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Abstract

Clinical trials involving systemic neoadjuvant treatments in breast cancer aim to shrink

tumors before surgery while simultaneously allowing for controlled evaluation of biomarkers,

toxicity, and suppression of distant (occult) metastatic disease. Yet neoadjuvant clinical tri-

als are rarely preceded by preclinical testing involving neoadjuvant treatment, surgery, and

post-surgery monitoring of the disease. Here we used a mouse model of spontaneous

metastasis occurring after surgical removal of orthotopically implanted primary tumors to

develop a predictive mathematical model of neoadjuvant treatment response to sunitinib, a

receptor tyrosine kinase inhibitor (RTKI). Treatment outcomes were used to validate a novel

mathematical kinetics-pharmacodynamics model predictive of perioperative disease pro-

gression. Longitudinal measurements of presurgical primary tumor size and postsurgical

metastatic burden were compiled using 128 mice receiving variable neoadjuvant treatment

doses and schedules (released publicly at https://zenodo.org/records/10607753). A non-lin-

ear mixed-effects modeling approach quantified inter-animal variabilities in metastatic

dynamics and survival, and machine-learning algorithms were applied to investigate the sig-

nificance of several biomarkers at resection as predictors of individual kinetics. Biomarkers

included circulating tumor- and immune-based cells (i.e., circulating tumor cells and mye-

loid-derived suppressor cells) as well as immunohistochemical tumor proteins (i.e., CD31

and Ki67). Our computational simulations show that neoadjuvant RTKI treatment inhibits pri-

mary tumor growth but has little efficacy in preventing (micro)-metastatic disease progres-

sion after surgery and treatment cessation. Machine learning algorithms that included

support vector machines, random forests, and artificial neural networks, confirmed a lack of

definitive biomarkers, which shows the value of preclinical modeling studies to identify

potential failures that should be avoided clinically.
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Author summary

Using simulations from a mechanistic mathematical model compared with preclinical

data from surgical metastasis models, we found that anti-tumor effects of neoadjuvant

receptor tyrosine kinase inhibitor treatment can differ between the primary tumor and

metastases in the perioperative setting. Model simulations with variable drug doses and

scheduling of neoadjuvant treatment revealed a contrasting impact on initial primary

tumor debulking and metastatic outcomes long after treatment has stopped and the pri-

mary tumor has been surgically removed. Using machine-learning algorithms, we identi-

fied the limited power of several circulating cellular and molecular biomarkers in

predicting metastatic outcomes, uncovering a potential fast-track strategy for assessing

future clinical biomarkers by pairing patient studies with identical studies in mice.

Introduction

Neoadjuvant trials in breast cancer (BC) patients involve the administration of systemic treat-

ment for a limited period to treat (and reduce) localized primary tumors before surgery [1].

Neoadjuvant trials provide several advantages to assist in novel drug development and transla-

tional research. They can be faster to conduct (than, e.g., adjuvant trials), require fewer

patients, offer the potential for controlled assessment of biological tissue for novel biomarker

development, and critically, can potentially limit distant (often occult) metastatic lesions to

delay disease recurrence long after treatment has ended [1,2]. Yet there are surprisingly few

studies that precede neoadjuvant trial design to offer predictive guides to validate drug efficacy,

biomarkers, or possible outcomes. In this regard, in silico (mathematical) modeling and pre-

clinical in vivo testing can be useful. However, mathematical modeling most often occurs as

post-hoc analysis in BC trials, and studies in mice rarely include clinically relevant systems

that capture the complexity of surgical impact on primary/metastatic growth to offer rational-

ized inclusion of biomarkers in trial design [3].

To address this gap, here we describe a mathematical modeling framework of neoadjuvant

therapy, using a combination of preclinical in vivo and in silico data to provide a predictive

platform for treatment outcomes. This extends from our prior work that validated a semi-

mechanistic model comparing localized ‘primary’ tumor growth with the growth of spontane-

ous metastatic disease that occurred after surgery in mouse models of BC [4]. We used ‘ortho-

surgical’ models (i.e., orthotopic implantation followed by surgical tumor resection) to show

that inter-individual variability in the kinetics of metastatic growth could be captured by the

distribution of a critical parameter of metastatic aggressiveness.

In the current study, we examined neoadjuvant treatment with sunitinib, a molecular tar-

geted tyrosine inhibitor (TKI) that can block angiogenesis-associated vascular endothelial

growth factor receptors (VEGFRs) along with several other regulators of metastasis [5]. Using

a VEGFR TKI had several advantages. First, they have a short half-life, which allowed us to

confine treatment effects to the presurgical period and incorporate multiple variations of treat-

ment dosing, days treated, and time of resection after initial tumor implantation in mice [6].

Second, VEGFR TKIs have shown mixed effects in the perioperative setting in BC [7]. While

the addition of neoadjuvant sunitinib to chemotherapy improved pathologic complete

response rates, long-term results have been more contrasted, with no disease-free survival ben-

efit and either none [8] or some [9] overall benefit. As a monotherapy, we and others have

demonstrated that robust inhibition of primary tumor growth does not always translate into

inhibition of metastasis post-surgically nor improvement in survival [10,11]. However, the
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burden in 251 mice implanted with human breast

cancer cells either untreated or pre-surgically

treated with two distinct receptor tyrosine kinase

inhibitors (Sunitinib and Axitinib) and multiple dose

and scheduling regimen. It also contains tumor

and circulating biomarkers collected at surgery.

