzy logic or neural networks in isolation. 
This paper bridges this gap by synthesizing 
insights from both domains, demonstrating how 
integrated approaches can surpass the 
limitations of singular systems. For instance, 
while neural networks offer adaptability through 
learning, they require extensive data and 
computational power. Fuzzy logic, conversely, 
provides robust decision-making with less data 
but lacks adaptability. By combining these 
approaches, our study seeks to harness the 
strengths of both, facilitating a more nuanced 
understanding and application in autonomous 
navigation. 
 
The literature review underscores the need for 
innovative approaches that combine the robust 
decision-making capabilities of fuzzy logic with 
the adaptive learning of neural networks. This 
need brings us to the methodological framework 
of our study. 

 

3. EXPERIMENTAL PLATFORM 
 
In this section, we detail our integrated 
methodology, which harnesses both fuzzy logic 
and neural networks to train autonomous 
vehicles in real-time, a method poised to 
overcome the limitations discussed in the 
previous sections. 
 
A state-of-the-art robot vehicle was engineered 
for adept navigation on indoor racetracks. 
Equipped with a premier Hokuyo URG-04LX 
Lidar, it channeled precise sensory data to a pair 
of Atmega1280-based microcontrollers. This duo 
was meticulously connected: one to a singular 
steering servo motor and the other to a 
Sabretooth 2x10 motor controller, orchestrating 
the vehicle's movements. Both the fuzzy logic 
and neural network blueprints were sculpted with 
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a prime focus on real-time autonomous 
navigation, even under the computational 
constraints levied by the 8-bit microcontrollers. 
 

The implementation of the fuzzy logic trainer and 
neural networks spanned the twin 
microcontrollers. The first microcontroller served 
as the nexus to the sensor, ingeniously utilizing 
the fuzzy logic trainer and neural networks to 
craft control instructions for both steering angle 
and velocity. These directives, originated from 
the primary microcontroller, were relayed to its 
counterpart, which seamlessly interfaced with the 
steering servo motor and the velocity motor. This 
bifurcated microcontroller architecture was 
strategized to foster scalability, especially with 
potential integrations of additional sensors, 
thanks to a surplus of processing prowess and 
I/O ports. The confluence of the fuzzy logic 
trainer and neural networks on a singular 
microcontroller was predominantly for 
streamlined data transmission, with negligible 
performance variations had the neural network 
resided on the secondary microcontroller. 
 

Our methodology encompasses a unique 
integration of fuzzy logic with neural network 
training through back-propagation. The fuzzy 
logic trainer provides initial training data 
dynamically, guiding the neural network in 
adjusting its weights in real-time. This setup 
leverages the strengths of fuzzy logic's handling 
of uncertainties and the adaptive learning 
capabilities of neural networks. The core 
innovation lies in using fuzzy logic not only for 
control but also as a dynamic trainer, which 
constantly adapts the neural network during 
navigation tasks. 
 

The crux of the platform's performance challenge 
pivoted around its reflexes. Although the Lidar 
consistently delivered data at a brisk rate of 10 
Hz, the vehicle's aggregate response time, 
factoring in computation durations, lingered 
between 5-7 Hz. To truly embody real-time 
navigation, it was imperative for the vehicle to 
discern and react to impediments at a pace 
congruent to its velocity. Thus, navigational 
speeds in the ensuing experiments were 
deliberately tapered to guarantee the vehicle's 
astute obstacle detection and reaction capability. 
Amplifying the response rate would inevitably 
have propelled both the average cruising speed 
and the pace during the neural network's training 
phase. 
 

Our methodology integrates fuzzy logic with a 
neural network via a novel training protocol that 

uses fuzzy logic outputs to dynamically adjust the 
neural network's weights during real-time 
operation. This setup allows the system to adapt 
swiftly to changes in the environment, enhancing 
navigation accuracy. The dual-layered 
approach—initial fuzzy logic inference followed 
by neural adaptation through back-propagation—
ensures that our system not only learns from its 
immediate context but also adjusts its learning 
process based on ongoing performance 
feedback. 
 

