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A containerised approach for
multiform robotic applications

Giuseppe Cotugno*, Rafael Afonso Rodrigues, Graham Deacon
and Jelizaveta Konstantinova

Ocado Technology, Welwyn Garden City, United Kingdom

As the area of robotics achieves promising results, there is an increasing need to
scale robotic software architectures towards real-world domains. Traditionally,
robotic architectures are integrated using common frameworks, such as ROS.
Therefore, systems with a uniform structure are produced, making it difficult
to integrate third party contributions. Virtualisation technologies can simplify
the problem, but their use is uncommon in robotics and general integration
procedures are still missing. This paper proposes and evaluates a containerised
approach for designing and integrating multiform robotic architectures.
Our approach aims at augmenting preexisting architectures by including
third party contributions. The integration complexity and computational
performance of our approach is benchmarked on the EU H2020 SecondHands
robotic architecture. Results demonstrate that our approach grants simplicity
and flexibility of setup when compared to a non-virtualised version. The
computational overhead of using our approach is negligible as resources were
optimally exploited.
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1 Introduction

1.1 Motivation

Recently, complete robotic solutions, such as collaborative robots (Asfour et al., 2018)
or robotic warehouse automation (Hamberg and Verriet, 2012) are frequently deployed in
real world scenarios (Cotugno et al., 2020). For example, the purpose of the EU H2020
SecondHands project1 is to develop a humanoid collaborative robot (the ARMAR-6
(Asfour et al., 2018)) to assist a maintenance technician in servicing conveyor belts in a real-
world warehouse (Figure 1). The software architecture that is powering such robots can be
very complex, with several components interrelated and dependent among each other.

Traditionally, robotic frameworks, like ROS, are used to simplify the development
and integration of robotic software architectures. However, relying on a singular robotic
framework makes the resulting system uniform as the set of software libraries and
development tools, used to develop and interconnect core components instrumental to the
robot’s autonomy, is predefined and could be embedded in the wider code base by design or
necessity. In addition, every component must be developed with a predefined structure.The

1 SecondHands: A Robot Assistant For Industrial Maintenance Task, Website: https://secondhands.eu/
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expectation from using such robotic frameworks is that components
developed by a research group can be easily integrated to a different
architecture which runs the same framework.

Integrating third party software is becoming even more critical
today, as various contributions valuable for robotics are shared
online. For example, in SecondHands, image segmentation is
performed using MaskRCNN (He et al., 2017): a deep network
developed for segmenting common objects which has been re-
trained for detecting tools. Robotic household assistants, competing
in the Robot@Home competition, implement speech understanding
by integrating several language processing components developed
for general use (Matamoros et al., 2018). Such contributions are
often developed without following the integration rules imposed by
a robotic framework and it can be difficult to include them in a large
system. Such contributions are calledmultiform in this paper as they
do not conform to the development rules of a robotic framework and
are constituted by several heterogeneous components.

For these reasons, our paper proposes a general purpose
approach which facilitates the inclusion and interoperation of third
party software into an existing robotic architecture. Our approach
relies on the use of containers, which are lightweight virtual
machines. The contributions of this paper are as follows:

• A container-based methodology is proposed, which allows
systematic and minimally invasive integration with an existing
robotic framework;
• The use of the containerised approach is demonstrated on
a real world application of collaborative robot within the
SecondHands project;
• Theoverall system is evaluated against a non-virtualised version
in terms of integration complexity and run-time computational
performance.

This paper is asking the following research question: Is it
possible to systematically design or incrementally adapt a robotic
system to include and interoperate existing third party components?
In this work, a third party component is defined as a contribution

FIGURE 1
The robotic software architecture developed within the EU H2020
SecondHands project has to enable a humanoid robot to assist a
technician during maintenance in real-world conditions. Its several
parts constitute a multiform robotic system as they were not
developed having a specific robotic framework in mind.

developed by different developers not directly involved with the
integration of a specific robotic system. The component might not
follow any integration rule established for the system, for example
it could be written in a different unsupported language, use a
different robotic framework or run standalone, use incompatible
libraries or different build tools, etc. Such a component can be
a prototype proven to work standalone, whose integration in a
larger system might be not-trivial. This differs from the scenario
where a component has been developed using a robotic framework
as that framework imposes rules that must be respected for the
component to be useable. It is important to underline that our
methodology suggests a set of principles to facilitate the systematic
integration of components as opposed to an ad hoc approach
which integrates third party components differently and might
have different outcomes in terms of simplicity of integration and
performance cost for different components. In the Evaluation
section of the paper we will test two hypotheses: 1. Following all
the guidelines of our methodology simplifies the integration complexity
and 2. Following all the guidelines of our methodology has a noticeable
performance cost.

