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ABSTRACT 
 

The Niger River is essential to the livelihoods of those in Bamako and its neighboring areas, 
providing vital resources for drinking water, agriculture, livestock, industry, and fishing. Given its 
significance across these sectors, there is a pressing need to establish an effective water resource 
management strategy that incorporates a thorough qualitative assessment of the river's water 
quality. This research seeks to characterize the water quality of the Niger River by employing Water 
Quality Indices (WQI) and intelligent modeling techniques. To fulfil this objective, various 
physicochemical parameters, including pH, electrical conductivity (EC), nitrate (NO3

-), nitrite (NO2
-), 

and iron (Fe), were collected from 40 sampling points along the river during three distinct periods: 
December 2017, March 2018, and July 2018. The study utilized a weighted arithmetic approach to 
compute the WQIs, while the predictive models were developed using two of the most famous and 
effective modeling techniques namely Multiple Linear Regression (MLR) and Artificial Neural 
Networks (ANN). In order to evaluate the predictive performance of the models, the dataset was 
partitioned into three distinct segments, allocating 60% for training purposes, 20% for validation, 
and the remaining 20% for testing, with the segments organized in a sequence from upstream to 
downstream. The performance of both models was evaluated using metrics such as the correlation 
coefficient (r²), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The computed 
Water Quality Indices (WQIs) vary from 0.44 to 1887.40, indicating a diverse range of water quality 
across the samples analyzed. The classification of these samples reveals that 62.5% are 
considered excellent, while 15% are categorized as good, another 15% as poor, 2.5% as very poor, 
and 5% as unsuitable for consumption. Furthermore, the results derived from ANN with five inputs, 
one hidden layer (13 neurons) and one output (WQI) demonstrates superior efficiency in assessing 
water quality. 
 

 
Keywords: Niger river; water quality index; multiple linear regression; artificial neural network. 
 

1. INTRODUCTION 
 

Throughout the world, the proximity of cities and 
countryside to water points (sources and rivers) 
undoubtedly makes it possible to measure the 
importance of water in daily life. consequently, 
water is at the heart of human numerous 
activities necessary of society development. 
Indeed, people in societies need water for their 
own consumption and to carry out their various 
activities (industrial, agricultural, livestock 
breeding, fishing, etc.). The use of water must 
take into account its quality requirements on 
population health. Thus, some human activities 
requiring water have their requirements in terms 
of quantity and quality. The quality of water, is 
evaluated through the conformity of its 
physicochemical and bacteriological parameters 
to pre-established standards (WHO, EU, EUA, 
etc.). Qualitatively, all the physicochemical and 
bacteriological parameters of a given water body 
do not play the same role. This is how, for a 
given activity, the same watercourse can have 
both essential parameters for defining its quality 
and other accessories [1]. 
 
Continuous water monitoring has a direct positive 
effect on the interpretation of its spatial and 
temporal variations [2]. The assessment of water 

quality and the frequency of monitoring have a 
positive impact on the control of surface water 
quality, thus facilitating its management [3,4]. 
Many techniques have been developed to 
evaluate the quality changes in water resources. 
Thus, water quality parameters such as 
precipitation, temperature, nitrate, DO, TDS, or 
flow are used as variables. Measurement of long-
term quality and flow parameters, which are 
interpreted with appropriate methodology, are 
used in the planning and management of water 
resources. All water quality parameters are rarely 
within the permissible limits of the class in water 
quality classifications. Sometimes, surface water 
is included in several quality classes according to 
its different quality parameters. The Water 
Framework Directive (WFD) classifies the quality 
of water parameter by parameter through the 
result of the physicochemical analysis. In fact, 
according to WFD, each quality parameter is 
high, good, medium, bad, or poor. This type of 
classification is insufficient to provide an 
overview of water quality over time, as the quality 
can change over time through a single element 
and such classification does not reflect the 
overall water quality reality [1]. In that way, it is 
difficult to evaluate water quality from a large 
number of samples, each one containing many 
parameters [5]. To solve this situation, many 
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researchers have used the Water Quality Index 
(WQI) to determine the quality of surface water 
for the last few decades [6,7,1]. 
 
[8] implemented the first technique to calculate 
WQI by considering ten water quality 
parameters. Later, other WQI calculating 
techniques like the National Sanitation 
Foundation WQI [9], Oregon WQI [10], and more 
recently the Canadian WQI [11] have been 
made.  WQI method is a basic technique that 
helps by reducing large datasets to a unique 
value that considers the overall quality of the 
water [8]. Recently, WQI calculation methods 
have greatly facilitated the determination of water 
quality, and its monitoring and evaluation, 
temporarily and spatially. Therefore, it should be 
recognized that the WQI calculation techniques 
provide significant added value in decision-
making in terms of water quality control and 
management [1]. [12] tested several WQI 
calculation techniques. Their study reveals that 
each of these techniques suffers from being 
linked to the context or the use of water. Thus, to 
compensate for these inadequacies, they 
developed Universal WQI. To make WQI, 
sampling and analysing several parameters is 
non-practical and very expensive [13]. [14] 
applied the PCA method to classify surface water 
quality parameters according to their importance, 
and the HCA technique to divide the sample 
points according to their degree of similarity to 
pollution. Later on, [1] used HCA by considering 
quality parameters and calculated WQI by 
Canadian WQI method. Further analysis allows 
to classify these parameters according to their 
contribution to WQI. HCA permitted to classify 
quality parameters as essential and non-
essential. Thus, this technique has advantage of 
reducing the number of parameters to be 
analysed in the laboratory and saving money in 
long-term monitoring.  
 
