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Abstract

In this paper, we consider further propositions concerning the range of possible distributions over the unit
circle, for the Riemann zeta function as in prior research. We also derive some new upper bounds on the sum
of norms for the tail sequence corresponding to the Riemann zeta function. We discuss some hypotheses,
conditional on which, properties of concentrated distributions may be obtained. Specific sub-classes are
shown of distributions that occur infinitely often along the imaginary axis.
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1 Introduction

The subject of study for this paper is the Riemann zeta function and the Riemann Hypothesis ([1], [2]). The
point of view is in line with and extends prior research in [3],[4] and [5]. The main interest is in understanding the
pattern of zeros and non-zeroes. We draw connections with associated distributions for complex functions defined
by an absolutely convergent series and consider concentration phenomena in associated probability measures over
the unit circle, for the given series. Such an undertaking is linked to solving for bounds on the tail of the sequence
that defines the series. This corresponds to the quantity Z∗(σ, t,m) in this paper, which is the sum of norms for
the series, the tail from m onwards, with complex input (σ, t). Our interest lies in considering upper bounds on
Z∗(σ, t,m). We also study an optimization problem with non-linear constraints, which solves for the minimum
value t∗(m, r) needed for the construction of points (σ, t∗(m, r)) which concentrate the measure on an arc. Here,
m denotes the number of points to be positioned on the arc and 0 < r < 1 is a level of accuracy associated with
positioning. By making certain hypotheses on Z∗(σ, t,m) and t∗(m, r), we are allowed an analysis of regions
where the associated distributions are concentrated, when the input complex variable is in the critical region. To
further highlight this phenomenon, and other related phenomena, we also study the prime zeta function, where
we analyse the existence and occurence of points that correspond to equitable distributions i.e. distributions
which are not concentrated. Previous research on this subject may be found in [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16] and [17].

2 Probability Measures Over the Unit Circle

We present the framework for the analysis in this paper. For the appropriate notation, we refer to [3], [4] and
[5]. The concentration theorem is as follows.

Proposition 2.1. ([4]) Let µ be a probability measure on the unit circle S1. Then,

Eµ[z] 6= 0 if there exist numbers 0 ≤ θ′ ≤ θ′′ ≤ 2π such that θ′′ − θ′ ≤ π and

µ({z : θ′ ≤ θ(z) ≤ θ′′}) > 1

1 + cos
(
θ′′−θ′

2

) . (2.1)

Of course, by symmetry of the circle, this also applies to arcs of the form described by 0 ≤ θ′ ≤ θ′′ ≤ 2π and
θ′ + (2π − θ′′) ≤ π, requiring the concentration condition

µ({z : θ(z) ∈ [0, θ′] ∪ [θ′′, 2π]}) > 1

1 + cos
(
θ′+(2π−θ′′)

2

) . (2.2)

For each complex variable ([2], [18]) given by (σ, t) ∈ S = {(σ, t) ∈ R2 : σ ∈ (0, 1); t 6= 0}, we define Z0(s) = (1, 0);
Zn(s) = 1

(2n+1)s
− 1

(2n)s
, for each n ∈ Z+. Hence, the Riemann zeta function is ζ(s) = ( 1

1−21−s )×
∑
n≥0 Zn(s).

We also define ζ∗(s) =
∑
n≥0 Zn(s). For s = (σ, t) ∈ S, the probability measure µs on S1 is defined as follows.

For each measurable subset A ⊆ S1,

µs(A) =

∑
n≥0:Zn(s)∈A ||Zn(s)||∑

n≥0 ||Zn(s)|| . (2.3)

Consider the following definition.

Definition 2.1. A distribution µs is said to be concentrated if either condition 2.1 or 2.2 is satisfied. The set
of concentrated points in S is defined as S∗ = {s ∈ S : µs is concentrated}.

We are interested in providing an upper bound for the sum of norms corresponding to the tail i.e.