The structure of this paper is as follows: in Section 1.2 we
compare our work to the state of the art, while in Section 2 our
methodology is described and applied to the SecondHands robot
architecture. Section 3 quantifies the integration complexity and
runtime performance costs of using our methodology. Finally,
Section 4.1 discusses our results and Section 4.2 summarises the
key findings and limitations of the paper proposing avenues for
future work.

1.2 Related work

Over the decades, the number of proprietary and open
source robotic frameworks, used for software integration, has
increased greatly. The YARP framework (Metta et al., 2006), is
a cross-platform framework which mostly targets the humanoid
robot iCub (Metta et al., 2008). The well-known ROS framework
can interoperate with a large number of robots. Other less
known frameworks are also targeted to a specific robot (NaoQi
(Pot et al., 2009), Khepera III (Cotugno et al., 2011)), a family of
robots (ArmarX (Vahrenkamp et al., 2015)) or a limited predefined
selection of robots (OpenRDK (Calisi et al., 2008)). It is beyond the
scope of this paper to propose a survey of the features of state-of-
the-art robotic frameworks (Mohamed et al., 2008). However, we
identify three common features: 1) implementation of a smallest
entity able to provide some functionality (e.g. node, module), 2)
definition of a communication protocol for exchanging information
across those entities, 3) definition of a development methodology
and standardised set of development tools. As a result, robotic
architectures are deployed as distributed systems and are uniform:
components have the same structure.

The homogeneity imposed by a robotic framework becomes a
limitation when a robotic architecture includes third party software.
Third party contributions have to be adapted to fit the design and
tools imposed by the framework itself (Khandelwal et al., 2017).
Yet such integrations might prove to be non-trivial (Cervera, 2019)
and integrating components from two different frameworks adds
complexity (Randazzo et al., 2018) even when the same hardware
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is used. For example, the SecondHands system integrates off-the-
shelf deep networks and components developed differently by five
research groups, making it a multiform system. In such system,
it is impractical to re-implement every contribution to comply to
the rules of a robotic framework. Code re-use can be achieved
using virtualisation. In literature, two virtualisation approaches are
popular: virtualmachines (VMs) and containers. AVM is a software
which emulates a PC both in its hardware and operative system. A
container is a light-weight high performance (Seo et al., 2014) VM
which shares with its host (the PC) only the kernel.

Within robotics, virtualisation has been pioneered by several
authors. In Fres et al. (Fres and Alonso, 2010) a virtual machine
is used to encapsulate the controller for a mobile robot using a
novel programming language, while (Hinze et al., 2018) employs
containers to run multiform grasping simulations with real-time
control requirements. The limitation of these approaches is that the
proposed systems are not designed to support a complex robotic
architecture, as virtualisation is not used at its full power. In some
cases, virtualisation is used merely as a tool to bypass a certain
issue. For example, in (Rodrigues, 2017), containers are used for
dynamical deployment of control software on mobile robots via
the cloud, optimising the workload as needed. In (Liu et al., 2018),
containers are used as a base infrastructure to support the learning
and deployment of control strategies to insert pegs into holes.Those
works solve a well-defined problem, however they cannot be applied
to similar problems. Virtualisation here is used as a tool rather than
being a structural part of the architecture.

Other works, instead, use virtualisation as a structural
component of a larger framework. For example, Mohanarajah et al.
(Mohanarajah et al., 2014) proposes a full robotic framework which
relies on containers to execute different robot algorithms, while in
(Turnbull and Samanta, 2013), virtual machines are used to provide
different services for cloud robotics applications. The shortcoming
of such approaches is that it is not described how the proposed
frameworks can be integrated with preexisting robotic software
without rewriting the old code. Design principles must be provided
to guide the development of large multiform robotic architectures.
Distributed systems can be used as a source of inspiration.

Modern distributed systems (e.g. cloud video or audio streaming
platforms) implement a microservice architecture (Newman,
2015), where many heterogeneous components are deployed and
networked across several machines to contain faults and balance
high computational loads. A microservice-inspired framework has
been already pioneered in (Wang et al., 2019) for coordinating and
preparing robot software for deployment. In this work the use of
ROS is compulsory, in contrast with our approach which is robotic
framework-agnostic.

In order to develop reusable components, that can be deployed
on different robotic architectures, there is a need to shift designs
from monolithc architectures to more modular microservice-like
architecture. Our work establishes a proposed approach to encode
such modularity by design.