4. FUZZY LOGIC TRAINER 
 

The underpinning navigation principle for our 
fuzzy logic trainer draws inspiration from the 
electrostatic potential fields-based navigation 
paradigm. This method analogizes both the 
vehicle and proximate obstacles as entities 
radiating an electrostatic charge. The direction 
indicative of the vehicle's movement is illustrated 
by the negative gradient of this synthesized 
electrostatic field. 
 

In a parallel vein, our fuzzy logic trainer discerns 
distinct forces which aid in sculpting the terrain's 
profile. Comprising of an assembly of four forces, 
these energies serve as the precursor to the 
fuzzy logic speed formulation, which 
subsequently, after computing a singular 
cumulative force, lays the foundation for the 
steering angle calculation via fuzzy logic. The 
lifeline for the fuzzy logic trainer remains the 
sensory data, generously provided by the Lidar. 
This data-driven control tactic perfectly aligns 
with the prerequisites needed to adeptly train a 
neural network. Vehicle kinematics are also 
factored into the equation, mainly through the 
meticulous crafting of the fuzzy logic membership 
functions and its rule base. It's worth noting that 
while the augmentation of the fuzzy logic's 
navigational prowess can be achieved with more 
sensor integrations or advanced filtering, such 
enhancements might inflate computational 
demands and intricacy without unequivocally 
refining the neural network's training dynamics. 
 

Upon data receipt from the Lidar, a preliminary 
data treatment is executed. With its robust 180° 
field of vision, the Lidar bequeaths a dataset 
encompassing 256 points. Each point narrates 
the distance of identified obstacles, uniformly 
spaced at nearly 0.70° angular intervals. This 
dataset undergoes a refinement process to filter 
out anomalies, setting a floor value at 10 cm to 
sidestep exceedingly low readings and a ceiling 
at 70 cm to circumvent reacting to distant, non-
threatening obstacles. 
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The polished dataset then metamorphoses into 
four pivotal forces, each epitomizing the obstacle 
closeness within the dedicated 45° quadrants 
(namely Left-Extreme, Left, Right, and Right-
Extreme). The transformational process is 
orchestrated by aggregating the inverse of each 
culled data point confined within the designated 
quadrant. This process can be mathematically 
delineated by the following equation (Where di is 
a data point): 
 

 
 
Derived force values were meticulously refined 
by multiplying them with an empirically 
determined constant, epitomizing the Lidar's 
desired sensitivity to ambient structures. This 
normalization strategy constrained force values 
within a spectrum of 0 to 255. Interpreting these 
values, a score of 0 signifies a quadrant devoid 
of any proximal obstacles, whereas a score 
nearing 255 flags the proximity of a potential 
impediment. 
 
This systematic scaling streamlines subsequent 
development phases, particularly in crafting the 
fuzzy logic membership functions. These 
recalibrated force quadrants—Left-Extreme (LE), 
Left (L), Right (R), and Right-Extreme (RE)—
then become integral inputs for the fuzzy speed 
determinants. A subsequent analysis 
amalgamates these four distinct forces into a 
singular representative force, optimizing it for 
steering angle calculations via fuzzy logic. 
 
For both the neural network and the fuzzy logic 
speed computation, these four forces act as 
pivotal inputs. The further enhancement to 
determine the fuzzy logic's steering angle, 
however, demands the conversion of these 
quartet inputs into a solitary force, emblematic of 
the most dominant obstacle's trajectory. This 
synthesis is accomplished by gauging the 
differential between the Left-Side (LS) and Right-
Side (RS) forces. Crafting the LS force follows a 
distinct logical path, detailed as follows: 
 

 
 

In determining the driving force dynamics, α 
acted as a foundational threshold value. Crafting 
the Right-Side (RS) force mirrored the logic 

employed for the Left-Side (LS), albeit factoring 
in Right-Extreme (RE) and Right (R) forces in 
lieu of Left-Extreme (LE) and Left (L) forces. The 
consequential net force—derived from the 
differential between LS and RS forces—depicted 
a holistic view of obstacle distribution. A 
pronounced positive net force denoted a more 
significant obstacle alignment to the left, while its 
negative counterpart signified a rightward bias. 
 