Alongside its undeniable socio-economic 
importance, the Niger River suffers the 
consequences of both climate change and 
human activities. In Bamako, for decades, the 
combined actions of the population explosion 
and artisanal, industrial, and agricultural activities 
around the Niger River has exerted 
unprecedented pressure on it [15]. With almost 
40% of the entire country's urban population, this 
has resulted in an unprecedented deterioration in 
the quality of river water in the Malian capital 
[16]. Climate change has also contributed to a 
continuous decline in flow since the 1970s [17]. 
This situation has led several researchers to look 

into the physicochemical and bacteriological 
quality of the Niger River in this locality. This is 
why the conclusions of the work of [18] revealed 
that the physicochemical quality of the waters of 
the entire river basin is relatively good. A little 
later, [19] showed that the chemical quality of the 
Niger River on the Bamako-Koulikoro axis is 
acceptable because of its very high flow. [20] 
highlighted the chemical and bacteriological 
pollution of the Niger River in the city                             
of Ségou, some 235 km downstream from 
Bamako. 
 
More recently, [21] showed that the methods 
previously used to assess the water quality of the 
Niger River were archaic. Indeed, they criticized 
these techniques based on the fact that 
researchers compared only physicochemical and 
bacteriological parameters to the quality 
standards. As a result, these techniques did not 
provide a better understanding of the 
spatiotemporal evolution of these parameters. To 
have better understanding on the water quality 
parameter evolution, [21] opted to implement the 
WQI taking into account the 2016-2020 analysis 
results of several physicochemical parameters 
(Turbidity, pH, Electrical Conductivity (EC), 
Dissolved Oxygen (DO), Total Dissolved Solids 
(TDS), Biochemical Oxygen Demand (BOD5), 
Chemical Oxygen Demand (COD), Nitrate, 
Nitrite, Ammonium, Phosphate, Sulphate, 
Chloride and Copper) at fifteen (30) sampling 
points. Thus, the calculated indices reflect the 
overall water quality for the considered sampling 
point and period. Based on the results, they 
concluded that the water of this river is polluted 
and cannot be used for human consumption or 
industrial uses without prior treatment. Through 
the calculated index, we can easily express 
ourselves about the quality of water sampled at a 
given point with much more serenity and clarity. 
It appears that this method of water quality 
evaluation has the merit of being synthetic. The 
most important thing regarding this evaluation 
method lies in the reading and understanding of 
the calculated indices which is not limited to 
researchers only. Thus, political decision-makers 
and all citizens anytime can easily read these 
results and understand their meaning. 
 
While the methodologies for calculating Water 
Quality Index (WQI) using various parameters 
are scientifically validated, it is evident that these 
techniques are time-consuming. Thus, 
developing mathematical models able to skip this 
WQI calculation step will certainly save time and 
efficiency. 
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ANN (Artificial Neural Network) is a technique 
inspired by the human brain working system 
used to predict unknown data after passing the 
step of learning [22]. Through this technique, 
different layers are connected to determine the 
relationship between inputs and outputs [23]. 
ANN is used as a mathematical process to 
predict quickly and easily water quality 
parameters by saving both time and effort 
[24].  Nowadays, ANN as one of the branches of 
Artificial Intelligence (AI) is an inexpensive 
technic with a powerful tool. It’s unavoidable in 
many fields for forecasting like finance, energy, 
medicine, and ecology [25]. Solutions made by 
this tool are diversified due to some 
characteristics like easy installation of hardware, 
high learning ability, and behavior adaptation to 
any change in the system [26]. 
 

ANN has been used specially to investigate the 
water quality of river systems, to plan and 
manage by forecasting water quality parameters 
[27,28], to determine the source of pollution 
according to microbiological water quality 
parameters [29,30]. This technic has also been 
used to model groundwater level [31,32], to 
determine the daily suspended sediment amount 
in wastewater [33], the rainfall-runoff models of 
rivers [34], the relationship between waste odour 
and biological oxygen demand [35], to evaluate 
water quality parameters in streams [36], to 
predict nitrate level on groundwater [26,37,38], 
surface water [26,39] or both ground and surface 
waters [40], to calculate nitrite level on 
groundwater [41], to estimate water salinity 
parameters levels [42,43], to predict SAR on 
groundwater [44,45] and surface water [46,47], 
or to forecast WQI on groundwater [48] and 
surface water [49,50]. 
 

This study aims to evaluate and model calculated 
WQI of Niger river in Bamako and neighboring 
areas using ANN and MLR methods. Therefore, 
it differs from other studies in the same area by 
modeling WQI and evaluation of the performance 
of models utilizing statistical tools (r2, RMSE, 
MAE). To reach this goal, five parameters (pH, 
EC, NO3

-, NO2
-, Fe) were used for both WQI 

implementation and modeling in order to have 
better understanding about Niger River quality in 
Bamako and neighboring areas. 
 

2. MATERIALS AND METHODS 
 

2.1 Study Area 
 

The District of Bamako, capital of Mali is located 
between 12°29'57'' and 12°42'17'' north latitude 

and 7°54'22'' and 8°4'6'' west longitude. The city 
was developed in the valley of the largest river in 
West Africa which divides it into right and left 
banks. It is divided into six municipalities; the first 
four of which are located on the left bank and the 
last two on the right bank of the Niger River             
(Fig. 1). 
 
The rainy season begins in the end of the month 
of May and extends to September or even the 
beginning of October and the dry season begins 
just after and extends until the end of May. 
Bamako has seen its population increase rapidly 
since independence, going from 128,400 
inhabitants to 2,703,588 in 2022, an increase of 
2,575,188 inhabitants in 62 years [51]. While this 
population is growing very quickly, the liquid and 
solid waste management system suffers from 
enormous failures. Bamako does not have a 
sewer system for adequate wastewater 
collection. Raw wastewater of all types from the 
city of Bamako is therefore dumped directly or 
indirectly into the Niger River through diffuse 
runoff or through occasional discharges from 
rainwater collectors [52]. 
 