2 Methodology

The aim of the proposed containerised approach is to define
design principles to facilitate the construction of a roboticmultiform

modular architecture whose elements can be integrated in a
preexisting robotic system. The approach is based on three
fundamental principles derived from microservice architectures:
componentisation, virtualisation and automation (Newman, 2015).
Table 1 summarises its theoretical foundations. Our approach
favours the reuse of preexisting code, but the approach can be used
as guidelines for a new robotic framework as well. Developing a new
framework from the beginningmight sound ideal but it is not always
possible or feasible, especially in industrial applications. In industry
it might be more prudent to refactor existing code bases, proven
to work in a real world production setting, and to incrementally
evolve a robotic system to serve ever expanding requirements. With
this assumption, rewriting a framework is costly and has high risks
due to the fact that bugs can be introduced at any time and it takes
time and effort to bring a new framework to feature parity with
a previous code base. Additionally, an initial well thought design
might prove to be limited by the time it is deployed to production
as requirements might have changed in the meantime. As such, we
conceived our approach for adapting existing code as this is a more
frequent scenario than a full redesign.

Our approach relies on the creation of blueprints: virtual
environments adapted for the execution of components. To use a
virtualised component a container is generated from the blueprint,
which acts as a template.We chose docker2 for creating blueprints as
it is an industry standard and it has tools for automatically deploying
subsystems from the cloud (i.e. docker-compose). Additionally,
several operations of our methodology (Table 1. C) are automated
using a Continuous Integration (CI) tool, which is a tool designed
for automating software development tasks. We chose Travis
CI for this as it is a cloud-based CI, but others are also
suitable.

According to our methodology, for the integration of a
heterogeneous component it is required to follow the below
workflow, summarised in Figure 2:

1. Definewhich operations the componentwill perform. Evaluate
the opportunity of factoring out existing features integrated in
a pre-existing robotic framework, if it is appropriate to do so at
this stage (Table 1: A.1).

2.1. Define how the new component will communicate with the
existing code base and other components (Table 1: A.3).

2.2. Create a blueprint for the heterogeneous component using
docker, making sure that the component can be executed
correctly (Table 1: B.1).

2.3. Add the chosen communication interfaces to the blueprint
and test it in isolation. In our case, those were interface
definitions in the ArmarX native communication library, but
other approaches like e.g. ROS service handlers can be used
for different systems.Other components and input required for
testing can be included in the blueprint as a mock-up (Table 1:
A.2).

3. Configure a CI, in our case Travis CI, to automatically prepare
and test in isolation the blueprint at every commit (Table 1:C.1,
C.2).

2 Docker Community Edition - https://www.docker.com/products/

docker-desktop
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TABLE 1 Founding principles of the proposed containerised approach for multiform robotic architectures.

Principle Explanation Properties Properties description

A. Componentisation
Dividing complex robot software into
well defined software units

1. Defined Functionalities Identification of operations that a
component provides to a client. The
definition of a component is specific for
the target application

2. Tested in Isolation Must always be possible to execute a
component in isolation, using mock-up
inputs/outputs if needed, to simplify
testing

3. Defined Interfaces Clear means to interact with a
component to execute its operations

B. Virtualisation
Creating a virtual environment where a
component can operate

1. Defined Working Environment Construction of a virtual environment
easy to execute where a component
operates, ideally fully isolated from the
host

2. Cloud Hosting Individual virtualised components,
tested to be executable, must be
accessible by users from the cloud

3. Subsystem Preparation Optionally, an ensemble of virtualised
components can be automatically
fetched from the cloud and assembled
in a subsystem working out of the box

C. Automation
Automatically preparing, testing and
sharing virtualised components on the
cloud

1. Automatic Build of Blueprints Blueprints (templates) of the
components and their virtual
environment must be automatically
prepared for every improvement

2. Automatic Testing of Blueprints New developments of a virtualised
component shall be automatically tested
to ensure that the component can at a
minimum be executed with no errors

3. Automatic Updates on the Cloud Updated and tested blueprints of
virtualised components should be
automatically shared on the cloud to be
retrieved by a third party

4. Automatic Versioning Blueprints and components’ code must
be automatically versioned and kept in
sync, so that specific versions can be
obtained predictably

4. Ensure components are versioned appropriately by Travis CI
(Table 1: C.4).

5. Once testing is completed, the blueprint is uploaded on the
cloud (e.g. Google cloud in our case) and new versions are
automatically uploaded by Travis CI (Table 1: B.2, C.3).

6. Optionally, a script can be prepared to automatically fetch
and interconnect all the components of a subsystem of the
robot (Table 1: B.3) using docker-compose. This facilitates the
deployment of components closely related to each other.