The code is available at https://gitlab.inria.fr/

benzekry/metamats.burden.treatment. A software

heritage identifier permalink for a code snapshot at

the time of publication is available at https://

archive.softwareheritage.org/swh:1:snp:

d39660e34a46938dba993b474433a38b7c51a70f;

origin=https://gitlab.inria.fr/benzekry/metamats.

burden.treatment [17].
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mechanistic determinants of these counter-intuitive findings remain elusive. In our experi-

mental model, we measured multiple cellular and molecular biomarkers at surgery. Adding

here neoadjuvant treatment to our mathematical modeling framework allowed us to 1) formu-

late and test mechanistic hypotheses about differential effects on primary versus secondary dis-

ease, 2) evaluate the impact of biomarkers on metastatic development and 3) investigate the

impact of modulating dosing regimen.

For 2), we use machine learning to investigate the predictive power of biomarkers on the

mechanistic parameters of our neoadjuvant mathematical metastatic model. Machine learning

(ML) coupled with mechanistic modeling–an approach that we term ‘mechanistic learning’

[12,13]–can screen biomarkers with translational potential and establish predictive models

[14]. In contrast to classical statistical analysis, ML consists in designing models with predic-

tive performances as metrics of success, instead of inference properties. It also makes use of

nonlinear models such as regression trees or artificial neural networks [15].

Materials and methods

Ethics statement

Animal studies were performed in strict accordance with the recommendations in the Guide

for Care and Use of Laboratory Animals of the National Institute of Health and according to

guidelines of the Institutional Animal Care and Use Committee at Roswell Park Comprehen-

sive Cancer Center (protocol: 1227M, PI: John M.L. Ebos).

Experimental system

Cell lines. The human LM2-4LUC+ cells are a luciferase-expressing metastatic variant of

the MDA-MB-231 breast cancer cell line derived after multiple rounds of in vivo lung metasta-

sis selection in mice, as previously described [5]. LM2-4LUC+ were maintained in DMEM

(Corning cellgro; 10-013-CV) supplemented with 5% v/v FBS (Corning cellgro; 35-010-CV),

in a humidified incubator at 37oC and 5% CO2. The cell line was authenticated by STR profil-

ing (DDC Medical, USA).

Drug and doses used. Sunitinib malate (SU11248; Sutent, Pfizer) is a molecular receptor

tyrosine kinase inhibitor (RTKI) that can block angiogenesis-associated vascular endothelial

growth factor receptors (VEGFRs) along with several other regulators of metastasis [18]. The

molecule was suspended in a vehicle formulation that contained carboxymethylcellulose

sodium (USP, 0.5% w/v), NaCl (USP, 1.8% w/v), Tween-80 (NF, 0.4% w/v), benzyl alcohol

(NF, 0.9% w/v), and reverse osmosis deionized water (added to final volume), which was then

adjusted to pH 6. The drug was administered at 60 or 120 mg/kg/day orally by gavage as previ-

ously described [10,19]. The treatment window used in all neoadjuvant studies consisted of a

previously optimized 14-day period before surgery [10]. Within these 14 days, daily sunitinib

(Su) treatment was given either at 60 mg/kg/day (for 3, 7, or 14 days followed by vehicle for 11,

7, or 0 days, respectively), or at 120 mg/kg/day for 3 days followed by 60 mg/kg/day for 0, 4, 8,

or 11 days, and vehicle for 11, 7, 3, or 0 days, respectively. An example of an abbreviation in

the text includes ‘Su60(14D)’, which means ‘sunitinib at 60mg/kg/day for 14 days. Schematics

for all studies are shown in S1 Table. Mice treated daily with vehicle for 14 days were used as

controls. Detailed analysis and comparisons of these treatment regimens are described in a

companion study evaluating treatment breaks on metastatic disease.

Ortho-surgical model of metastasis. Implantations. Experimental methodology was

extended from previous work using a xenograft animal model of breast cancer spontaneous

metastasis that includes orthotopic implantation followed by surgical resection of a primary

tumor (termed ‘ortho-surgical’) [4]. Briefly, LM2-4LUC+ (1 x 106 cells in 100μl DMEM) were
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orthotopically implanted into the right inguinal mammary fat pad (right flank) of 6- to

8-week-old female SCID mice, as described previously [4,10,19]. Primary tumor (PT) burden

was monitored with Vernier calipers using the formula width2(length x 0.5) and biolumines-

cence imaging (BLI) [4,10,19]. Neoadjuvant treatments started 14 days before primary tumors

were surgically removed at a timepoint (34–38 days post-implantation) previously optimized

for maximal distant metastatic seeding but minimal localized invasion [4,10]. The surgeries

were planned at specific time points post-implantation to avoid invasion of the primary tumor

into the skin or peritoneal wall, ensuring that metastatic progression had proceeded and mini-

mizing the possibility of surgical cure [4,10]. Postsurgical metastatic burden (MB) was assessed

by BLI and overall survival was monitored based on signs of end-stage disease as previously

described [4,10].

Exclusion criteria. Two scenarios represented instances where animals were excluded from

treatment studies. First, if complete removal of the primary tumor was not surgically feasible

because of local invasion or evidence of advanced metastatic spread [4,19]. Second, if no pri-

mary or metastatic tumor was ever detected by BLI or visual assessment it was assumed there

was lack of tumor-take upon implantation [4,10].