The Niger River, 4,200 km long with a basin 
estimated at 2,000,000 km², crosses Mali over a 
length of 1,750 km, or 42% of its total length. Its 
watershed, in Malian territory, covers 570,000 
km², including an active basin of 300,000 km² 
which includes, in addition to the District of 
Bamako, most of the country's large cities [53]. 
This river crosses the city of Bamako for about 
twenty kilometers. The minor bed of Niger river 
has an average width of approximately 850 m, 
delimiting an aquatic area of nearly 17 km2 (~7% 
of the district's surface area). The bottom of the 
minor bed is mainly made up of sandstone in 
place and fractured blocks [54]. 
 

2.2 Sampling and Analysis Methods 
 

2.2.1 Sampling 
 

In order to reach this purpose, 3 series of 
sampling (December 2017, March 2018 and                
July 2018) were carried out at 40 sampling            
points on the Niger river in the study area                  
(Fig. 2). For each series, physical parameters: 
pH and EC were measured directly on the field 
using multiparameter HANNA HI 9828 and 
HANNA HI 2211 respectively. For chemical 
parameters (nitrate: NO3

-, nitrite: NO2
-, and                

total iron: Fe) measuring, samples were                    
brought in the National Laboratory of                      
Water (Laboratoire National des Eaux, LNE). The 
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ionic chromatography method was used by 
Metrohm 881 Compact IC pro instrument to 
determine concentration of nitrate (NO3

-), and 
nitrite (NO2

-). Perkin Elmer ELAN 400 instrument 

was used to measure iron (Fe) concentration               
on the samples. Each sampling point was 
recorded using GPS (Global Positioning System) 
device. 

 

 
 

Fig. 1. Localization map of the study area 
 

 
 

Fig. 2. Positions of sampling point in the study area  
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2.2.2 Water quality index technic 
 

In this study, the Weighted Arithmetic Water 
Quality Index method based on the standards 
guideline values recommended by the WHO 
(World Health Organization) for drinking water 
was used to calculate and evaluate Water 
Quality Index of Niger river water. This technic, 
because of the fact that it reduces complex data 
into a single and simple value, is widely used 
worldwide to verify the suitability of                          
water for different usages [1,13,14]. In this work, 
the weighted arithmetic WQI values                        
were determined based on the following 
procedure: 
 
In the first step, physicochemical parameters 
such as PH, EC, NO3

-, NO2
- and Fe (Table 1) 

which will be used for WQI calculation and their 
standard guideline values (WHO) were selected. 
In the second step, a weighted value (wi) is 
allocated for each selected parameter according 
to its influences on health and its relative 
importance in terms of drinking water quality 
following WHO requirements. The values of 
different assigned weights vary between 1 and 5 
depending on the importance of each considered 
parameter in determining of the water quality for 
drinking (Table 1). 
 
In the third step, the relative weight of each 
parameter was calculated (Table 1) using 
Equation 1. 
 

( )

i

i n

i

i 1

w
W

w
=

=



                       Equation 1 

 
Where wi represents the assigned weight value 
for each parameter, Wi indicates the relative 
weight and n corresponds to the total number of 
considered parameters (5). Considering this 

context, Table 1 gives standard value according 
to the WHO guideline value, assigned weight 
value and relative weight value of each 
parameter which is used to calculate the WQI. 
The weighted value 5 was given to NO3

-, NO2
- 

and EC, 4 to pH [55,56] and 3 to Fe according to 
their importance (Table 1). 
 
In the fourth step, the quality-rating scale (Qi) 
value of each parameter was determined using 
Equation 2. 
 

( )

( )
i i

i

i i

C V
Q 100

S V

−
= 

−
                  Equation 2 

 
Where Ci represents the estimated concentration 
value of each parameter, Si represents the 
recommended value according to the WHO 
standards for the quality of drinking water. 
Except for pH where it is equal to 7, the value of 
Vi is considered as zero for all other parameters 
[57,55]. 
 
In the fifth step, the sub-index value of each 
parameter is determined according to the 
following Equation 3. 
 

i i i
SI Q W=                               Equation 3 

 
Finally, the Water Quality Index (WQI) for each 
station is calculated according to Equation 4. 
 

( )
n

i

i 1

WQI SI
=

=                            Equation 4 

 
So, the calculated WQIs made it possible to 
assess the quality of surface water of Niger River 
in the study area based on the table below 
(Table 2), but above all, to be aware of the 
variability of this quality over time and space. 

 
Table 1. WHO guideline values, assigned weight and relative weight of physicochemical 

parameters 
 

Parameters WHO Weight (w) Relative weight (W) 

EC (μS/cm) 2500 5 0.2273 

pH 6.5-8.5 4 0.1818 

Nitrate (mg/l) 50 5 0.2273 

Nitrite (mg/l) 0.01 5 0.2273 

Fer (mg/l) 0.03 3 0.1364 

  ∑(wi) = 24 ∑(Wi) = 1 
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Table 2. Classification of water according to the WQI 
 

WQI level Water class 

< 50 Excellent 
50-100 Good 
100-200 Poor 
200-300 Very poor 
> 300 Inadequate for drinking 

 

