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Abstract 
With the rapid increase in population, the rate of diseases like cancer is also 
increasing. Lung cancer is a leading cause of cancer-related deaths with a 
minimum survival rate; there is a need to find better, faster, and more accu-
rate methods for early diagnosis of this disease. Although previous research in 
lung cancer has presented numerous prediction schemes, the feature selection 
utilized in the schemes and learning process has failed to enhance the accurate 
performance of lung cancer diagnosis, including incorrect classification and low 
prediction levels, which lead to misdiagnosis. Prediction of lung cancer cells 
from lung images in early stages is a question mark for researchers. This study 
presents a discerning way of predicting lung cancer with the Grey Wolf Optimi-
zation Algorithm (GWOA) and Convolutional Neural Networks (CNN). The 
14,740 CT scan images are used for classification. The Kaggle dataset, data pre-
processing, hyper-parameter feature selection using GWOA, classification using 
CNN, RF, and DT, cross-validation, and classifier evaluation are the five phases 
of the proposed lung cancer prediction architecture. The noise present in the 
data was eliminated by applying a bin smoothing normalization process. In 
terms of lung cancer prediction, we show that the highest score is achieved when 
applying CNN with GWOA, which produced the best results with an average 
performance of 96% accuracy, F1-score, precision, and recall, respectively com-
pared to RF and DT with GWOA. Similarly, the CNN-GWOA produced the 
lowest false negative rate (FNR) of 0.023676. The low FNR means that it was 
possible to diagnose lung cancer with very minimal incorrect classification er-
rors. This translates to successful prediction of lung cancer disease correctly. 
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1. Introduction 

Cancer is a non-communicable disease with over 100 different types, including 
breast cancer, skin cancer, pancreatic cancer, lung cancer, colon cancer, and 
prostate cancer that progresses with uncontrolled cell growth in the body [1]. 
The cancerous cell forms a tumor that impairs the immune system and causes 
other biological changes to malfunction. According to the World Health Organ-
ization (WHO), statistics [2] pointed out that cancer is the leading cause of 
death worldwide, accounting for nearly 10 million people in 2020, and the most 
common cancers are breast, lung, colon, and prostate cancer [3]. The most com-
mon causes of cancer deaths in 2020 were lung cancer, with 1.80 million deaths; 
colon and rectum recorded 916 million deaths, while the least was breast cancer, 
with 685 million deaths [4]. The mortality rate of lung cancer is even higher than 
breast cancer and colon cancer combined [5]. This deadly disease occurs because 
of the uncontrolled growth of malignant cells within one or both lungs. The in-
creasing rates and vicious nature of lung cancer the world over put pressure on 
healthy society to find better, faster, and more accurate methods for the early 
diagnosis of this type of disease. Early detection and diagnosis can improve the 
survival rate. 

Many screening procedures are suggested to find the presence of the condi-
tion under different stages. With lung cancer being a leading cause of can-
cer-related deaths with minimum survival rates, early detection of lung cancer is 
a question mark to researchers. In spite of continuous efforts devoted towards 
cancer drug development, there is little effectiveness of these chemotherapies, 
mainly due to cancers’ heterogeneous causes. Their work [6] pointed out that 
conventional supervised machine learning algorithms such as Decision trees 
(DT), K-Nearest Neighbor (KNN), Naïve Bayes (NB), Support Vector Machine 
(SVM), Convolutional Neural Networks (CNN), Random Forest (RF) and Ge-
netic Algorithms (GA) have been applied to predict the survivability of cancer 
patients with high accuracy. However, conventional machine learning algo-
rithms are unable to handle high-dimensional datasets due to their inability to 
employ diverse sources of data for predictions [7]. As [8] [9] and [10] discuss, 
the usage of conventional feature selection and dimensionality reduction tech-
niques such as Principal Component analysis (PCA), Particle Swarm Optimiza-
tion (PSO), Ant Colony Optimization (ACO), and Grey wolf optimization 
(GWO) have failed to enhance the accurate performance of cancer diagnosis in-
cluding incorrect identification, low prediction accuracies and not reducing the 
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false negative rates. Their work [11] further explains that due to the sensitivity of 
cancer data, most of the current machine-learning algorithms exhibit very low 
accuracies in their predictions. Computer Aided Diagnosis (CAD) systems have 
been used at healthcare centers to diagnose lung cancer during its early stage of 
growth; this has not been achieved as the accuracy of cancer detection is difficult 
to achieve, mainly because of the over-fitting of lung cancer features and the di-
mensionality of the feature set [12]. 