Z∗(σ, t,m) :=
∑

n≥m+1

||Zn(s)||. (2.4)
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Before proceeding, we introduce some notation. Suppose we are given two real-valued functions defined on a
subset of X ⊆ Rd i.e f, g : X → R. We say that f(x) = O(g(x)) if for some φ > 0 and y > 0, |f(x)| ≤ φ|g(x)|
for each x ∈ X such that maxi∈{1,...d} xi ≥ y. This concerns the asymptotic order or the rate of growth of f by
an upper bound that is provided by the function g.

Consider the following hypothesis. See also [19].

Hypothesis 2.1. For each σ ∈ [0.5, 1), there exists α ∈ (0, 1) and k ∈ N such that Z∗(σ, t,m) = O((ln(|t|))km−α).

The purpose of considering a bound on the tail is to be able to construct t values i.e. imaginary parts of the
complex input, which position the points in the set {Zn(s)}1≤n≤m such that the points Zn(s) are all contained
in an arc, which corresponds to a subset of [0, 2π]. For large m, the sum of norms Z∗(σ, t,m) would be small,
resulting in the distribution µ(σ,t) to be concentrated on the arc. Since m is large, the t values needed for this
construction would be large, which would increase the value of a bound on Z∗(σ, t,m) that is increasing in |t|.
For example, consider the bound from [4] which leads to Z∗(σ, t,m) ≤

(
1 + |t|

σ

)
1

(2m+2)σ
. We now show some

different bounds on Z∗(σ, t,m). Note that

Zn(s) =
1

(2n+ 1)s
− 1

(2n)s

=
( 1

(2n)s

)
×
(( 2n

2n+ 1

)s
− 1
)
. (2.5)

Hence,

||Zn(s)|| =
∣∣∣∣∣∣ 1

(2n)s

∣∣∣∣∣∣× ∣∣∣∣∣∣( 2n

2n+ 1

)s
− 1
∣∣∣∣∣∣

=
( 1

(2n)σ

)
×
∣∣∣∣∣∣( 2n

2n+ 1

)σ(
cos
(
t ln
( 2n

2n+ 1

))
, sin

(
t ln
( 2n

2n+ 1

))
− (1, 0)

∣∣∣∣∣∣
=

√
((2n)−σ − (2n+ 1)−σ)2 + 2(2n)−σ(2n+ 1)−σ

(
1− cos

(
|t| ln

(
1 +

1

2n

)))
≤ (2n)−σ − (2n+ 1)−σ + 2(2n)−σ

∣∣∣ sin(0.5|t| ln
(

1 +
1

2n

)∣∣∣
(2.6)

The last inequality follows from the fact that for any two real numbers x, y ≥ 0, it follows that
√
x+ y ≤

√
x+
√
y

and also from the equality
√

2| sin(0.5x)| =
√

1− cos(x). Further,

(2n)
−σ − (2n + 1)

−σ
+ 2(2n)

−σ
∣∣∣ sin (

0.5|t| ln
(
1 +

1

2n

))∣∣∣ ≤ (2n)
−σ − (2n + 1)

−σ
+ 4(2n)

−σ
ln

(
1 + 0.5|t| ln

(
1 +

1

2n

))
≤ (2n)

−σ − (2n + 1)
−σ

+ 4(2n)
−σ

ln
(
1 +
|t|
4n

)
.

In the first inequality above, we apply the fact that for any x ≥ 0, we have that | sin(x)| ≤ 2 ln(1 + x). In the
second inequality, we apply the fact that for any x ≥ 0, we have ln(1 + x) ≤ x, and that ln(x) is an increasing
function. Hence, it follows that

∑
n≥m+1

||Zn(s)|| ≤
∑

n≥m+1

(2n)−σ − (2n+ 1)−σ + 4(2n)−σ ln
(

1 +
|t|
4n

)
.