2.3 Multiple Linear Regression (MLR) and 
Artificial Neural Networks (ANN) 

 
 In addition to the calculations of the Water 
Quality Index (WQI) employing conventional 
methods, the physicochemical parameters were 
also utilized in two alternative models, namely 
Multiple Linear Regression (MLR) and Artificial 
Neural Networks (ANN). This approach allows for 
a comprehensive analysis of water quality by 
integrating various modeling techniques. In this 
research, Niger river quality parameters and 
WQIs data are organized from upstream to 
downstream in order to evaluate the capacity of 
modeling methods (MLR and ANN) to predict 
downstream events based on upstream ones. In 
the study, 60% of the input data was allocated for 
training purposes, enabling the models to 
effectively predict the target, specifically the 
Water Quality Index (WQI). Additionally, 20% of 
the data was reserved for validation, while the 
final 20% was designated for testing. Each 
technique was utilized to develop a singular 
model. Multiple Linear Regression is a statistical 
method employed to assess the relationship 
between a dependent variable, referred to as the 
output, and two or more independent variables, 
known as inputs. This technique allows 
researchers to understand how changes in the 
independent variables can influence the 
dependent variable, thereby providing insights 
into the dynamics of the data being analyzed. It’s 
an extension of Simple Linear Regression in 
which there is one input for one output (Y = β0 + 

β0 X1). This methodology is applied across 
various disciplines, including economics, finance, 
and social sciences, to facilitate predictions and 
enhance the comprehension of the relationships 
among different variables. The multiple linear 
regression (MLR) technique formulates a linear 
equation that allows independent variables to 
collectively account for the dependent variable in 
the most effective manner. The analysis was 
conducted utilizing SPSS software (2017, 
Version 25). For MLR, the training dataset, which 
consists of input data corresponding to various 
parameters (EC, pH, NO3

-, NO2
- and Fe), was 

utilized alongside target data during the 

development of the MLR model. This approach 
facilitated the establishment of a predictive 
framework which allow the use of testing and 
validation input parameters to predict WQI 
values. 
 
The general form of MLR is written in Equation 5: 
 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3+. . . . . . . . +𝛽𝑛−2𝑋𝑛−2 +

𝛽𝑛−1𝑋𝑛−1 + 𝛽𝑛𝑋𝑛                             Equation 5 
 
Where Y is the output or dependent variable; X1, 
X2, X3, …, Xn-2, Xn-1 and Xn are input or 
independent variables and β0, β1, β2, β3, …, βn-2, 
βn-1 and βn are the coefficient for the independent 
variables. These coefficients are generated in 
order to minimize errors. 
 
This technic by the fact that it gives a clear 
mathematical formula to calculate output 
parameter (WQI) is different to ANN in which 
there is no formula to obtain directly output 
parameter. this is why ANN is also called black 
box technique. 
 
The application of Artificial Neural Network 
(ANN) modeling was conducted using MATLAB 
R2016b. The input parameters employed for 
modeling the Water Quality Index (WQI) were 
consistent with those utilized in the Multiple 
Linear Regression (MLR) technique. As 
previously mentioned, ANNs find utility across 
various domains, and numerous architectural 
configurations exist for predicting output data. In 
this study, the Multi-Layer Perceptron (MLP) 
architecture was selected, characterized by three 
distinct layers: input, hidden, and output, 
alongside the Feed Forward Back Propagation 
(FFBP) algorithm for the purpose of modeling the 
output parameter, specifically the WQI. 
 
The algorithm operates in two distinct phases. 
Initially, it facilitates the flow of data from the 
input layer to the output layer, traversing through 
the hidden layer. This process involves 
calculating the weights assigned to the 
connections between each node in the input 
layer and those in the hidden layer. 
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Subsequently, the values of the nodes in the 
hidden layer are determined, along with the 
weights that connect these nodes to the output 
layer. Ultimately, the aggregation of the node 
values and the corresponding weights between 
the hidden and output layers enables the 
derivation of the final output values, 
characterizing the forward propagation aspect of 
the algorithm. After that and in order to reduce 
errors between calculated WQI and modelled 
one, weights between hidden-output and input-
hidden layers are modified in the opposed       
sense: Back Propagation (BP) passing of the 
algorithm prosses (Fig. 3). This technic is widely 
used because of its BP process which 
contributes to reduce enormously errors         
between measured and modelled parameters 
[19,58,59]. Each neuron within a neural                
network possesses a distinct value that is treated 
as input by the subsequent layer, along with a 
specific weight that connects it to each neuron in 
that layer. For the hidden input layers, these 
weights are denoted as Wi, while for the                   
hidden output layers, they are referred to as                  
Wj, as illustrated in Fig 3. In the case of the                

input layer neurons, the values correspond to 
empirical measurements obtained from either 
field studies or laboratory experiments. The 
weight assigned between any two nodes is 
contingent upon the significance of the input 
parameter in relation to the output parameter 
being predicted. To derive the values for a node 
in either a hidden layer or an output layer, the 
values from all preceding nodes are multiplied by 
their respective weights, and the results are 
summed. This summation is then subjected to a 
nonlinear transformation through the application 
of an activation function, which may be linear, 
sigmoid, hyperbolic tangent, among others. In 
constructing the model, the number of input and 
output parameters is predetermined, while the 
number of nodes in the hidden layer is                 
adjusted iteratively to identify the optimal 
configuration. Notably, there is no universally 
accepted formula for determining this ideal 
arrangement. During this work, in order to find 
optimal number of hidden layer nodes, we carry 
out trial-and-error method [60, 19] and the 
different results are compared themselves to 
choose the best one. 