Randomization. Before treatment initiation animals were randomized by primary tumor

size assessed by Vernier calipers to avoid any false results due to unequal tumor burden

between groups [20].

Biomarkers

Flow cytometry. Peripheral blood was collected in tubes containing lithium heparin (BD

Biosciences; 365965) by orbital bleeding one day before surgical tumor resection. Non-specific

binding was blocked with normal mouse IgG (Invitrogen; 10400C) incubated with whole

blood, followed by incubation with an antibody mix. After staining, cells were fixed in a lyse/

fix solution (BD Biosciences; 558049), while red blood cells were lysed. Samples were analyzed

with a LSR II flow cytometer (Becton Dickinson), while data were acquired with FACSDiva

software (Becton Dickinson) and analyzed with FCS Express 6 (DeNovo software).

Circulating tumor cells (CTC). The antibody mix for CTC detection of human CTCs in

animal models contained a rat anti-mouse CD45 (30-F11) antibody conjugated to PE (Biole-

gend; 103106) and mouse anti-human HLA conjugated to AlexaFluor 647 (Biolegend;

311416). CD45 staining with a rat anti-mouse CD45 conjugated to FITC (Invitrogen;

MCD4501) was used to eliminate any mouse blood cells, whereas human HLA was used to

identify CTC (human LM2-4LUC+). For positive control, LM2-4LUC+ cells were trypsinized,

washed with PBS, and stained for both CD45 and HLA. LM2-4LUC+ cells were used to define

the CTC gate.

Circulating myeloid-derived suppressor cells (MDSC). The antibody mix for detection

of MDSCs contained a rat anti-mouse CD45 (30-F11) antibody conjugated to PE (Biolegend;

103106), a rat anti-mouse Ly-6G/Ly-6C (Gr1) (RB6-8C5) antibody conjugated to PE-Cy7 (BD

Pharmingen; 552985), and a rat anti-mouse CD11b (M1/70) antibody conjugated to eFluor450

(eBioscience; 48–0112). Mouse CD45 staining was used to select only leukocytes, and CD11b

and Gr1 were used to define the granulocytic and monocytic MDSC.

Immunofluorescence. Resected tumors were frozen on dry ice in a cryo-embedding com-

pound (Ted Pella, Inc; 27300), sectioned, and fixed in a 3:1 mixture of acetone:ethanol. Non-

specific binding was blocked with 2% BSA in PBS, followed by staining with an antibody mix

containing rabbit anti-mouse Ki67 antibody (Cell Signaling Technologies; 12202) and rat anti-

mouse CD31 antibody (Dianova; DIA-310). Detection of primary antibodies was achieved

using FITC conjugated goat anti-rabbit IgG (BD Pharmingen; 554020) and Cy3 conjugated
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goat anti-rat IgG (Invitrogen; A10522). Samples were counterstained with DAPI (Vector; H-

1500) and mounted with a hard-set mounting medium for fluorescence. Random images from

each section were obtained with a Zeiss AxioImager A2 epifluorescence microscope at 200x

magnification, and analyzed with ImageJ. CD31+ cells (% area) and Ki67+ cells (% cells) were

quantified automatically using macro functions, whereas Ki67+/CD31+ cells (proliferating

endothelial cells) were quantified manually.

Mechanistic modeling of untreated pre- and post-surgical metastatic

development

For untreated animals, we previously validated a mechanistic model for the description of pre-

surgical primary tumor and post-surgical metastasis kinetics in the ortho-surgical LM2-4LUC+

animal model [4]. Briefly, metastatic development is decomposed into two main processes:

growth and dissemination.

Growth of the PT and metastases follow the Gomp-Exp model [21]:

gpðvÞ ¼ gðvÞ ¼ min lv; a � bln
v

V0

� �� �

v
� �

;

where gp and g denote the growth rates of the primary and secondary tumors, respectively.

Parameter λ limits the Gompertz growth rate to avoid unrealistically fast kinetics for small

sizes and is given by the in vitro proliferation rate, assessed previously [4]. Parameters α and β
are the Gompertz parameters, and V0 is the size of one cell (in units of mm3 for the PT, and

photons/seconds for the metastases). The PT volume, Vp(t) thus solves

dVp

dt
¼ gp Vp

� �

Vpðt ¼ 0Þ ¼ Vi;

8
><

>:

with Vi the volume corresponding to the number of cells injected (= 1 mm3 based on the con-

version rule 1 mm3’ 106 cells [22]).

Dissemination occurs at the following volume-dependent rate [4]:

dðVpÞ ¼ mVp;

where parameter μ can be interpreted as the daily probability that a cell from the PT success-

fully establishes a metastasis [4].

The metastatic process was described through a function ρ(t, v) representing the distribu-

tion of metastatic tumors with size v at time t. It solves the following initial boundary value

problem [23]:

j@trðt; vÞ þ @vðgðvÞrðt; vÞÞ ¼ 0; jt 2 ð0þ1Þ; v 2 ðV0;þ1Þ

jgðt;V0Þrðt;V0Þ ¼ dðVpðtÞÞ; jt 2 ð0;þ1Þ

jrð0; vÞ ¼ 0; jv 2 ðV0;þ1Þ

8
>><

>>:

The first equation derives from a balance equation on the number of metastases; the second

equation is a boundary condition for the rate of newly created metastases; the third equation is

the initial condition (no metastases exist at the initial time).
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The MB at time t was then given by

MðtÞ ¼
Z þ1

V0

vrðt; vÞdv ¼
Z t

0

dðVpðt � sÞÞVðsÞds;

which can be solved efficiently through the use of a fast Fourier transform algorithm [24]. In

the previous equation, V(s) represents the volume reached by a metastatic tumor after time s
from its birth, when growing with growth rate g.