Since ln(x) is increasing in x and n−1 is decreasing in n, the latter term, which depends on t, in the above sum
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may be bounded above by a definite integral as∑
n≥m+1

4(2n)−σ ln
(

1 +
|t|
4n

)
≤ 4

∫ ∞
m+1

x−σ ln(1 + x−1|t|)dx (2.7)

= 4

∫
( m
m+1

,1)

(1− ω′)σ−2 ln(1 + (1− ω′)|t|)dν(ω′) (2.8)

= 4

∫
(0, 1

m+1
)

ωσ−2 ln(1 + ω|t|)dν(ω), (2.9)

where ν is the uniform probability measure on (0, 1). The above holds due to the change of variables substitution
(1 − ω′)−1 = x. Another change of variables ω = 1 − ω′ is applied, however, the last equality holds due to the
symmetry of the density of the uniform probability measure around 0.5. We obtain the expectation of an
unbounded random variable in ω over the measurable set (0, 1

m+1
).

One may also derive the polar form of −Zn(s). This is useful since, by varying t, one would position −Zn(s) in
a given arc where the distribution is to be concentrated. Note that if Zn(s) leads to concentration on an arc,
then so does −Zn(s) on the arc that is polar opposite on the unit circle.

Since −Zn(s) =
(

1
(2n)s

)
×
(

1 −
(

2n
2n+1

)s)
, one need only derive the angle of 1 −

(
2n

2n+1

)s
, then add it to

the angle of 1
(2n)s

which is −t ln(2n). Note that as
(

2n
2n+1

)s
=
(

2n
2n+1

)σ(
cos
(
t ln
(

2n
2n+1

))
, sin

(
t ln
(

2n
2n+1

))
,

by geometry, we may show that the angle θ̂n(σ, t) for 1−
(

2n
2n+1

)s
is

θ̂n(σ, t) = tan−1

(
sin(t ln( 2n

2n+1
))(

2n+1
2n

)σ
− cos(t ln( 2n

2n+1
))

)
. (2.10)

Hence, the polar form of −Zn(s) may be derived as

−Zn(s) = ||Zn(s)||(cos(−t ln(2n)− θ̂n(σ, t)), sin(−t ln(2n)− θ̂n(σ, t))). (2.11)

Now, we shall define an optimization problem based on the above polar form.

min
(t,(qn)

m
n=1)∈R×Zm−1

t

subject to :
∣∣∣− t( ln(2n)

2π

)
− θn(σ, t)

2π
− qn

∣∣∣ ≤ r

2π
for all 1 ≤ n ≤ m. (2.12)

2(2n)−σ
∣∣∣ sin(0.5t ln

(
1 +

1

2n

)∣∣∣ ≤ √2− 1√
2m

for all 1 ≤ n ≤ m. (2.13)

qn ≤ 0 for all 1 ≤ n ≤ m. (2.14)
m∑
n=1

qn ≤ −1. (2.15)

t ≥ 0. (2.16)

Note that the optimization problem has non-linear constraints ([20],[21],[22]). Denote as t∗(m, r), the optimal
value (minimum) of the above optimization problem (minimization, for a given m ∈ N and 0 < r < 1. The
optimal value (minimum) is finite i.e. an optimizer (minimizer) exists, since the set of feasible t values is non-
empty and closed in R+. Non-emptiness would follow from simultaneous Diophantine approximation ([23],[24])

of the real numbers (− ln(2n)
2π

, ln( 2n
2n+1

))1≤n≤m, applying continuity of θn(σ, t) in t. The continuity also yields
closedness of the feasible t region. Note also that t∗(m, r) would be non-decreasing in m, given that more
constraints are added with larger m.
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Consider the following hypotheses

Hypothesis 2.2. For each r ∈ (0, 1), limm→+∞ t
∗(m, r) = +∞.

Hypothesis 2.3. For each r ∈ (0, 1), there exists Q ∈ N such that t∗(m, r) = O(mQ).

Now, we prove the following proposition.

Proposition 2.2. Suppose that Hypothesis 2.1, Hypothesis 2.2 and Hypothesis 2.3 are satisfied. Suppose that
σ ∈ [0.5, 1). Then, there exist countably many pairwise disjoint intervals {[tk, t̄k]}k∈Z+ , such that limk→∞ tk →
+∞ and for each k and t ∈ [tk, t̄k], we have that (σ, t) ∈ S∗+ i.e. µ(σ,t) is concentrated.