 

 
 

Fig. 3. Feed forward back propagation neural network representation 
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The optimization of the number of nodes in the 
hidden layer is directly influenced by the number 
of input features, aiming to identify the optimal 
configuration that maximizes the coefficient of 
determination (R²), ideally approaching unity. 
This optimal configuration is also characterized 
by minimal values of root mean square error 
(RMSE) and mean absolute error (MAE). As the 
number of neurons in the hidden layer deviates 
from this optimal point, a corresponding decline 
in r² is observed, alongside an increase in both 
RMSE and MAE, prompting the cessation of 
testing under such conditions. Concurrently, 
various activation functions, including linear, 
sigmoid, and hyperbolic tangent, are assessed 
through multiple combinations of input-hidden 
and hidden-output layers to determine the most 
effective arrangement.  In addition to the 
aforementioned parameters that were varied 
throughout the optimization process, several 
constants were maintained to streamline 
implementation. Specifically, the activation 
function employed between the input and hidden 
layers was fixed at the sigmoid function, while a 
linear activation function was utilized for the 
hidden-output layers. Other constants included a 
learning coefficient set at λ = 0.50, a momentum 
coefficient of α = 0.50, a maximum iteration limit 
of 10,000, and a single output neuron 
representing the Water Quality Index (WQI). 
These controlled parameters were essential for 
ensuring a consistent framework within which the 
optimization could be effectively evaluated [19]. 
 
Wi and Wj represent weights linked respectively 
input-hidden and hidden-output layers neurons 
themselves. So, each neuron of input layer (pH, 
EC, NO3

-, NO2
- and Fe) has “p” weights 

(corresponding to hidden layer nodes number). 

In this study, each hidden layer neuron has only 
one weight because there’s only one node in 
output layer Fig. 2). In order to reduce difference 
between maximal and minimal measured data 
and to facilitate efficiency of ANN to work, data of 
input and output layers were normalized between 
0.1-0.9 as first work through formula given in 
Equation 6 [19]: 
 

( )

( )
i min

ni

max min

0.8 X X
X 0.2

X X

−
= +

−
       Equation 6 

 
Here Xni represents normalized data number i; 
 
Xmin and Xmax are respectively minimum and 
maximum of the whole data. 
 
The results obtained by modeling are 
denormalized taking into account Xmin and Xmax to 
obtain Xi coming from the model by transforming 
the formula above. 
 
The results obtained through modeling are 
denormalized taking into account Xmin and Xmax in 
order to obtain Xi from the model by 
transformation of the formula above. 
 
2.3.1 Evaluation of modeling results 

 
The performance of predictions made by MLR 
and ANN models have been evaluated using 
coefficient of determination (R2), RMSE (Root 
Mean Square Error) and MAE (Mean Absolute 
Error) between network output (models) and 
network target output (measures) in training, 
validation and test sets through the Equations 7, 
8 and 9. 

 

R2 =  [
[∑ (YMeasured i−YMeasured)(YModelled i−YModelled)n

i=1 ]
2

[∑ (YMeasured i−YMeasured)
2n

i=1 ][∑ (YModelled i−YModelled)
2n

i=1 ]
]                         Equation 7 

 

RMSE = √
1

n
(∑ (YMeasured i − YModelled i)

2n
i=1 )                                                         Equation 8 

 

MAE =
1

n
(∑ |YMeasured i − YModelled i|

n
i=1 )                                                                Equation 9 

 
Where, YMeasured i  corresponds to the ith calculated WQI based on measured physicochemical 

parameters (field and laboratory); YMeasured is the average of the calculated WQI’s, YModelled i is the ith 

modelled WQI; YModelled correspond to the average of modelled WQI’s. 
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The closer R2 value is to 1, the closer the values 
of RMSE and MAE are to 0, the more the model 
implemented is efficient. The statistical 
parameters derived from the calculations were 
employed to facilitate a comparison of the 
models across the training, validation, and test 
datasets, as well as between MLR and ANN. In 
the context of the MLR technique, the optimal 
and singular outcome, based on the input 
parameters of electrical conductivity (EC), pH, 
nitrate (NO3

-), nitrite (NO2
-), and iron (Fe), is 

readily identifiable As to ANN technic, several 
tests were carried out and, on the criteria 
mentioned above to find the best models. 
 

3. RESULTS AND DISCUSSION 
 

3.1 River Drinkability and Water Quality 
Index 

 

The results of the descriptive statistical analysis 
concerning the physicochemical parameters of 
surface water from the study area are detailed in 
Table 3.  
 

The pH levels observed in the study area range 
from 4.00 to 9.00, with an average value of 6.62, 
indicating that the waters are slightly acidic. In 
contrast, the EC values exhibit significant 
variability, with minimum, maximum, and average 
values recorded at 5.50 μS/cm, 1747.00 μS/cm, 
and 188.25 μS/cm, respectively. Nitrate 
concentrations fluctuate between 0.00 mg/L and 
8.00 mg/L with average value of 2.04 mg/L, while 
nitrite levels range from 0.00 mg/L to 0.20 mg/L, 
with an average of 0.003 mg/L. Iron 
concentrations also show variability, spanning 
from 0.00 to 4.10 mg/L, with an average of 0.13 
mg/L. 
 

Notably, with the exception of electrical 
conductivity, the standard deviation for the other 
parameters measured is relatively low, 
suggesting minimal fluctuations in these values 
over time and across different locations. The 
variability in EC can likely be attributed to 
sporadic industrial or domestic discharges into 

the river, which occur without prior treatment. 
Conversely, the limited variation in the other 
parameters indicates that these discharges 
contribute only marginal amounts of these 
substances, reflecting a more stable 
environmental condition for those specific 
metrics. 
 
In terms of adherence to the WHO standards for 
physicochemical parameters, only the electrical 
EC and nitrate concentrations met the 
established criteria across all three sampling 
periods, as indicated in Table 3. This suggests 
that the values recorded for these specific 
parameters fall within the acceptable limits set by 
WHO for drinking water quality. The situation of 
the sampling points based on analysis results 
which are not comply with the WHO standards is 
described below: 

 
In the initial sampling round, several points were 
found to be non-compliant with WHO standards. 
Specifically, the sampling points BAD1, BAD3, 
DJI4, KAB1, MAG2, MAG3, QUF1, SAB3, FAK1, 
MOR2, TOR1, TOR2, TOR3, and TOR4 were 
assessed for pH levels, while DJI2 was 
evaluated for nitrite. Additionally, the points 
BAD2, CIN2, CIN3, DJI1, DJI3, KAL2, KAL3, 
KAL4, MAG1, SAB1, MOR1, MOR2, TOR1, 
TOR2, TOR3, and TOR4 were examined for iron 
content. In total, 31 out of 40 sampling points 
exceeded the established standards. 