In this study, a CNN-GWOA is proposed to address dismal performance to 
reduce false negative rates, ultimately reducing error rates in diagnosing the lung 
cancer disease and boosting overall prediction rate while minimizing over-fitting 
of lung cancer features. The proposed CNN-GWOA is important because the 
selection of the best (alpha) hyper-parameters was made so that only the best 
was used in the model’s training. By this approach, selecting the best hy-
per-parameters improved the prediction rate of diagnosis of lung cancer disease 
and reduced the misdiagnosis rate. 

Therefore, this research purposes to provide the following contributions: 
1) Investigating the efficacy of utilizing a Convolutional Neural Network 

(CNN) coupled with the Grey Wolf Optimization Algorithm (GWOA) for the 
development of a robust lung cancer diagnosis algorithm, aimed at enhancing 
the accuracy and reliability of lung tumor classification. 

2) Assessing the effectiveness of the Grey Wolf Optimization Algorithm 
(GWOA) for optimal feature selection in the context of lung cancer diagnosis, 
with the objective of identifying the most relevant features and optimizing hy-
per-parameters to improve the performance of the diagnostic model. 

3) Comparatively analyzing the performance of the developed CNN-GWOA 
model against baseline classifiers such as Random Forest (RF) and Decision 
Trees (DT) in terms of accuracy, F1 score, precision, recall, True Positive Rate 
(TPR), and False Negative Rate (FNR), to demonstrate its superiority and poten-
tial practical implications in clinical settings. 

2. Related Work 
2.1. Applicability of Conventional Supervised Machine  

Learning Algorithms for Lung Cancer Diagnosis 

Machine learning algorithms play an increasingly important role in cancer di-
agnosis, and the accurate prediction of machine learning methods for cancer has 
become one of the most urgent and challenging tasks for researchers [13]. This 
section highlights studies where supervised machine learning algorithms have 
been applied for various cancer prediction diseases such as breast, colon, cervic-
al, ovarian, and lung cancer. Scientists use several methods to determine differ-
ent kinds of cancer present with symptoms, such as early-phase screening (EPS) 
[14]. In addition, they have developed unique approaches for the early identifi-
cation of the prognosis in cancer treatment, such as Computed Tomography 
(CT) images, Magnetic Resonance Image (MRI), Positron Emission Tomogra-

https://doi.org/10.4236/oalib.1111172


T. K. Abuya et al. 
 

 

DOI: 10.4236/oalib.1111172 4 Open Access Library Journal 
 

phy (PET), and Fluoro-deoxy-glucose (18F FDG) [15] [16]. 
Because of the invention of new technologies in medicine, vast volumes of 

cancer data have been collected and available for bioinformatics and the scien-
tific community for evaluation and testing. However, the diagnosis of lung can-
cer disease is among the most fascinating and demanding challenges in health-
care, including incorrect classification and low prediction accuracy [17]. 

A model for predicting breast cancer using various machine-learning classifi-
cation algorithms like KNN, SVM, and Gaussian NB was created [18]. Using the 
UCI machine learning repository Wisconsin breast cancer dataset, the algo-
rithms achieved better performance after parameter selection and feature selec-
tion with an accuracy value of KNN = 0.99, SVM = 0.96, NB = 0.95, precision 
values of KNN = 0.98, SVM = 0.95, NB = 0.94, similarly recall values of KNN = 
0.99, 0.97, and 0.96 [19]. Therefore feature selection and parameter optimization 
were the effective ways to improve the results of SVM [20]. 

Several studies have used decision trees to solve biological problems, including 
identifying cancer tissue origin using microRNAs, identifying biomarkers in 
cancer, and defining prognostic biomarkers for lung cancer using nuclear re-
ceptor expression [21]. In [22], they developed a lung cancer prediction algo-
rithm using ANN and DT, whereby they analyzed habits like alcohol consump-
tion, age, and smoking to detect lung cancer. Experimental results revealed 
promising prediction results with an accuracy of 95%, precision of 0.95%, recall 
of 0.94, f1-score of 0.94 and MSE of 0.05.  

In their work [23], they developed an ensemble classifier based on traditional 
KNN and individual decision models related to KNN that were applicable to 
problems characterized by noisy, imbalanced datasets without increasing classi-
fication time. However, the traditional KNN lacked the scalability to manage 
very large datasets. In addition, the need to identify the k-neighborhood proved 
hard with an imbalanced dataset [24]. Another study [25] used the Ensemble 
Adaboost algorithm to predict different lung cancer types. Ensemble learners 
were trained using features extracted from the lung CT images and evaluations 
done using performance metrics. The Accuracy of Adaboost was 90.74%, with a 
sensitivity of 81.80%, specificity of 93.99%, F1 score of 0.8, kappa of 0.753, and 
AUC of 0.93. The performance of the AdaBoost classifier was then compared 
with the different machine-learning algorithms [26]. 