Ourmethodology is an industry perspective on how to integrate
multiform components to produce robotic systems ready for a
production scenario. It builds up from principles well assessed
in microservice development and applies them to robotics. Our
contribution suggests an approach to make integration systematic

and less error prone, which are key requirements in industry to
ensure that robotic systems are reliable and robust from their
first production release. We did find that poor integration can
negatively impact the performance of novel research contributions
to the point that they cannot be used in a production setting
(Triantafyllou et al., 2021). Our approach is demonstrated on the
real-world scenario of the SecondHands project3.The SecondHands
robot (the ARMAR-6 (Asfour et al., 2018)) has a mobile base,
multimodal sensory capabilities and the ability to physically and
verbally interact with humans. Using its sensors, the robot has

3 SecondHands: A Robot Assistant For Industrial Maintenance Task,

Website: https://secondhands.eu/
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FIGURE 2
Proposed workflow of our methodology. Properties are grouped based on the expected outcome obtained by their application. Arrows indicate
dependencies, e.g. cloud hosting should not be implemented if versioned blueprints are not available. Properties that are at the same level can be
implemented concurrently. Please note that Principle B.3 is optional and its application is recommended if components are to be deployed together as
a subsystem. The workflow can be applied to a new contribution or a pre-existent codebase, in which case A.1 can be used to decide features to factor
out into an isolated component to be handled separately.

to predict and provide the help adequate to the situation. Our
methodology can be applied to other architectures as it is not
mandatory to refactor pre-existing code encapsulated into a robotic
framework, such as ROS, if this is undesirable. Such code can be
treated as a stand alone component, with well defined interfaces and
responsibilities. Those responsibilities can be as broad as practically
feasible to ensure the right balance between timely and incremental
deliveries of new functionalities and overall architectural cohesion.
Also, it is always possible to refactor any component, or to wrap
them up with necessary boilerplate code, in order to fulfil the
Properties of Principle A, if such a component does not adhere to
them already. The Properties of Principle B can be applied to any
working software as, to the best of the authors’ knowledge, it is
unlikely that a software cannot run in a virtual environment sharable
over the cloud. The Properties of Principle C are best practices
to follow to guarantee consistency, mostly enforced with robust
CI pipelines. Also in this case, to the best of authors’ knowledge,
there is no reason to assume that CI pipelines cannot be crafted
to fulfil the above Properties. Since our methodology does not
require a mandatory rewrite of previous software, even if integrated
in a robotic framework, and software can be reshaped to fulfil the
Properties of our methodology, we believe that our approach can be
generalised to other architectures.

The SecondHands architecture, shown in Figure 3, is
augmenting the ArmarX robotics framework (Vahrenkamp et al.,
2015) which provides several base functionalities and it is the
framework used to operate the robot. The uniform structure of
ArmarX cannot be altered as it is used for several other applications.
All the other components of SecondHands have been developed by
different research groups independently fromArmarX and represent
the multiform part of the system. Such components have been
integrated in a virtual environment and networked using ArmarX’s
native communication libraries. This was a design choice aimed at
maximising compatibility withArmarX. Components and their own
virtual environments weremade available fromGoogle Cloud in the
form of blueprints. Within SecondHands, two base blueprints were
developed: one providing GPU support (for, e.g. neural networks)
and another one more lightweight and without GPU support. For
every change, blueprints were automatically built and tested in
isolation by Travis CI, using mock-up components and inputs when
required. A successfully built and tested blueprint was automatically
uploaded on the cloud and versioned by Travis, following the
four Properties of Principle C. The multiform part of the system
communicates with ArmarX by requesting the execution of a state
machine (Vahrenkamp et al., 2015) to perform a particular task,
like handing over a tool. An ArmarX state machine relies on several
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FIGURE 3
Overview of the SecondHands architecture. Blueprints (templates) of components and subsystems are available on Google Cloud. In the original
architecture, a subsystem can be deployed on a dedicated PC. The multiform part of the system (cuboids and squares) only calls ArmarX’s state
machines using a dedicated interface. ArmarX can call the multiform components directly. All communication are handled using ArmarX native
communication libraries.