Heuristic modeling of neoadjuvant therapy (NAT)

In the first phase of investigations (Fig 1), we leveraged the previously identified parameters of

our model for untreated metastatic development [4]. NAT was grossly modeled by simply set-

ting either gp (Scenario A) or gp and g (Scenario B) to zero, during NAT. This allowed us to

perform pure predictions that did not require any parameter fitting to the data.

Kinetics-pharmacodynamics modeling of NAT

Structural model. We next incorporated the effects of systemic therapy in a way that

accounts for systemic concentration kinetics resulting from the drug scheduling regimen

(dose and timing of administration). This new model assumes that the drug reduces the pri-

mary tumor growth rate by a term proportional to its concentration, C(t) (Norton-Simon

hypothesis [25]):

gT
p ðt; vÞ ¼ gpðvÞð1 � k CðtÞÞ

where k is a parameter of drug efficacy. As no pharmacokinetic data was available, we used a

kinetics-pharmacodynamics (K-PD) approach. Namely, we considered that the drug concen-

tration decays exponentially after each dose,

C tð Þ ¼
1

Vd

Xn

i¼1

Die
� keðt� tiÞIt>ti

;

where Di indicates the dose administered at time τi. The volume of distribution Vd and the

elimination rate constant ke were fixed to the values reported in [26].

Parameter identification for the K-PD model. Following previously established method-

ology [4], the parameters were identified from the experimental data using a nonlinear-mixed

effects modeling approach [27]. Briefly, this consists of modeling inter-animal variability by

assuming a parametric distribution for the model parameters. All individual PT and MB longi-

tudinal data could then be pooled together in a population model, whose parameters were esti-

mated by likelihood maximization [27]. In mathematical terms, if yi
j denotes the observation

(primary tumor size or metastatic burden) in animal i at time ti
j and f ðti

j ; y
i
Þ denotes the model

prediction in an animal with parameter set y
i
¼ ðai; b

i
; ki; miÞ, we log-transformed the data

and assumed a proportional error model. The statistical observation model thus writes:

lnyi
j ¼ lnðf ðti

j ; y
i
ÞÞð1þ �sεi

jÞ;

lnðyi
Þ ¼ lnðypopÞ þ Z

i; Zi � N ð0;OÞ;

where εi
j � N ð0; 1Þ is a Gaussian noise for measurement error. The parameters θpop and O

characterize the entire population. The observed data were log-transformed and a proportional
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Fig 1. Mathematical modeling reveals differential effects of neoadjuvant sunitinib treatment on primary tumor and metastatic growth.

(A) Schematic of the study. Data from an ortho-surgical, human xenograft animal model of neoadjuvant sunitinib breast cancer treatment

were fitted using a mixed-effects statistical framework. This provided calibrated parameters for each animal. Machine learning algorithms

were used to assess the predictive power of molecular and cellular biomarkers to predict the metastatic dissemination parameter μ and

quantify metastatic aggressiveness. (B) Schematic of tested hypotheses of the effect of neoadjuvant sunitinib Tx on primary tumor and
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error model was used, that is

lnyi
j ¼ lnðf ðti

j ; y
i
ÞÞð1þ �sεi

jÞ:

For the vector of individual parameters, a log-normal distribution with full covariance

matrix was assumed. Maximum likelihood estimates of the population parameters were

obtained using the Stochastic Approximation of Expectation-Maximization (SAEM) algorithm

implemented in the nlmefitsa Matlab function [28]. PT and MB data were fitted simulta-

neously for vehicle and sunitinib-treated animals. Visual predictive checks (VPC), individual

fits and standard diagnostic graphical tools based on individual parameters were used to evalu-

ate the adequacy of the different model components.

Definition of metastatic relapse. To define a time of metastatic relapse, we aimed to

mimic the human situation in which 30% of breast cancer patients with localized disease

undergo metastatic relapse [29]. Therefore, we defined a MB relapse threshold to be the 30th

percentile of the control population MB at 85 days (considered to be an approximation of

long-term), i.e. 6.322 x 108 cells. This threshold then allowed us to compute the percent of sub-

jects having metastatic relapse in the virtual populations, under varying NAT scheduling

regimens.

Machine learning algorithms

Effects of covariates on the model parameters were assessed using linear regression and several

machine learning regression techniques (partial least squares, artificial neural networks, sup-

port vector machines and random forest models) using the R caret package [30,31]. Except for

the random forest models, data were centered and scaled before modeling. Tuning parameter

values of the regression models were selected to minimize the root mean squared error