 
During the second round of assessments, a 
significant number of sampling points again failed 
to meet the required standards. The points 
BAC1, BAC2, BAC3, BAC4, BAD1, BAD2, DJI1, 
DJI3, DJI4, KAL1, KAL3, KAL4, QUF1, QUF4, 
ZON1, TOR2, TOR3, and TOR4 were tested for 
pH, while DJI3 and QUF2 were analyzed for 
nitrite levels. Furthermore, the sampling points 
BAC3, CIN1, CIN2, CIN3, CIN4, DJI1, DJI2, 
DJI3, KAB1, KAL3, KAL4, SAB2, FAK2, FAK3, 
TOR2, and TOR3 were evaluated for iron. This 
round revealed that 36 out of 40 sampling points 
exceeded the acceptable limits.  

 
Table 3. Descriptive statistics of the physicochemical parameters of surface waters 

 

Parameters pH EC (μS/cm) Nitrate (mg/l) Nitrite (mg/l) Fer (mg/l) 

Maximum 9.00 1747.00 8.00 0.20 4.10 
Minimum 4.00 5.50 0.00 0.00 0.00 
Average 6.62 188.25 2.04 0.003 0.13 
Std. deviation 1.09 378.00 2.29 0.02 0.48 
WHO 6.50-8.50 2500 50 0.01 0.03 

Std. deviation means Standard deviation. 
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In the final round of sampling, numerous points 
were again found to be non-compliant with the 
established standards. The points BAD1, BAD2, 
BAD3, DJI3, DJI4, KAB1, MAG1, MAG2, QUF1, 
QUF2, QUF4, SAB1, SAB2, SAB3, ZON1, FAK1, 
FAK2, FAK3, TOR1, TOR3, and TOR4 were 
assessed for pH, while DJI3 was specifically 
evaluated for nitrite. Additionally, the points DJI3, 
DJI4, QUF1, QUF2, QUF3, and QUF4 were 
tested for iron content. In this round, 28 out of 40 
sampling points were found to exceed the 
prescribed. Throughout the three phases of 
sampling and analysis, pH levels were found to 
exceed acceptable standards at several 
locations, specifically BAD1, BAD3, QUF1, 
TOR3, and TOR4. Additionally, the iron 
concentration surpassed the permissible limits at 
the DJI3 sampling point. In contrast, other 
sampling locations exhibited varying degrees of 
compliance with the standards, with some 
exceeding the limits infrequently and others 
doing so on one or two occasions. This variability 
complicates the assessment of water quality, as 
certain parameters at the same sampling site 
may meet regulatory standards while others do 
not, highlighting the necessity for a 
comprehensive index that incorporates all 
physicochemical parameters. The 
inconsistencies observed in the water quality 
parameters necessitate a more holistic approach 
to evaluating the overall health of the water 
bodies in question. By developing an index that 
aggregates the results of all relevant 
physicochemical parameters, stakeholders can 
gain a clearer understanding of water quality 
trends and make informed decisions regarding 
water management and public health. This 
approach not only facilitates better regulatory 
compliance but also enhances the capacity for 
effective environmental monitoring and 
protection. Table 4 presents the maximum, 
minimum, average, and standard deviation of the 
WQI calculated for the 40 sampling points along 
the Niger River within the study area. The 
statistical parameters derived from these 
calculations demonstrate significant fluctuations 
across different sampling periods. 
 

During the initial sampling phase, the WQI values 
ranged from 3.48 to 254.82, yielding an average 
of 58.41 and a standard deviation of 61.03, as 

presented in Table 4. According to the 
classification in Table 2, the water quality varied 
from very poor to excellent across the 40 
sampling locations. The distribution of water 
quality in this round was characterized by 
62.50% of samples falling into the excellent 
category, 17.50% classified as good, another 
17.50% as poor, and a mere 2.50% deemed very 
poor. 2. In the subsequent sampling round, the 
WQI values exhibited a broader range, spanning 
from 3.42 to 1887.40, with an average of 183.73 
and a standard deviation of 380.46. As indicated 
in Table 2, the water quality in this round was 
assessed as varying from inadequate for drinking 
to excellent. Among the 40 sampling points, the 
distribution of water quality was as follows: 
55.00% of samples were rated excellent, 20.00% 
good, 5.00% poor, 5.00% very poor, and 15.00% 
classified as inadequate for drinking. Notably, all 
seven samples with the lowest WQI scores were 
recorded during this round across the three 
sampling campaigns. These samples were 
measured at points CIN1 (WQI = 1887.40), CIN3 
(WQI = 1340.86), DJI3 (WQI = 813.92), TOR2 
(WQI = 662.67), DJI2 (WQI = 406.81), FAK2 
(WQI = 345.85) and SAB2 (WQI = 276.96). 

 
In the last sampling round, the WQI ranged from 
0.44 to 173.71, with an average value of 46.13 
and a standard deviation of 46.35. According to 
the data presented in Table 2, the water quality 
classifications vary from poor to excellent. 
Among the 40 sampling points analyzed, the 
water samples exhibited excellent, good, and 
poor quality in proportions of 70.00%, 7.50%, 
and 22.50%, respectively. This sampling period 
is characterized by the most favorable WQI 
results observed. Fig. 4 illustrates the 
fluctuations in WQI across different sampling 
events and periods. It is noteworthy that the data 
does not indicate a consistent trend from 
upstream to downstream. Across all three 
sampling periods, the lowest WQI values were 
consistently found in the central region of the 
waterway. This area, located in the heart of 
Bamako, is likely the source of the pollutants. 
The observed improvement in water quality as 
one moves downstream can be attributed to 
various interactions and processes occurring 
along the water's path.  