ArmarX components and can request output from an heterogeneous
component, such as the detection of the posture of the technician.
This design choice allows to handle ArmarX itself as a component
with Defined Interfaces and Functionalities (Table 1: A.1, A.3)
whose internal changes do not affect the rest of the architecture.
Similarly, internal changes to other heterogeneous components do
not affect the rest of the system as components are isolated in their
own containers. An exhaustive description of the functionalities
of the SecondHands architecture is beyond the scope of this
section, Section 3 describes its most important parts. As a result,
our methodology extended ArmarX with several new components
originally developed in different ways.The components are grouped
in three subsystems: Cognitive, Language and Vision, which can
be fetched and interconnected automatically using docker-compose
scripts. The SecondHands robot is equipped with four on-board
PCs with different hardware available. A detailed overview of the
available hardware is given in Section 3.1. Figure 3 shows how every
component is deployed on the robot for its usual operations, where
every subsystem, including ArmarX itself, is deployed on a PC.
Components are deployed on each machine leveraging Properties
B.3 and B.2 (Subsystem Preparation and Cloud Hosting), as every
machine has a docker-compose configuration used to bring up the
latest stable versions of every container, downloading them from
the cloud if required. By using an appropriate versioning system

(Principle C.4) it is possible to guarantee that only components
tested and confirmed to work together will be brought up.

3 Evaluation

In this section, the SecondHands architecture, presented in
Section 3.1 is used to evaluate the impact on resources overhead and
integration complexity when all the principles of our methodology
are followed and when they are not. The aim of the evaluation is to
verify hypotheses 1 and 2, assessing if our methodology simplifies
the complexity of integration and what is the added performance
cost of using it.The evaluation criteria for the integration complexity
are the number and type of modifications to a PC’s configuration
required to install a given component. The evaluation criterion
for the resource overhead is the additional load placed by docker
containers on the PC’s resources (RAM, CPU, GPU and network
traffic) when compared with the same system running natively.

3.1 Experimental setup

A scaled down version of the SecondHands architecture of
Section 2, integrated using our approach (Docker setup), is compared
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FIGURE 4
Experimental setup closely representing a real warehouse. A human
operator had to wear a high visibility vest and perform maintenance in
the working area using real tools.

to a Native setup of the same system which did not follow our
approach. Both systems are expected to recognise the actions and
speech of a technician working in a realistic environment and to
control robot’s hardware. The components of the evaluated system
are: 1) the Human Activity Recognition Component (Alati et al.,
2019) which uses a neural network running on a GPU to detect
the technician’s actions, 2) an Image Server which broadcasts images
from a camera, 3) a Dialogue System Component (Constantin et al.,
2018) which processes natural language, and 4) other components
which form the infrastructure of the system (e.g. interfaces with
ArmarX, communication among components, etc.).

The components were deployed on a replica of the
computational infrastructure of the ARMAR-6 in Ocado
Technology’s Robotics Research lab. The infrastructure consists
of four workstations, all Quad-core i7 Pentiums with 16 GB RAM,
running Ubuntu 14, networked over Ethernet via a switch and
connected to the ARMAR-6 hand, cameras and sound system.
The four workstations are identified with a name describing their
role: 1) The Vision PC has an Nvidia GeForce GTX 1080 GPU
to support vision processing and is directly connected to the
robot’s cameras (i.e. PrimenSense Carmine). 2) The Speech PC
is connected to microphones and a PreSonus AudioBox iTwo
sound system to support natural language processing. 3) The
Real-Time PC has interfaces to the robot’s hardware and controls
an ARMAR-6 humanoid hand (Asfour et al., 2018). The hand is
underactuated, has two degrees of freedom and can be operated only
via ArmarX. It is operated to demonstrate that the integration of all
the components is functional even for complex robotic hardware.
4) The Planning PC is used for any other remaining functionality.
In our setup, the communication was administrated by the Real-
Time PC to further increase bandwidth consumption and stress
the system.

3.2 Results: integration complexity

The integration complexity evaluation assesses how our
approach influences the ease of integration of a multiform system
in the worst case scenario. The complexity is measured in terms
of additional configurations of the PC required to integrate and
execute a component. To evaluate the integration complexity in
its worst case scenario, the hard constraint of not altering the
original component’s code or container’s blueprint was imposed.
The evaluation is performed on a fully integrated system, so that
interactions can be captured in a realistic setup. Additionally, for
the Native setup, components were deployed on the least possible
number of machines to maximise the interactions. Similarly, for
the Docker setup, components were as isolated as possible from
the host (the PC) as this setup is more complex. As such, it was
attempted to deploy both setups only on the Vision PC, accessing
the sound system on the Speech PC remotely, using Linux’s audio
server (Pulseaudio).