(RMSE) using five replicates of a 10-fold cross-validation. If θi are the true values and ŷ i the

predicted ones, the RMSE is defined by:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

ijŷ
i � y

i
j
2

N
:

s

Results

In vivo/in silico modeling of neoadjuvant therapy (NAT) suggests limited

effect on metastasis growth

The previously reported "paradoxical" observation of a differential effect of NAT on the pre-

surgical primary tumor (PT) and post-surgical metastatic burden (MB) [10,11] could result

from two phenomena that are mixed in MB quantification: 1) metastatic growth suppression

and 2) reduction of metastatic spread as a consequence of primary tumor size reduction. To

disentangle the two, we used quantitative mathematical modeling to compare biological

hypotheses to the data. (Schematic shown in Fig 1A; see Methods for the mathematical model

metastatic growth and dissemination through mechanistic mathematical modeling. Scenario A = growth arrest on both primary and

secondary tumors. Scenario B = growth arrest on primary tumor only. (C) Predicted simulations of Scenarios A and B using parameters

calibrated from a previous study involving untreated (vehicle) animals only [4]. Data plotted here (LM2-4LUC+ bioluminescent human breast

cancer cells orthotopically injected in mice) was not used to estimate the model parameters. Tx, treatment; PT, primary tumor; MB, metastatic
burden. *See methods for additional details on animal experiments, treatment dose and duration, and mechanistic model. The mouse images
were drawn using Biorender.

https://doi.org/10.1371/journal.pcbi.1012088.g001
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definition). Since our previously developed model did not account for treatment [4], we first

used a heuristic approach to model NAT. In ‘scenario A’, NAT would have growth-arresting

effects on both PT and MB, while in ‘scenario B’ NAT would have an effect only on PT (sche-

matically shown in Fig 1B). This way, we could use previously calibrated parameters [4], and

only set either both growth rates gp and g (Scenario ‘A’) or gp only (Scenario ‘B’) to zero during

NAT. This allowed us to make predictions without relying on data fitting. Scenario ‘A’ clearly

failed to describe the data (Figs 1C and S1), whereas Scenario ‘B’ interestingly demonstrated

good accuracy (Figs 1C and S1). These results demonstrate a differential effect of NAT on the

growth of primary and secondary tumors and suggest that a mathematical model of NAT in

our breast cancer ortho-surgical animal model should not include an anti-growth effect on

metastasis.

Calibration and validation of a kinetics-pharmacodynamics (K-PD) model

for NAT

Subsequently, to further link dose and scheduling to response, we developed a K-PD metastatic

model of NAT using a defined treatment window (14 days) containing multiple treatment

periods (3, 7, 11, 14 days), doses (60 mg and 120 mg), and time of surgery after tumor implan-

tation (day 34 or 38) (see S1 Table and methods for details). Following our findings above, we

only adapted the PT growth rate gp from [4], using the Norton-Simon hypothesis for the PT

anti-growth effect of NAT [25]. Estimates of the model parameters are reported in Table 1 and

demonstrate high practical identifiability (relative standard error� 17%), likely owing to the

large number of subjects in the population fit. In addition, the estimate of the proportional

error parameter �s (3.91%) indicated accurate goodness-of-fit.

Confirming our previous results [4], the metastatic potential parameter μ was found to vary

significantly amongst individuals (largest coefficient of variation). Visual predictive checks for

both the vehicle group and treated groups demonstrated accurate goodness-of-fit both at the

population (Figs 2A and S2) and individual (Figs 2B and S3) levels. In addition, model predic-

tions in independent data sets unused for parameter calibration, with distinct times of surgery

(day 38 versus day 34) and drug regimens, were in good agreement with the data (S4 Fig). Fur-

ther model diagnostic plots demonstrated no clear misspecification of the structural and resid-

ual error model (S5 Fig). Distributions of the empirical Bayes estimates were in agreement

with the theoretical distributions defined in the statistical model (S6 Fig). Moreover, the η-

shrinkage was less than 20% for each parameter, meaning that the individual parameter

Table 1. Parameter estimates of the metastatic and survival models obtained by likelihood maximization via the SAEM algorithm.

Parameter (Unit) Meaning Median value CV (%) r.s.e. (%)

μ (cell-1.day-1) Dissemination coefficient 2.12e-11 1.48e+03 17.3

α (day-1) Gompertzian growth parameter 1.94 18.1 2

β (day-1) Gompertzian growth parameter 0.0911 19.7 2.21

λ (day-1) In vitro proliferation rate 0.837 (fixed) - -

k (L/mg) Drug efficacy 0.446 32.1 6.34

ke (day-1) Drug elimination rate 3.26 (fixed) - -

Vd (L) Drug volume of distribution 12 (fixed) - -

�s� (%) Error parameter 3.91 - -

Abbreviations: CV, coefficient of variation computed as the ratio of the standard deviation and the median of the estimated parameter distribution; r.s.e., residual

standard error.

https://doi.org/10.1371/journal.pcbi.1012088.t001
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estimates and the diagnostic tools based on them can be considered reliable [32]. Finally, cor-

relations found between the estimated random effects (S7 Fig) confirmed the appropriateness

of a full covariance matrix in the assumed distribution of the individual parameters.

Together, these results show the validity of our mathematical model to simulate PT and MB

kinetics under a wide range of NAT administration regimens, which can thus be employed to

explore in silico the quantitative impact of possible NAT schedules.