 

Table 4. Descriptive statistic of the calculated WQI in the three rounds of sampling 
 

Period of sampling Maximum Minimum Average Standard deviation 

Round 1 (December 2017) 254.82 3.48 58.41 61.03 
Round 2 (March 2018) 1887.40 3.42 183.73 380.46 
Round 3 (July 2018) 173.71 0.44 46.13 46.35 
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Fig. 4. Variation of WQI through sampling points and periods 
 

Following the rainy season in December, the 
Niger River experiences elevated water levels 
and increased discharge rates. In contrast, 
March marks the onset of the dry season, during 
which both the water level and flow rates decline 
significantly. July, on the other hand, returns to 
the rainy season, characterized by substantial 
rainfall and heightened flow rates. The climatic 
conditions of the study area elucidate the 
fluctuations in Water Quality Index (WQI). The 
considerable influx of rainwater, along with the 
accompanying high flows, plays a crucial role in 
diluting pollutants from domestic and industrial 
sources present in the river, resulting in an 
acceptable water quality during the first and third 
sampling rounds. However, as the rainy season 
recedes, flow rates diminish, leading to reduced 
dilution and a subsequent decline in water quality 
due to the accumulation of pollutants from 
various origins. Consequently, the standard 
deviation of the WQI is notably greater during the 
March sampling period, which is marked by low 
flow conditions, compared to the other two 
periods. The relationship between reduced river 
levels and flow rates correlates with diminished 
dilution capacity, causing significant variability in 
physicochemical parameters from one sampling 
point to another. The pronounced standard 
deviation observed in the second round of 
sampling, as indicated in Table 4, underscores 
the extent of variation in these physicochemical 
parameters. 
 

Throughout the three sampling periods, the 
second round yielded the least favorable results 

regarding water quality. This round recorded the 
lowest WQI at 1887.40, which is significantly 
higher than the maximum WQI observed in the 
first round (254.82) and the third round (173.71). 
As previously discussed, the observed variations 
in WQI across the sampling intervals can be 
attributed to the declining levels and flow rates of 
the Niger River, which are influenced by a lack of 
rainfall and considerable evaporation, alongside 
the continuous discharge of pollutants. 
Furthermore, the central area of the capital is 
identified as the primary source of pollution within 
the study region, as illustrated in Fig. 4.  
 

3.2 Water Quality Indices Modelling 
 

The data pertaining to the measured 
physicochemical parameters and the calculated 
Water Quality Indices (WQIs) from three 
sampling rounds have been categorized into 
three distinct sets: training, validation, and test 
sets, comprising 60%, 20%, and 20% of the data, 
respectively, arranged from upstream to 
downstream. This classification aims to assess 
the models' ability to predict downstream WQIs. 
A summary of the maximum, minimum, average, 
and standard deviation for the five input 
parameters and the output parameter (WQI) 
across the training, validation, and testing sets is 
presented in Table 5. In the training set, the 
WQIs range from 0.44 to 1887.40, with an 
average of 105.39 and a standard deviation of 
251.44. The validation set shows WQIs 
fluctuating between 7.75 and 1340.86, yielding 
an average of 109.44 and a standard deviation of 
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267.13. Conversely, the test set is characterized 
by WQIs ranging from 7.32 to 345.85, with an 
average of 54.84 and a standard deviation of 
83.95. Notably, the average WQI in the test set 
surpasses that of both the training and validation 
sets, while the standard deviation in the test set 
(83.95) is significantly lower than the closely 
aligned values of the training and validation sets 
(251.44 and 267.13, respectively). Among the 
five input parameters, only pH exhibits result that 
are somewhat comparable to this trend. 
 
The objective of employing Multiple Linear 
Regression (MLR) and Artificial Neural Networks 
(ANN) is to assess the predictive capabilities of 
these methodologies in modeling the Water 
Quality Index (WQI) of the Niger River within the 
designated study area. This assessment is 
based on data gathered from December 2017 to 
July 2018 across 40 sampling locations. To 
evaluate the efficacy of each model developed 
through training, validation, and testing datasets, 
statistical metrics such as the correlation 
coefficient (R²), Root Mean Square Error 
(RMSE), and Mean Absolute Error (MAE) were 
utilized for comparative analysis of the 
performance of the various techniques 
implemented. 
 

- MLR Model 
 

In the process of developing the multiple linear 
regression (MLR) model for predicting the Water 
Quality Index (WQI), the independent variables 
selected included electrical conductivity (EC), 
pH, nitrate (NO3

-), nitrite (NO2
-), and iron (Fe). 

The MLR model was constructed utilizing a 
training dataset, which comprised both input and 
output values, to determine an appropriate fitting 

structure. The fitting model obtained is shown in 
equation (10). 
 
The variable WQIMLR represents the anticipated 
Water Quality Index (WQI) for the Niger River, 
derived through multiple linear regression (MLR) 
techniques. In this context, EC denotes the 
electrical conductivity measured in millisiemens 
per centimeter (mS.cm-1), while pH indicates the 
water's potential. Additionally, the concentrations 
of nitrate, nitrite, and iron are expressed in 
milligrams per liter (mg.L-1). This equation was 
employed to calculate the modelled WQIs across 
the training, validation, and testing datasets. 
 