Proof. Consider the following function of m,

Z∗(σ, t∗(m, r),m). (2.17)

Note that by the given hypothesis, we have that Z∗(σ, t∗(m, r),m) = O((Q ln(m))km−α), which converges to
zero as m→ +∞. Hence, for small r, by choosing 0 ≤ t ≤ t∗(m, r), we may simultaneously diminish the norm
of the tail Z∗(σ, t,m) and also position the points {Zn(s)}1≤n≤m inside an arc around (−1, 0), the sum of norms
over 1 ≤ n ≤ m upper bounded strictly less than 1 and the probability measure µ(σ,t) would be concentrated on
an arc around (1, 0).

Prime zeta function We next study some more properties of concentrated measures corresponding to
series. We particularly consider the prime zeta function ([25],[26]). We recall a definition from [5]. Suppose
f : [0, π]→ [0, 1] is increasing. Then, a distribution µ on S1 is said to be f -equitable, if for each 0 ≤ θ′ ≤ θ′′ ≤ 2π
such that θ′′ − θ′ ≤ π, we have that

µ({z : θ′ ≤ θ(z) ≤ θ′′}) ≤ f(θ′′ − θ′) (2.18)

and for 0 ≤ θ′ ≤ θ′′ ≤ 2π such that θ′ + (2π − θ′′) ≤ π,

µ({z : θ(z) ∈ [0, θ′] ∪ [θ′′, 2π]}) ≤ f(θ′ + (2π − θ′′)). (2.19)

Define f0(θ) = θ
2π

and f1(θ) = 1

1+cos( θ
2
)
. The uniform measure on the unit circle is the only f0-equitable

measure. Note that µ is f1-equitable if and only if µ is not concentrated. We will now study f1-equitable (or
simply equitable) distributions for points in the domain of the prime zeta function.

Suppose that P ⊆ N is the set of all prime numbers. For each s = (σ, t), define the function

P (s) =
∑
p∈P

1

ps
. (2.20)

The function P is the prime zeta function. Now, define µPs to be the associated probability measure on the unit
circle S1 as

µPs (A) :=

∑
p∈P:p−s∈A p

−σ∑
p∈P p

−σ . (2.21)

We will first prove the following proposition in planar geometry that will be useful.

Proposition 2.3. Suppose that ϕ1, ϕ2, ϕ3 ≥ 0 such that ϕ1 +ϕ2 +ϕ3 = 1. Then, max{ϕ1, ϕ2, ϕ3} ≤ 0.5 if and
only if there exist z1, z2, z3 ∈ S1 such that

ϕ1z1 + ϕ2z2 + ϕ3z3 = 0. (2.22)

5
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Proof. Note that in the plane there exists z1, z2, z3 ∈ S1 such that ϕ1z1 + ϕ2z2 + ϕ3z3 = 0 if and only if ϕ1, ϕ2

and ϕ3 are the lengths of three sides of a triangle. This, in turn is equivalent to the condition max{ϕ1, ϕ2, ϕ3} ≤
0.5.

Now, we shall prove the following proposition.

Proposition 2.4. There exists an interval [σ∗, σ
∗] ⊆ [1, 7

4
] such that for each σ ∈ [σ∗, σ

∗], there exist countably
many pairwise disjoint intervals {[tk, t̄k]}k∈Z+ , such that limk→∞ tk → +∞ and for each k and t ∈ [tk, t̄k], we
have that µP(σ,t) is f1-equitable.