Fig 2. Calibration and validation of a kinetics-pharmacodynamics (K-PD) mathematical model for neoadjuvant sunitinib treatment effect on pre- and

post-surgical tumor growth. Pre- and postsurgical growth of LM2-4LUC+ human metastatic breast carcinomas were measured in multiple groups involving

different neoadjuvant treatment modalities (doses and durations). The mathematical model was fitted to the experimental data using a mixed-effects

population approach (n = 104 animals in total). (A) Comparison of the simulated model population distribution (visual predictive check) for vehicle and

neoadjuvant sunitinib treatment (60mg/kg/day) 14 days before surgery. (B) Examples of individual dynamics. Tx, treatment; PT, primary tumor; MB,

metastatic burden.

https://doi.org/10.1371/journal.pcbi.1012088.g002
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Simulations of NAT duration reveal a different impact on PT size

reduction and metastasis-free survival

The overall impact of NAT is the combination of i): PT debulking (which in turn reduces met-

astatic spread from the PT), and ii) an increased risk of metastatic relapse due to delayed

removal of the PT. To quantify the impact of NAT duration on these two opposite aspects, we

ran simulations of our calibrated model for NAT durations ranging between 0 to 18 days. The

NAT initiation time was fixed to 27 days, assumed to be the time of detection of the primary

tumor. The resection time fixed was then varied from 27 to 45 days. Three dose levels were

simulated (60, 120, and 240 mg/kg, see Fig 3). First, using only the typical population estimates

of the parameters (median individual), we found an important increase in postsurgical MB for

long NAT: final values ranged from 2.73 x 108 to 7.52 x 108 cells for NAT durations from 0 to

18 days (176% increase), respectively, at the 60 mg/kg dose level (Fig 3A). This is consistent

with our model where NAT does not affect metastatic growth, thus delaying surgery can only

increase MB. This was less important in higher dose levels (125% and 48.5% increases for 120

mg/kg and 240 mg/kg, respectively). To study the impact of inter-individual variability, we lev-

eraged our mixed-effects framework to perform population simulations and quantify the out-

come. Namely, we simulated 1000 virtual individuals and recorded the percent changes in PT

size at the end of NAT. Fig 3B shows the resulting median PT percent changes, together with

an area covering 80% of the population. In addition, we calculated a risk of metastatic relapse

Fig 3. Simulations of varying neoadjuvant treatment duration quantify contrasted impact on primary tumor size reduction and risk of metastatic

relapse. Using model parameters calibrated from data of our ortho-surgical animal model of breast cancer neoadjuvant targeted treatment, simulations were

conducted for treatment durations varying between 0 (light color) and 18 (dark color) days, for three dose levels (60 mg/kg, 120 mg/kg and 240 mg/kg). (A)

Predicted simulations of pre-surgical primary tumor and post-surgical metastatic kinetics. Note: for the 240 mg/kg plot, the metastatic burden growth curves

with the three longest treatment durations are superimposed and not distinguishable. (B) Population-level predictions of final primary tumor size (solid line

and grey area) and probability of metastatic relapse as functions of the duration of neoadjuvant treatment, which delays surgical removal of the primary tumor

(circled line). Inter-individual variability simulated from the population distribution of the parameters learned from the data (n = 1000 virtual subjects). Tx,

treatment; PT, primary tumor; MB, metastatic burden.

https://doi.org/10.1371/journal.pcbi.1012088.g003
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from the resulting simulation of MB kinetics (see Methods), which is depicted as the circled

line in Fig 3B.

For 60 mg/kg and 120 mg/kg doses, the metastatic relapse risk was predicted to increase

drastically when delaying PT removal too long. However, for a 240 mg/kg dose (or for virtual

subjects with increased sensitivity to treatment), the increase in metastatic relapse risk was

more moderate, since a prolonged NAT was associated with a large decrease in the PT size that

translated into a significant reduction of metastatic seeding. Together, these results illustrate

how our mathematical model, informed by preclinical data, can provide informative quantita-

tive simulations of the impact of treatment schedules. Our findings suggest a moderate to det-

rimental impact of long sunitinib NAT at low doses.

Machine learning for prediction of the metastatic aggressiveness parameter

μ from biomarkers at the time of surgery

Next, we wanted to determine whether biological parameters at the time of PT surgery but

after NAT had stopped could be utilized as predictive biomarkers of postsurgical MB after

treatment cessation. These biomarkers included immunohistochemical molecular protein

measurements of resected PT for cell proliferation (Ki67) and blood vessel (CD31) markers in

resected PTs (Fig 4A; example shown), blood-based cellular measurements of circulating mye-

loid-derived stromal cells (MDSCs) (Fig 4B), and circulating tumor cells (CTCs) from 66 ani-

mals (Fig 4C). We investigated whether these molecular and cellular biomarkers may parallel

the observed variability in the mathematical parameters, in particular μ, whose large variability

indicated potential animal subpopulations of variable metastatic potential values. We first

examined correlations between biomarkers to identify potential redundancies in the data

(Fig 4D). High correlations were found between Ki67 and Ki67+/CD31− (r = 0.979, p< 10−12)

and CTC and gMDSC (r = 0.678, p = 3.95 � 10−10). Next, we investigated the value of these

measurements as predictive biomarkers of the mechanistic parameters: α and β capture growth

kinetics, k the effect of treatment and μ metastatic dissemination. Fig 4B shows correlations

between biomarkers and the parameter estimates. As the individual growth parameters α and

β were highly correlated (r = 0.997, p< 10−5), we used the Gompertz tumor doubling time at

the volume Vi = 1 mm3 to assess the impact of covariates on the tumor growth parameters. It

is defined by DT ¼ � 1

b
ln lnð2ÞþAÞ

A

� �
, with A ¼ ln Vi

V0

� �
� a

b
. A weak correlation was found

between log (DT) and mMDSC levels (Fig 4E, r = 0.275, p = 0.0257). However, none of the

available biomarkers was found to correlate either with μ or log (μ) (S8 Fig). Next, partial least

squares and several machine learning regression algorithms were tested to identify possible

relationships between covariates and individual estimates of the metastatic potential parameter