The magnitude of this consolidated force 
encapsulated not only the obstacle's proximity 
but also its relative positioning vis-a-vis the 
vehicle—be it clearly oriented to one side or 
directly ahead. This nuanced force calibration 
originated from the data point averaging system 
and the chosen methodology of leveraging a 
single differential force over individualized force 
components. 
 
Transitioning to the fuzzy logic computations, 
exponential curves were harnessed for their 
membership functions, resonating more aptly 
with the nonlinear dynamics of the input forces 
than their triangular counterparts. For the crucial 
defuzzification stage, the centroid method was 
the method of choice, promising a more holistic 
coverage of the decision arena compared to 
alternate strategies, such as the mean of 
maximum approach. Yet, the computational heft 
of the centroid method posed a challenge for the 
experimental setup. To circumvent this while 
preserving efficiency and curtailing numerical 
aberrations, the method's precision was 
strategically curtailed, reflecting in the utilization 
of fewer points to represent the active functions 
within the computational sums. 
 

4.1 Fuzzy Steering Angle Controller 
 
The fuzzy rule base governing the steering angle 
can be comprehensively delineated as follows: 
 

 
 
The fuzzy variables in the input domain are 
depicted as NEGATIVE, ZERO, and POSITIVE, 
as illustrated in Fig. 1. Meanwhile, the output 
domain is defined by the fuzzy variables LEFT, 
STRAIGHT, and RIGHT, as visualized in Fig. 2. 
A significant streamlining of the rule architecture 
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was achieved by leveraging a solitary net force 
as the input, instead of the earlier quadruple 
force system. Experimentally, opting for the 
comprehensive four-force model to craft the 
fuzzy rule base didn't offer discernible 
enhancements in performance. Thus, the more 
focused, net force-driven approach was both 
efficient and equally effective. 
 

4.2 Fuzzy Speed Controller 
 

For the speed controller, the fuzzy rule base is 
detailed as follows: 
 

 
 

The input space is characterized by the fuzzy 
variables LOW and HIGH, as visually 
represented in Fig. 3. Conversely, the output 
spectrum incorporates the fuzzy variables FAST, 
MEDIUM, and SLOW, showcased in Fig. 4. The 
intersection of these fuzzy variables was 
achieved using the 'minimum' operator, serving 
as the fuzzy AND gate. 
 
The governing principle was straightforward: In 
denser obstacle scenarios, the vehicle should 
adopt a cautious pace, allowing ample time for 
responsive navigation—essentially, to decelerate 
during sharper turns or when faced with a 
multitude of obstructions. The vehicle's pace 
oscillated between predefined maximum and 
minimum thresholds, with the fuzzy speed metric 
determining the precise speed within these 
bounds. The framework of the fuzzy logic trainer 
was tailored for maneuvering tracks adorned with 
gentle curves and rudimentary barriers, leading 
to the creation of a harmonized fuzzy rule base. 

 
 

Fig. 1. Membership functions for steering 
angle input 

 
 

Fig. 2. Membership functions for steering 
angle output 

 
 

Fig. 3. Membership functions for velocity 
input 

 
 

Fig. 4. Membership functions for velocity 
output 
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While deriving the speed metric, both the 
vehicle's kinematics and its current velocity were 
intentionally omitted, introducing a layer of 
simplicity that scarcely affected the vehicle's 
functional efficacy. To counterbalance the 
vehicle's delayed reflexes, an upper cap on 
speed was set. Simultaneously, a raised floor 
limit on speed ensured effortless friction combat 
and speed sustenance during turns. Given these 
speed constraints, the scope for drastic speed 
alterations was minimal, hence even basic or not 
entirely optimal speed derivations didn't notably 
dent the performance. Such calibrated 
constraints, coupled with the concise set of fuzzy 
rules, empowered the vehicle to adeptly navigate 
the experimental tracks. 
 