Proof. Let σ∗ > 1 such that ∑
p∈P:p≥7

1

pσ∗
= 0.5. (2.23)

This follows from the continuity of the prime zeta function. We will now exhibit some necessary calculations.
Note that, by an integral comparison, ∑

p∈P:p≥7

1

p
7
4

≤ 4

3(6)3/4
< 0.5 (2.24)

Hence, by the monotonicity of the prime zeta function in σ on the real line, σ∗ < 7
4
. It follows that

1

2σ∗
+

1

3σ∗
+

1

5σ∗
>

1

2
7
4

+
1

3
7
4

+
1

5
7
4

> 0.5. (2.25)

From the above derivations in 2.23,2.24 and 2.25 we have that

max
{ 2−σ

∗

P (σ∗)
,

3−σ
∗

+ 5−σ
∗

P (σ∗)
,

∑
p∈P:p≥7 p

−σ∗

P (σ∗)

}
< 0.5. (2.26)

In the above maximum, the three numbers add up to one. Hence, from Proposition 2.3, there exist points
zA, zB , zC ∈ S1 such that

2−σ
∗

P (σ∗)
zA +

3−σ
∗

+ 5−σ
∗

P (σ∗)
zB +

∑
p∈P:p≥7 p

−σ∗

P (σ∗)
zC = 0. (2.27)

Suppose, for large m, we now consider three disjoint sets A = {2σ
∗
(2)−(σ∗,t)}, B = {3σ

∗
(3)−(σ∗,t), 5σ

∗
(5)−(σ∗,t)}

and C = {pσ
∗
(p)−(σ∗,t)}p∈P:7≤p≤m. Note that A,B,C ⊆ S1. Since for m ≥ 3, the collection of numbers

{ ln(p)
2π
}p∈P:p≤m is linearly independent over Q, we apply the multidimensional Weyl criterion ([24]) to the sequence{

{t ln(p)
2π
}p∈P:p≤m

}
t∈N

to position A arbitrarily close to zA, B arbitrarily close to zB , and C arbitrarily close

to zC , by varying t. Since m is large, the norm of the tail would be negligible, so that we would approximate
the zero mean distribution on the three points zA, zB , zC on the unit circle with probability weights as in 2.26.
Lastly, we choose σ∗ < σ∗ such that σ∗ is close to σ∗, so that the appropriate strict inequalities from above
would be satisfied.

We also have the following proposition.

Proposition 2.5. There exists an interval [σ∗, σ
∗] ⊆ [1, 7

4
] such that for each σ ∈ [σ∗, σ

∗], there exists an
infinite subset of primes T ⊆ P such that for each t ∈ T , we have that µP(σ,t) is f1-equitable.

Proof. This again follows from the linear independence of { ln(p)
2π
}p∈P:p≤m over Q. Further, we also need the fact

from [27] that the sequence {αp}p∈P is uniformly distributed mod 1, for irrational α. See also [24] and [28].

6
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One may remark that in the above propositions, we present uncountably many f1-equitable points. By appealing
to the concentration phenomena in associated measures over the unit circle, we are able to concentrate the
measure on any possible arc with span less than π, by varying t for the prime zeta function. This would also
allow us to apply the argument principle on triangular contours, where the ends points would be concentrated on
polar opposite arcs, ensuring a positive argument/angular change. Such an approach would generate countably
many zeros and hence, countably many f1-equitable points. In contrast, the above proposition constructs
approximate zeros as we approximate a zero mean distribution on three points on the circle.

The concentration on any arc (not necessarily around (1, 0)) is possible because of the linear independence

of { ln(p)
2π
}p∈P:p≤m over Q. Hence, equidistribution follows allowing inhomogenous Diophantine approximation

with intercepts. This is in contrast with the Riemann zeta function ζ(s) =
∑
n≥1 n

−s on σ > 1, for which

the associated collection { ln(n)
2π
}n∈N:2≤n≤m is linearly dependent over Q. However, it is possible to consider

intercepts which are proportional to the real numbers to be simultaneously approximated.

3 Conclusion

We have shown some new results, which extends prior research. By placing hypotheses on the various mathematical
quantities of interest, we study the occurence of concentrated and equitable points, which is a dichotomy related
to the non-zero/zero dichotomy of the relevant domain. We have obtained propositions concerning distributional
properties that occur infinitely often along the imaginary axis. This presents new insights into the problem
studied in the paper.
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