(shown in Fig 1A schematic). These included neural networks, support vector machines and

random forest models [33]. Cross-validation results for the RMSE of the final regression mod-

els were compared against the intercept-only model (the constant model where predictions are

the same for all animals, given by the median value in the population, μpop). As shown in

Fig 4F and 4G, none of the fitted models had RMSE or R2 significantly different from the inter-

cept-only model. The lowest RMSE was achieved by the intercept-only model. Values of R2

ranged from 0.133 to 0.199 across the models, with the highest value reached by the condi-

tional random forest model. Prediction error on ln(μ) ranged from 9.83% ± 10.7% for the best

model (conditional random forests, mean ± std) to 10.6% ± 11.3% for the worse (random for-

ests), which was not superior to the predictive power of the intercept-only model (9.71% ±
10.1%). Plotting the observed versus predicted values (S9 Fig) confirmed that the fitted algo-

rithms were unable to explain the variability of parameter μ. Together, these results
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Fig 4. Use of machine learning algorithms based on presurgical molecular and cellular markers to predict metastatic dissemination

parameter ‘μ’. (A-C) Examples of molecular and cellular biomarker analysis. (A) Proliferating endothelial cell identification by

immunofluorescence. Tissue sections from resected tumors were stained with antibodies against mouse CD31 (red) and mouse Ki67 (green)

and counterstained with DAPI (blue). Single channel and merged images are shown. Yellow arrows show proliferating endothelial cells

which were counted manually. (B) Myeloid-Derived Suppressor Cells (MDSC) quantification by flow cytometry. Whole blood was stained
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demonstrate that the biomarkers considered in this study have limited predictive power for

metastatic potential as defined by μ.

Discussion

A large part of in vivo studies in experimental therapeutics focus on the effect of treatments on

isolated tumors and few make use of metastatic animal models [34]. However, we and others

have previously shown that differential effects occur on the primary tumor and the metastases

for some anti-cancer drugs, such as the multitargeted tyrosine kinase inhibitor sunitinib

[10,11,35]. Similarly, apart from efforts focusing on evolutionary dynamics of metastasis that

do not make use of longitudinal data on size kinetics [36], few quantitative mathematical mod-

els exist for metastatic development [4,33,37,38], and none has been quantitatively validated

for systemic therapy beyond theoretical considerations [37,39,40]. In previous work we first

established such a mathematical model featuring natural metastatic development and surgery

of the primary tumor, but no systemic treatment [4]. This was a critical step before being able

to model the effect of systemic treatments such as NAT where treatments are limited and long-

term benefits are presumed but difficult to quantify because disease recurrence can happen

years after surgery, or not recur at all. In the current study, we extended our mathematical

model to examine NAT with the RTKI sunitinib by using longitudinal data from 128 mice

(more than four times more than previous studies [4,38]). Such a large number of subjects and

tightly controlled experimental conditions (genetically identical animal background, cell ori-

gin, treatment periods, etc.), resulted in precise estimates of the model parameters.

We and others have demonstrated that robust inhibition of primary tumor growth does not

always translate into inhibition of metastasis post-surgically nor improvement in survival

[10,11,41]. This represents a challenge observed clinically with RTKIs: despite decades of

potent tumor-reducing effects in mouse models, efficacy in patients with metastatic disease

could be underwhelming. Our mechanistic mathematical modeling approach offered a quanti-

tative tool to simulate and test distinct biological scenarios, in order to distinguish the biologi-

cal determinants underlying this paradoxical differential effect on the primary and distant

tumors. Model predictions (with no fitting involved) allowed to disentangle the impact on MB

of either PT growth arrest alone or PT and metastases growth arrest. They clearly showed: 1)

that metastases growth arrest during NAT was very unlikely and 2) that the quantitative

impact of PT growth suppression during NAT was sufficient to reproduce the experimental

data. Furthermore, it implied a negligible reduction in dissemination, as measured by the total

MB.

These findings could be explained by the fact that the primary tumor (in the mammary fat

pad) and the secondary tumors (mostly in the lungs) would rely on different growth mecha-

nisms, especially at small sizes. Supporting this explanation, a study showed that metastasis

with anti-mouse antibodies for CD45, CD11b, and Gr1. After selection of CD45-positive cells, MDSCs were analyzed based on CD11b and

Gr1 levels. Monocytic-MDSC (M-MDSC) are CD11b+/Gr1 high and granulocytic-MDSC (G-MDSC) are CD11b+/Gr1Medium. Examples

of MDSC in untreated and treated animals are shown. (C) CTC quantification by flow cytometry. CTCs for xenografts were identified using

anti-human HLA. Blood was stained with anti-mouse CD45 and anti-human HLA. Blood and LM2-4 cell samples were overlaid in a dot plot

to identify and create the gates for CTCs. Once the gates were created CTC were identified in the blood of tumor-bearing mice. (D) Pearson

correlation coefficients between biomarkers. Blue (resp. red) color indicates a positive (resp. negative) correlation, with the size of the circle

being proportional to the R2 correlation coefficient. * p<0.05, ** p<0.01, *** p<0.001. (E) Univariate correlations between the biomarkers

and the mathematical parameters. DT = doubling time. (F) Cross-validated Root Mean Square Error (RMSE) across different machine

learning regression models (see methods) utilizing the values of the biomarkers for predicting log(μ). To assess the significance of the

covariate in the models, RMSEs were compared against the value of this metric obtained using the intercept-only model. Bars are 95%

confidence intervals. Shown in red is the model with the lowest RMSE. PLS = Partial Least Squares. SVM = Support Vector Machines. (G)