5. NEURAL NETWORK 
 
Artificial Neural Networks (ANNs) serve as 
sophisticated non-linear statistical models adept 
at recognizing and emulating patterns bridging 
input and output data. Characterized by their 
dynamic learning capacity, ANNs discern 
patterns from a distinctive set of data points 
using learning algorithms. Conceptually, ANNs 
are visualized as interconnected neurons, 
facilitated by specific weights. These neurons, 
upon activation, produce an output ranging from 
0 to 1. Each neuron's input undergoes weight 
multiplication, and this matrix, influenced by the 
activation function, dictates the neuron's output. 
The essence of learning resides in the strategic 
adaptation of the neural network's weights. 
 
Optimization Protocol: To address the 
challenge of finding the most suitable neural 
network configuration for autonomous vehicle 

navigation, our methodology introduces a 
detailed optimization protocol. This protocol 
iteratively tests various neural network 
architectures, adjusting neuron counts and layer 
configurations to find the optimal balance 
between computational efficiency and navigation 
accuracy. The protocol considers specific 
problem contexts and hardware constraints, 
using a combination of simulation and real-time 
training on physical platforms to validate each 
configuration. 
 
For this project, a rudimentary two-layer feed-
forward neural network, depicted in Fig. 5, was 
entrusted with the autonomous vehicle's controls. 
This structure is amongst the most fundamental 
neural topologies fitting for autonomous 
navigation. 
 
The employed feed-forward neural network 
orchestrates the vehicle's operations. Receiving 
the four force metrics (LE, L, R, and RE) as 
inputs, it generates steering angle and speed as 
outputs. Comprising an output layer with two 
neurons and a concealed layer housing 1-10 
neurons, its simplicity is affirmed by the single 
hidden layer—adequate for mirroring the fuzzy 
logic trainer with unparalleled precision [36-41]. 
Neuron activations were governed by the 
sigmoid function, and their state discerned from 
the summative product of weights and inputs. 
The classic back-propagation technique, devoid 
of ancillary enhancements like momentum terms, 
undertook neural network training. After 
meticulous simulations, an optimal global 
learning rate bracketing 0.5-1.5 was chosen, 
settling on a definitive rate of 1 for all neural 
networks under test. 

 

 
 

Fig. 5. Representative feedforward neural network design for automotive navigation 
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The collaborative workflow between the fuzzy 
logic trainer and the neural network unfolded 
as follows: 

 
1. Data Intake: The quartet of force metrics 

was dispatched to both the neural network 
and the fuzzy logic trainer. Post 
normalization, these values bolstered the 
neural network's learning efficacy. 

2. Fuzzy Logic Determination: The fuzzy 
logic trainer, based on its input, deduced 
the ideal steering angle and speed, which 
subsequently trained the neural network. 

3. Forward Propagation: This algorithm 
ascertained the steering angle and speed 
as discerned by the neural network. 

4. Error Correction via Back-propagation: 
Outputs from both systems fed into the 
error back-propagation algorithm, adjusting 
the neural network's weights to curtail 
error: 

 

 
 

5. Iterative Refinement: Steps 3 and 4 were 
reiterated twice, culminating in three 
complete back-propagation cycles per 
input force set. This optimized iteration 
count struck a balance between resource 
efficiency and experimental performance. 
Superfluous iterations would only escalate 
processing demands without proportionate 
improvements in training. 

6. Final Deployment: The rectified neural 
network output steered the vehicle, 
ensuring its training bore relevance to its 
own performance rather than just relying 
on the fuzzy logic navigation. This 
synergistic method created a feedback 
mechanism: the fuzzy logic trainer 
educated the neural network based on 
vehicular surroundings and the divergence 
between the neural and fuzzy trainer 
outputs. The dynamic training approach 
was empirically validated as the 
navigational strategy evolved in real-time. 