We classified sources of complexity in four main categories:
1) unset environment variables, 2) missing host configurations, 3)
library incompatibilities, 4) driver incompatibilities. The first two
categories are easy to address, requiring either to run a setup script
or a persistent modification of the PC’s configuration files (for, e.g.
driver loading). However, they still require prior knowledge, i.e. a
documented procedure. The last two categories are more complex
to handle. Library incompatibilities appear when two components
require conflicting versions of a library. If solvable, such issues
require an ad hoc workaround. Driver incompatibilities are when
the Linux kernel does not support a driver and a new Linux version
needs to be installed on the PC.

When integrating a Native setup, it was observed that most
components required a setup script to configure the working
environment, while the Dialogue component required a customised
host configuration. The most serious issue found was a GPU driver
incompatibility with the Activity Recognition component that can
only be solved by upgrading the operating system.As such theVision
PC was upgraded and the other components were deployed on the
Planning PC. The camera was also relocated to the Planning PC
since, to the best of our knowledge, it cannot be accessed remotely.
The audio system on the Speech PC was still remotely accessed
through Pulseaudio. The Real-Time PC was left unchanged. When
integrating the Docker setup, no issues were experienced besides
configuring the containers’ networking. As such, to allow for a
comparison with the Native setup, the Docker setup was deployed
on the same machines. It is still possible to deploy the full system
on a single machine if our methodology is fully followed. Hence, a
third containerised setup (All-in-one setup), where all components
co-exist on the Vision PC, was prepared. This setup was also
evaluated in Section 3.3. The purpose of this additional evaluation
is to give more comprehensive results for testing hypothesis 2,
considering also the case where a single machine is bearing the
load of the full system as there is no technical limitation preventing
this to happen.

It can be observed that the Docker setup was easier to prepare
as component’s blueprints were ready to be used. Using blueprints,
prepared as indicated in our approach, the setup is delegated to the
original developers, who know their components more thoroughly
than end-users and can pre-configure them easily.
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FIGURE 5
Overall histogram distribution of resource usage, discriminated by system setup, for CPU (A), GPU (B) and RAM (C). Plotting number of occurrences of
a given load % during the steady-state of the task. Histograms more shifted to the right indicate a more loaded system. Figure (D) shows the network
load in terms of mean bandwidth consumption over the % of completion of the steady-state of the task. Plotted as a time series.

3.3 Results: workload analysis

Workload analysis is performed to understand the
computational costs of employing our approach. The three setups
produced in Section 3.2, Docker, Native and All-in-one, processed
a live simplified maintenance sequence performed in a close
reproduction of a real warehouse, shown in Figure 4. The sequence
required a human operator to dismantle a conveyor belt’s protective
cover causing the ARMAR-6 hand to close. Afterwards he would
fetch and climb on a ladder to ask for a brush, clean the conveyor,
extend the arm to give away the brush and give a verbal “stop”
command, causing the ARMAR-6 hand to open. An example
sequence can be viewed in the Supplementary Material. The
sequence was performed 16 times by two people for a total of
48 experiments. Any trial which failed to operate the hand was
repeated. The three setups were all assessed in terms of network
bandwidth, memory, CPU and GPU workloads.

As described in Section 3.2, the Docker and Native setups were
deployed on two PCs, while the All-in-one setup was deployed on
the GPU-equipped Vision PC. For the Native setup, the CPU and
RAM usages were monitored using the python system profiling

library, psutil, while the Network bandwidth wasmonitored with the
Linux’s network traffic monitoring utility, nethogs. Only processes
related to each component of the system were monitored via psutil.
For the Docker and All-in-one setups, the same information was
accessible through docker stats4, docker’s native monitoring tools,
which profile CPU, RAM and network bandwidth and are the
industry standard tools used to evaluate containers’ key performance
metrics. docker stats require the docker daemon to run. The
daemon is also required to run containers. The computational
cost of running the daemon is fixed and does not vary over
time, as it is the case for the other components. As such, it was
tracked in our results. The daemon is highly optimised to run
with minimal footprint in production environments with several
containers and the cost of running docker was evaluated to be
an additional 0.25% load on the RAM and less than 0.001% load
on the CPU. GPU workload and memory were measured via
Nvidia logging tools for all setups. Only the steady-state part of

4 Docker stats documentation - https://docs.docker.com/engine/

reference/commandline/container_stats/

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2024.1358978
https://docs.docker.com/engine/reference/commandline/container_stats/
https://docs.docker.com/engine/reference/commandline/container_stats/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Cotugno et al. 10.3389/frobt.2024.1358978

TABLE 2 Quantitative characterisation of resource consumption. For
each resource and setup is shown the mean value and the InterQuartile
Range (IQR). Values are percentage of total resource used, for GPU and
RAM, and absolute % of CPU cores used.