Cross-validated R2 with 95% confidence intervals. (H) Predictions versus observations for the conditional random forest algorithm.

https://doi.org/10.1371/journal.pcbi.1012088.g004
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relied more on vessel co-option rather than angiogenesis, thus providing them a mechanism of

resistance to VEGF RTKI therapy [42]. Beyond NAT, our model predicts limited efficacy of

sunitinib in the postsurgical setting, because metastases would likely be similarly small and

rely on similar growth mechanisms. Interestingly, experimental results in mice confirmed this

prediction where using a similar metastatic experimental system of triple-negative breast can-

cer, adjuvant sunitinib did not improve survival [43].

The mechanistic model of NAT validated here provides a valuable tool to explore the

impact of the treatment schedules on response and relapse. Simulating varying durations and

doses of NAT, we found that long durations of NAT could significantly increase the risk of

metastatic relapse when PT response was moderate. Further, our model provides the computa-

tional basis to analyze the impact of various NAT dosing regimens in terms of sequence,

breaks, and frequency, which is the topic of a companion work.

For breast cancer patients diagnosed with localized disease, predicting the risk and timing

of distant metastatic relapse is a major clinical concern [44–46]. Accurate ways to predict the

extent of invisible metastatic disease at diagnosis and risk of future metastatic relapse could

help to personalize perioperative therapy protocols and avoid highly toxic therapies to patients

with low risk of relapse [45]. However, only two risk models [47,48] have met the AJCC crite-

ria for prognostic tool quality so far [49], and both rely on classical Cox regression survival

models. Recently, we have developed a mechanistic approach to metastatic relapse prediction

[50]. However, this work did not include the impact of NAT or any systemic treatment. The

mathematical model that we validated here on animal data, combined with the methodology

developed in [50] lays the groundwork for applications in the clinical NAT setting. It could

further refine individual predictions of metastatic relapse in breast cancer by providing surro-

gate markers of long-term outcomes in addition to pathologic complete response [51]. Indeed,

the NAT period represents an invaluable window of opportunity to gather both longitudinal

data (such as kinetics of tumor size or pharmacodynamic marker, or circulating DNA from

liquid biopsies) and one-time biomarkers from tumor tissue [2]. Here, we propose that mathe-

matical models could form the basis of digital tools able to integrate this multi-parametric and

dynamic data into predictive algorithms of both long-term outcome and disease sensitivity to

systemic therapy in case of distant relapse.

In the era of artificial intelligence [52], it is to be expected that an increasing number of

such prognosis models will appear, combining advances in cancer biology (e.g. molecular gene

signatures [45,53]) and imaging [54,55] with algorithmic engineering. Recent years have wit-

nessed the generalization of methods going beyond classical statistical analysis, grouped by the

generic term of machine learning (ML) [56]. Here, we proposed an approach to combine ML

with mechanistic modeling that consists of using biomarkers at surgery to predict individual

mathematical parameters and subsequently postsurgical metastatic evolution. We found over-

all that the investigated biomarkers contained only limited predictive power of μ, suggesting

that alternative biomarkers should be explored in future preclinical and clinical studies. This

contrasts with reports showing Ki67 as significantly associated with the risk of metastatic

relapse [57]. It might be because Ki67 is a proliferation marker [58], which should rather be

predictive of α or the doubling time. Such correlation was observed between Ki67+/CD31

+ and DT (Fig 3E), as well as clinical work using our modeling approach [50]. Paired with

early clinical trials, our in vivo/in silico approach could have translational value to improve bio-

markers screening.

Important limitations of our study are that we only analyzed data from one tumor type (tri-

ple negative breast cancer), one cell line in one, immune-depressed, animal system, and one

drug. This might alter the generalizability and possibly translation of preclinical findings to

clinical situations. On the other hand, this is a necessary prerequisite to control as much as
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possible the heterogeneity in the data, which remains substantial despite a tightly controlled

experimental setting. Such conditions ensure robust testing of biological assumptions underly-

ing our mathematical models and, eventually, refutation of unplausible ones (here, that pri-

mary and secondary growth would be equally suppressed by NAT).

Given the increasingly diverse arsenal of systemic anti-cancer therapies available with the

approval of immune-checkpoint inhibitors, optimal treatment sequence [12,59–61] and dos-

ing regimen [62,63] are becoming crucial issues. Our model could be used and extended to

guide the rational design of treatment schedules and modes of combination of immunotherapy

with another systemic drug, before preclinical or clinical testing. For immunotherapy, the

model would need to be developed further and at least include an additional systemic variable

representing the immune system. Immuno-monitoring quantifications could provide an

invaluable source of longitudinal data to feed mechanistic models [64]. In addition, response

to neoadjuvant therapy could be used to predict which patients are more likely to benefit from

adjuvant therapy [9]. Combining artificial intelligence techniques with mechanistic modeling,

our modeling methodology offers a way to perform such predictions quantitatively and possi-

bly personalize therapeutic intervention.
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