 

6. RESULTS AND DISCUSSION 
 
Before delving into real-world racetrack 
experiments, a rigorous simulation was 
orchestrated to decipher the epochs—a lap 
around the racetrack, necessary for the neural 
network's convergence to the least possible error 

threshold. Additionally, these simulations gauged 
the error patterns manifested during the learning 
journey. The simulation framework encompassed 
10 distinct neural networks, each distinguished 
by the neuron count in its hidden layer. These 
were subjected to 256 unique training vectors. 
With each input force residing within the 0-255 
spectrum, the training vectors ensured 
comprehensive coverage of all potential input 
permutations. The mean squared error, 
calibrated against the fuzzy logic output and 
neural network output across epochs, was 
integral to both the simulated and experimental 
scenarios. This uniformity in metric ensured the 
simulations' efficacy as a precursor to real-world 
experiments. 
 
As depicted in Fig. 6, the simulation unveiled the 
neural networks' propensity to stabilize at a 
minimum error within a 10-epoch window. 
Interestingly, more expansive neural networks 
exhibited both reduced inception error and 
quicker convergence to minimized post-training 
error. Conversely, networks with fewer neurons 
in their hidden layer showcased expedited 
convergence rates. These findings established a 
foundational hypothesis: a cap of 10 epochs 
would suffice for training each neural network in 
subsequent experiments. 
 
Transitioning to real-world applications, two 
distinct racetracks were conceptualized to 
rigorously evaluate the neural networks' learning 
acumen. The first—a simplistic design 
showcased in Fig. 7, aimed to validate real-time 
neural network training feasibility. In contrast, the 
latter, a more intricate layout displayed in Fig. 8, 
was crafted to affirm the consistency of 
experimental outcomes across varied terrains. 
Each racetrack contributed approximately 200-
300 unique training vectors per epoch, mirroring 
the simulation's vector volume, hence ensuring 
parallelism between simulated predictions and 
real-world validations. 
 

6.1 Experiment #1 
 
Positioned at the starting line of Racetrack #1, 
the vehicle embarked on a 10-epoch journey, 
piloted by an untouched neural network. 
Networks, differentiated by the neuron count—2, 
4, 6, 8, and 10 in their hidden layers, were put to 
the test. This exercise aimed to not only 
ascertain the real-time trainability of a neural 
network in a dynamic environment but also to 
contrast simulated predictions against tangible 
outcomes. 
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Fig. 6. Steering angle error analysis in 
simulation 

 

  
 

Fig. 7. Illustration of race circuit no. 1 
 

  
 

Fig. 8. Illustration of race circuit no. 2 

 
 

Fig. 9. Steering angle error distribution across 
10 epochs 

 
 

 
 

Fig. 10. Steering angle error analysis over 5 
epochs 

 
 

Fig. 11. Hypothetical vehicle trajectory in 
second experiment 
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Fig. 9 paints a vivid picture: each neural network, 
guided by the fuzzy logic trainer, astutely learned 
the art of racetrack navigation. They seemingly 
gravitated towards similar error baselines, 
exhibiting convergence rates that mirrored those 
witnessed during simulations. 
 
The tangible intrigue unfolded when, post the 
initial 5 epochs, the networks appeared to have 
attained full training. Leveraging this insight, the 
experimental baton was handed over to the 
neural network, post its 5-epoch training. This 
phase excluded the guiding hand of the fuzzy 
logic trainer, challenging the neural network to 
autonomously navigate Racetrack #1. 
 
Results, captured in Fig. 10, stood testament to 
the efficacy of the training process. Post-training 
error margins across neural networks, 
irrespective of their size, were strikingly uniform. 
A deeper dive into the performance of a network 
with 6 neurons, as illustrated in Fig. 11, 
showcased minimal divergence between 
trajectories steered by the fuzzy logic trainer and 
the neural network. What's more, the post-
training neural network path exuded finesse, 
tracing a steadier course closer to the racetrack's 
median, in stark contrast to its earlier erratic 
runs. Remarkably, when pitted against the 
seasoned fuzzy logic trainer, the neural 
networks' performances were neck and neck, 
underscoring the profound impact of training. 

 

6.2 Experiment #2 
 
To discern the optimal dimensions of a neural 
network, it became imperative to understand how 

the intricacy of a racetrack affects the neural 
networks' learning prowess. The autonomous 
vehicle, deployed on Racetrack #2, underwent 
10 epochs under the guidance of an uninitiated 
neural network. Following this training, an 
independent epoch was embarked upon, with the 
vehicle solely maneuvered by the trained neural 
network, devoid of the fuzzy logic controller's 
input. Analyzing these outcomes against prior 
tests enabled the drawing of broader inferences 
about neural network dimensions. 
 