Native Docker All-in-one

Resource Mean IQR Mean IQR Mean IQR

CPU 25.72 27.26 29.90 32.85 48.15 16.51

GPU 28.50 57.00 27.86 56.98 24.33 48.81

RAM 5.30 6.52 6.16 7.51 10.07 1.13

a trial was analysed. This corresponds to the moment when the
first image is broadcast until the hand opens fully. The start-up
phase was not considered as the resource consumption is not stable
initially and it is not representative of the true load of the system
experienced when it is actively used or put under stress during
normal operations. In a real world scenario, it is possible to define
a process that prevents the system from being used while booting.
Readings from individual components were collected at intervals
of 250 ms each, relative clock drift measured among computers
was negligible.

Figure 5 shows the distribution of resource consumption,
expressed in % of total resources used for RAM and GPU, and
absolute % of cores used for CPU. Each plot aggregates the data
of all trials and components for each setup. Figures 5A, B, C are
histograms showing the distribution of resource workload. The X
axis indicates different workloads while the Y axis indicates number
of occurrences. A distribution shifted to the right indicates an overall
more loaded system. A spike indicates a workload that occurred
more often than the others. Figure 5D is a time series, where on the
X axis is shown the percentage of completion of the maintenance
sequence, the steady state of the system, and on the Y axis the
amount of bandwidth consumed. A summary of the data is shown
in Table 2. The GPU memory usage is not reported as it is identical
across the three setups. The overall load for each resource was
calculated as usage difference relative to the Docker setup (UDd).
It was calculated for each resource as follows:

L[Rv] =
E[Rv]

C

UDd [R] =
L[Rn] − L[Rd]

L[Rd]

Where v stands for the setup type (Docker d, or Native n), E[Rv]
is the mean usage value of a resource R (CPU, RAM, GPU) for the
setup v, C is the maximum capacity of a resource, L[Rv] is the total
load percentage of a resource R for setup v, and UDd[R] is the usage
difference for resource R relative to the Docker setup (d).

The resource usage difference (UDd) is either small (0.002pp
- CPU), slightly more (+0.43pp - RAM) or slightly less (−0.60pp
- GPU clock). Additionally, as can be observed in Table 2, the
differences of the InterQuartile Ranges between Docker and Native
setups are 5.59pp (CPU), 0.99pp (RAM) and −0.02pp (GPU clock),
which is also small. It can be concluded that the overhead of
employing a containerised approach when the system is running at
run-time is negligible as the Docker setup does not sensibly affect
the overall system load.

The impact of deploying the whole system on one PC was also
analysed. The All-in-one setup takes more time to fully load the
GPU’s memory (13.20± 0.63s) when compared to the other two
setups (7.91± 0.13s Native, 10.09± 0.25s Docker). By observing the
histograms of Figure 5, it can be seen that the All-in-one setup has
a larger overhead since it is consistently using CPU and RAMmore
than the other two setups. This can be observed as the distributions
on Figures 5A, C are shifted more to the right when compared
to the other setups. The reason for such overhead can be seen
in Figures 5D. The All-in-one setup produces a higher volume of
information at higher speed than the other two setups suggesting
that system is transferring more information and, as such, is loading
its resources more.

4 Discussion and summary

4.1 Discussion

The results of Section 3.3 are used to test hypothesis 2: Following
all the guidelines of our methodology has a noticeable performance
cost. The Docker and All-in-one setup follow both all the three
principles of the methodology, while the Native setup follows
only Principle A, since it does use the same components’ code
as the other setups. The results demonstrate that the All-in-one
setup have a higher workload, as shown by the histograms of
Figure 5A higher production of information at a higher speed
as seen in Figures 5D. docker stats monitors the information
at container level, as such a higher bandwidth consumption
indicates that the containers communicate more among each
other. Those two results combined suggest that, qualitatively, the
overall system is able to process more information at the cost
of loading the host machine more. A possible explanation of
this result is that data transits internally in the operative system
via the docker daemon and can be delivered at a faster pace to
the recipient.

Indeed, a similar, less pronounced, result can be observed on
the Docker setup. In this case, there were more instances when the
CPU was less loaded than in the All-in-one setup, as shown by the
spike in Figure 5A, although theCPUwas still active as its workload
was spread between 20% and 60% for the whole steady-state of the
trials. This likely happened because the data would have had to be
packaged in a format suitable to be transmitted over the physical
wire and then unpacked several times as individual packages were
sent up over the network until reaching the recipient.This is one of
the reasons why communication over a physical wire introduces a
lag, which can be exacerbated by network traffic further loading the
bandwidth forcing access points to limit the maximum amount of
information that can be transferred at the same time.We do believe
that in our case, packing and unpacking data over the network
stack limited the amount of information travelling and reduced the
overall load of every machine, which could process information at
a slower pace.