- ANN Model 
 

In the construction of the artificial neural network 
(ANN) model, the same input variables utilized in 
the regression analysis were employed. To 
streamline the development of the ANN model, 
certain parameters were held constant, including 
the activation functions applied between the input 
and hidden layers (Sigmoid) and between the 
hidden and output layers (linear), as well as the 
learning coefficient set at λ=0.50, the momentum 
coefficient at α=0.50, a maximum iteration limit of 
10,000, and a single output neuron 
corresponding to the Water Quality Index (WQI). 
The determination of the optimal number of 
neurons in the hidden layer was achieved 
through a trial-and-error methodology, where the 
ideal configuration was identified based on the 
model's high coefficient of determination (R²) and 
minimal error rates, specifically root mean square 
error (RMSE) and mean absolute error (MAE), 
across various datasets. Ultimately, the most 
effective ANN model was established with 13 
neurons in the hidden layer.1. Table 6 presents 

 
Table 5. Descriptive statistics of training, validation and testing sets data 

 

Sets Parameters pH EC NO3
- NO2

- Fe WQI 

Training Maximum 9 1747 7,5 0,2 4,1 1887.40 

Minimum 4 5,5 0 0 0 0.44 

Average 6,45 171,78 1,94 0 0,14 105.39 

Std dev. 391,03 1,23 2,06 0,02 0,52 251,44 

Validation Maximum 8,6 1474,6 8 0,06 2,9 1340.86 

Minimum 5,3 12,5 0 0 0 7.75 

Average 6,97 292,41 2,13 0 0,18 109.44 

Std dev. 452,85 0,8 2,41 0,01 0,59 267,13 

Test Maximum 8,1 890,4 7,5 0,01 0,72 345.85 

Minimum 4 20,8 0 0 0 7.32 

Average 6,8 133,48 2,25 0 0,07 54.84 

Std dev. 217,84 0,93 2,86 0 0,18 83,95 
Std dev. means standard deviation 
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Table 6. Performance of models derived from MLR and ANN techniques 
 

Set Method Evaluation criteria 

R2 RMSE MAE 

Training MLR 0.998 9.961 7.398 

ANN 0.999 0.8380 0.5396 

Validation MLR 0.997 14.071 10.618 

ANN 0.999 8.1905 4.2113 

Test MLR 0.976 13.009 10.332 

ANN 0.998 5.2615 2.8969 

 
the outcomes of the Multiple Linear Regression 
(MLR) and Artificial Neural Network (ANN) 
models. The Water Quality Index (WQI) values 
derived from both methodologies were 
individually assessed against the calculated WQI 
(Equation 4). This evaluation was conducted in 
accordance with the statistical parameters 
outlined in Table 5. 
 
The WQI serves as a crucial instrument for 
assessing the potability of water. A model 
utilizing this water quality assessment tool is 
essential for safeguarding the health of 
communities residing along the Niger River in 
Bamako, thereby protecting them from 
waterborne diseases. The performance of                  
WQI models based on MLR and ANN was 
evaluated using statistical metrics such as R², 

Root Mean Square Error (RMSE), and                     
Mean Absolute Error (MAE), as presented in 
Table 6. The MLR model yielded R², RMSE, and 
MAE values of 0.998, 9.961, and 7.398 for the 
training set, 0.997, 14.071, and 10.618 for the 
validation set, and 0.976, 13.009, and 10.332 for 
the test set. In contrast, the ANN model 
demonstrated R², RMSE, and MAE values of 
0.999, 0.838, and 0.5396 in the training set, 
0.999, 8.1905, and 4.2113 in the validation set, 
and 0.998, 5.2615, and 2.8969 in the test set, 
respectively. Both methodologies produced R² 
values approaching 1 across all datasets, with 
error rates remaining within acceptable limits. 
Consequently, these findings indicate that both 
MLR and ANN techniques are effective in 
modeling the WQI of surface water in the study 
area. 

 

 
 

Fig. 5. Data profiles of calculated WQI and predicted WQI by MLR (a) and ANN (b) models from 
upstream to downstream respectively training, validation and test sets 
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The figure above illustrates the accuracy of the 
predicted WQI derived from both MLR and ANN 
methodologies, alongside the actual WQI values 
for the training, validation, and test datasets, as 
depicted in Figs 4a and 4b. The proximity 
between the predicted and actual WQI values 
indicates that both techniques have effectively 
learned from the data. However, a comparative 
analysis of the error rates reveals that the RMSE 
and MAE are significantly lower in the ANN 
approach compared to the MLR. Conversely, the 
R² is closer to 1 for the ANN model across all 
datasets, suggesting superior predictive 
performance. Consequently, it can be concluded 
that the ANN model demonstrates greater 
accuracy in predicting the WQI of the Niger River 
than the MLR approach. 
 
It appears that the parameters used make it 
possible to model WQIs. Although the climatic 
parameters (rainfall, water flow speed or wind) 
do not participate in the construction of the 
models, their role in the river quality variation 
means that it would be wise to use them like 
inputs like used in [43] work. These additions 
would certainly have positive effects on the 
quality of the futures models. Moreover, [46, 48, 
50] have shown the importance of climatic 
parameters in the quality of river water. 
 

4. CONCLUSION 
 

This research enabled an evaluation of the water 
quality of the Niger River, which is crucial for the 
growth and development of Bamako, the capital 
city of Mali. Consequently, it facilitated the 
identification of regions where the highest 
concentrations of pollutants are introduced into 
the river, while also emphasizing the influence of 
climatic factors, especially rainfall, on the 
fluctuations of the Water Quality Index (WQI) 
within the examined region. The mathematical 
models developed for the WQI of the Niger River 
in Bamako, along with their averages, serve as 
valuable instruments that will enhance river 
management and inform decision-making 
processes, thereby preparing stakeholders for 
potential future challenges. Finally, this study 
reveals that ANN is better than MLR technic. 
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