The derived data posited that the racetrack's 
intricacy bore minimal influence on training 
behaviors, as illustrated in Fig. 12 and Fig. 13. 
The introduction of extra neurons in the hidden 
layer curtailed the error in the initial epoch. Yet, 
this also extended the epochs needed for the 
network to settle at its minimum error. 
Remarkably, post-training performance across 
various neural networks appeared homogenous, 
suggesting limited advantages in enlarging the 
network to further reduce error. 

 
Specifically, steering angle error stabilized within 
roughly 5 epoch cycles, while speed error 
attained higher accuracy within the inaugural 
epoch. This can be attributed to the architecture 
of the fuzzy speed rules and the racetrack's 
design. Consequently, the back-propagation 
algorithm, aiming to curtail the overarching error 
across both speed and steering outputs, induced 
variations in speed error while focusing on 
rectifying the steering angle error. Segregating 
these outputs into distinct neural networks might 
have circumvented such pronounced error 
oscillations. 

 

 
 

Fig. 12. Steering angle error during second 
experimental run 

 
 

Fig. 13. Speed error analysis in second 
experiment 
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Fig. 14. Flowchart for neural network dimension determination 
 
Interestingly, the vehicle's velocity during neural 
training was approximately half of that achieved 
using only the fuzzy logic approach. However, 
post-training speeds, when employing the neural 
network, mirrored those attained with the fuzzy 
logic trainer. It's noteworthy that the neural 
network, being computationally leaner than its 
fuzzy logic counterpart, offered a marginally 
better reaction time, potentially allowing for an 
uptick in average vehicular speed. 
 
Our findings reveal that the optimization protocol 
successfully identifies neural network 
configurations that perform best under different 
environmental complexities and hardware 
limitations. For instance, simpler network 
architectures yielded faster response times in 
less complex environments, whereas more 
sophisticated networks were necessary to 
navigate more challenging terrains effectively. 
This adaptability demonstrates the protocol’s 
capability to tailor neural network setups 
according to specific operational needs and 
constraints. 
 
A comparative reanalysis of Experiment 1 and 
Experiment 2 highlights the robustness of our 
methodology across different scenarios. In 
Experiment 1, conducted on a simpler racetrack, 
the neural network quickly adapted to the 
environment, demonstrating rapid error reduction 
within five epochs. Conversely, Experiment 2, 
featuring a more complex track, required more 
epochs to achieve similar error rates, 
underscoring the influence of environmental 
complexity on learning efficiency. This 
comparison not only validates our model's 

efficacy but also illustrates its scalability and 
adaptability to varying complexities in real-time 
navigation tasks. 
 

7. SELECTION OF OPTIMAL NEURAL 
NETWORK SIZE 

 
Several factors contribute to the determination of 
the ideal neuron count within a neural network's 
hidden layer: 

 
1. Fidelity to Fuzzy Logic Trainer: The 

hidden layer should proficiently emulate 
the fuzzy logic trainer. Experimental data 
suggested that this wasn't a dominant 
concern since diverse sizes of the hidden 
layer seemed to converge to comparable 
error levels. 
 

2. Computational Efficiency: The 
computational demands of the neural 
network should not compromise its real-
time applicability, either during the training 
phase or autonomous operation. All 
assessed configurations complied with this 
standard. 
 

3. Initial Training Precision: During the 
training phase, the initial error should be 
sufficiently low to empower the neural 
network to proficiently navigate unfamiliar 
racetracks. While all assessed models 
satisfied this, networks with more neurons 
in the hidden layer exhibited higher initial 
test reliability, whereas those with fewer 
neurons demonstrated occasional 
unpredictability. 
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4. Rapid Learning Curve: A minimal epoch 
count should suffice for the neural network 
to effectively adapt to a given racetrack. 
Such efficiency enhances the neural 
network's utility, especially since 
undergoing numerous training epochs, as 
seen in simulations, isn't feasible in real-
world settings. This criterion suggests a 
predilection for smaller neural network 
configurations. 