In the All-in-one setup the host machine had to increase its
workload to keep up with the information flow as it is able to
process more data as soon as this is readily available. In the Docker
setup, the host machines were not as loaded. This suggests that
the machines could have processed more information if that was
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available. As such, the Docker setup might be more limited in the
amount of information that could process at the same time as it
will have to wait for the network stack packing and unpacking
data packets before processing them. Another point to underline
is that the technical specifications of the host machine for the All-
in-one setup were sufficient to handle the full load of the system
and to process information at a faster rate. This might not have
been possible for a different robotic system, where the overall load
could have been excessive for a single machine causing lack of
responsiveness or even safety concerns.

This observation suggests there could be benefits in deploying
more components on the same host machine as this could save
time otherwise spent networking several hosts together. At the
same time, overloading a machine could have side effects in
the overall responsiveness of the system. Deciding how many
hosts to use in a robotic system is a design decision that can
be approached quantitatively by evaluating present and expected
resource consumption and can keep financial and engineering costs
lower. This decision has to be weighed by the fact that the control
part of a robot is a real-time system, where timely responsiveness
is one of the main factors to consider to ensure the overall safety of
the robots and its users.

The results observed for the Docker setup were different from
those observed for the Native setup, where the Network load was
much lower despite both setups running the same code. This is
confirmed by the fact that there weremore instances when the CPU
was lessused than theDocker setupas itsdistribution inFigure 5A is
more shifted to the left.Wedobelieve thatour resultsdonot take into
account issues with low level configurations of the network stack of
the operative system which had an impact on the obtained results.
This highlights the benefits of using a containerised approach such
as the one presented in our work as docker optimised the network
stack for efficient communicationwithout theneed to customise the
operative systemmanually. As such, we can conclude that following
all the principles of our methodology has a cost which can be offset
by a better integration overall, which seems to falsify hypothesis 2
in our scenario.

Our results in Section 3.2 are used to test hypothesis
1: Following all the guidelines of our methodology simplifies the
integration complexity.Theresults suggest that having components
prepackaged into well defined software units (Principle A of
our methodology) is a prerequisite but it is not the only
aspect to consider. For all three setups the components were
prepared according toPrinciple A and yet incompatibilities among
components required ad hoc adjustments to have an integrated
system. Principle B, having a virtual environment where the
component can operate, was a key factor in facilitating the
integration as this allowed to prepare the system in a systematic
and streamlined way, identical for every component. Principle
C, automatically preparing, testing and sharing virtualised
components in the cloud, in our case, ensured consistency within
components, further consolidating the integration approach in
predefined and known steps. It could be that following just
Principles A and Bmightbeenoughtoobtainapainless integration.
However it might be not sufficient to avoid ad hoc configurations
and a streamlined integration process due to lack of consistency
across components.

4.2 Summary

In this paper we proposed a containerised approach, inspired
by microservice architectures, and its main principles aimed at
augmenting existing robotic architectureswith thirdparty components.
The principles can also be used as design guidelines for novel robotic
frameworks. We applied our methodology to the SecondHands robot
architectureandweevaluatedourapproach,both in termsof integration
complexity and computational overhead, against the same architecture
deployed without following our approach.

This study demonstrates that our approach grants more
flexibility of integration as the same system can be deployed in
different ways, even on the same PC, without substantially altering
the configuration of the hosting PC. Additionally, we found that
containers do not substantially impact the runtime performance of
a system. Containerised setups are more reactive than native setups,
and systems deployed on a singlemachine offer the highest reactivity
at the cost of a larger workload. Our approach is relevant for robotics
as it demonstrates how it is possible to augment an existing system
with otherwise incompatible components, limiting the impact on
existing code.

Moreover applications designed to run natively come with some
form of configuration procedure. Although our approach aims at
eliminating the need of any configuration other than deployment,
it would be useful to test our approach on other architectures.
Additionally, a further analysis of the latency of communication
could provide information on the reactivity of native or containerised
systems. For the best of our knowledge, it is not possible to evaluate
the latency without modifying the original software and, as such, this
evaluation will be performed in future work.

Finally, it is worth to note that the key to reusability lies on
the quality of the original blueprints. This paper aims at providing
guidelines to encourage usability and facilitate integration, however
if the blueprints are not designed to be reusable, it is harder to
intergate fully modular multiform robotic architectures.
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