 

Building on these principles, an optimization 
framework was crafted, visualized in Fig. 14, 
aiming to pinpoint an optimal neural network 
dimension. Operating under the presumption of 
real-time training within a bounded epoch count 
in tangible environments, an introductory neural 
network size was posited. This size was 
calibrated to be as compact as feasible yet 
sufficiently expansive to navigate the challenge 
at hand. Each added neuron was hypothesized 
to diminish both the preliminary and concluding 
errors, echoing the patterns observed in trial 
networks. Upon identifying a neural network 
satisfying all criteria, the search would conclude, 
earmarking the configuration as optimal. The 
absence of such a configuration would signal the 
need for refining the learning methodology, 
reassessing the error bounds, or considering the 
computational constraints. Through this 
meticulous framework, a neural network with 4-6 
neurons in its hidden layer emerged as the most 
balanced choice. Networks with less than 4 
neurons exhibited elevated initial errors, while 
the computational overhead rendered 
configurations exceeding 6 neurons suboptimal. 
The precise dimensions were contingent on the 
racetrack complexities and the density of 
impediments. 

 

8. CONCLUSION AND SUMMARY 
 

The feasibility of employing a fuzzy logic trainer 
to train a neural network in real-time while 
directing a vehicle through an unfamiliar 
racetrack was conclusively established. 
Remarkably, even with a basic fuzzy logic 
framework and pronounced hardware limitations, 
the neural networks exhibited a commendable 
learning capacity, effectively navigating the 
tested scenarios. These findings highlight the 
potential for implementing real-time autonomous 
navigation without necessitating intricate control 
mechanisms or substantial computational 
prowess. 
 
Furthermore, the research revealed that the 
neuron count within the hidden layer chiefly 

influenced the neural network's preliminary 
precision and its convergence speed towards 
minimal error levels. While augmenting the 
neural network size showcased enhanced results 
during simulations, tangible experimental 
enhancements remained marginal. Impressively, 
the neural networks exhibited competitive 
performance relative to the fuzzy logic trainer, 
even when subjected to a sparse set of training 
epochs. While these findings might not be 
universally applicable across diverse neural 
network and fuzzy logic configurations, the focal 
shift from ultimate error mitigation to initial 
feasibility signifies a departure from conventional 
neural network size determination paradigms. 
 
Drawing from these insights, a methodical 
procedure was instituted to ascertain the optimal 
neuron count for the specific neural network in 
question. Tailored for application-driven contexts 
where traditional theoretical optimization 
techniques might fall short, this approach aims to 
provide practical guidance. For the tested 
scenario, the optimal neuron range within the 
hidden layer was discerned to be approximately 
4-6. Although this methodology might not 
guarantee universally optimal outcomes across 
all neural network designs, its efficacy for similar 
feed-forward neural network challenges can offer 
pragmatic, near-optimal configurations. 
 
The practical implications of our findings are 
significant for the field of autonomous vehicle 
navigation. By demonstrating that neural 
networks can be trained in real time on 
constrained hardware, we provide a scalable 
method that can be applied in diverse operational 
environments. This approach reduces the 
dependency on pre-trained models and allows 
autonomous systems to adapt to new 
environments swiftly. Furthermore, our study 
contributes to the ongoing discussion about the 
balance between computational overhead and 
real-time response capabilities in neural network 
training, advancing the deployment of intelligent 
autonomous vehicles in more dynamic and 
unpredictable settings. 
 
The development of our detailed optimization 
protocol significantly advances the efficiency and 
effectiveness of autonomous vehicle navigation 
systems. By enabling tailored configurations of 
neural networks, our approach allows for 
enhanced adaptability and performance in 
diverse navigation scenarios. These 
contributions are pivotal for the ongoing evolution 
of autonomous vehicle technologies, potentially 
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leading to more robust and reliable navigation 
solutions that can operate effectively across a 
broad spectrum of real-world conditions. 
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