The CNNs have emerged as a powerful alternative solution for nodule classi-
fication tasks. They use an end-to-end training scheme, i.e., the entire image or 
image patch is fed into a network while getting a classification label as output. 
CNNs automatically learn to extract useful image features by adjusting the 
weights of their convolutional kernels and therefore eliminate the need for hu-
man-dictated feature engineering [27]. The fact that CNNs adaptively learn the 
optimal representations in an entirely driven scheme by capturing the spatial 
dependency in images through applying relevant features helps them outper-
form classical CAD systems [28]. In lung cancer prediction, 3D CNN is utilized 
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to classify the lung nodules, which can be benign or cancerous. In their work 
[29] developed a weakly supervised learning model using CNN based on Effi-
cientNet-B3 architecture to predict lung carcinoma using a training dataset of 
3554 Whole Slide Images (WSIs). Results obtained differentiated between lung 
carcinoma and non-neoplastic with high Receiver Operating Curve (ROC), Area 
under Curves (AUCs) on four tests showed a performance of 0.975, 0.974, 0.988, 
and 0.981, respectively [30]. A machine learning classifier was developed to clas-
sify available lung cancer data in the UCI machine learning repository. The 
KNN, Naive Bayes (NB), and Radial Basis Function (RBF) network algorithms 
were used to classify data as either cancerous or non-cancerous. The comparison 
of results revealed that the proposed RBF classifier had resulted with a great ac-
curacy of 81.25% and was thus considered as an effective classifier technique for 
Lung cancer data prediction [31] [32]. Another study [33] developed a comput-
er-aided diagnosis (CAD) system supported by artificial intelligence (AI) learn-
ing models for effective disease diagnosis. The DT, Support Vector Machine 
(SVM), Linear Discriminant Analysis (LDA) and Multi-perceptron Neural Net-
works (MLP-NN) were employed to train and validate the optimal features re-
duced by the proposed system. By using the 10-fold cross-validation, the perfor-
mance of the model was evaluated using accuracy, f1 score, precision, and recall. 
The study outcome attained 99.62%, 96.88%, and 98.21% accuracy on breast, cer-
vical, and lung cancer, respectively [34]. In [35] [36], they used a CNN-supervised 
machine learning algorithm for the classification and detection of different types 
of cancer from both MRI and RBG (Red, Green, Blue) images. The CNN classi-
fied cancer types and semantic segmentation to segment cancer cells. The re-
search was examined on the MATLAB platform on MRI and RGB images of in-
fected cells for breast, leukemia, lung, and colon cancer. The experimental re-
sults achieved detection of cancer cells from various cancer databases that 
represented an average accuracy rate of 93%. In addition, [35] [36] used a hybrid 
Tabu Search (TS) with Stochastic Diffusion Search (SDS) based feature selection 
that was employed using NB, DT, and Neural Networks (NN) classifiers to im-
prove classification of cancer disease. The results achieved demonstrated an ac-
curacy of 94.07%. 

In their work [37], proposed a novel lung cancer detection technique using 
machine learning algorithms. The techniques comprised feature extraction, fus-
ing using patch base, and discrete cosine transform. They applied ML techniques 
such as SVM and KNN. The proposed algorithms achieved a performance of 
93% accuracy for KNN and 91% accuracy for SVM, respectively. In terms of av-
erage specificity, sensitivity, and accuracy, 95%, 86%, and 93% in SVM were 
achieved. Whereas for KNN, 93%, 82%, and 91% of specificity, sensitivity, and 
accuracy, respectively. The performance results show that the proposed tech-
nique attained better performance in the chest CT scan image dataset [38]. In 
another study, radiomics approach to predicting non-small cell lung cancer 
(NSCLS) tumor histology from non-invasive computed tomography data was 
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proposed [39]. Training and validation were done on a dataset containing 311 
early-stage NSCL patients using CNN with a focus on adenocarcinoma (ADC) 
and squamous cell carcinoma (SCC). The CNNs were able to predict tumor his-
tology with an AUC of 0.71. Using kNN and SVM on CNN-derived quantitative 
radiomics features yielded a performance with AUC of up to 0.71 [40]. 

2.2. Challenges of Conventional Supervised Machine Learning  
Algorithms for Cancer Diagnosis 

The variability in data capture across healthcare systems leads to significant 
challenges in creating cohesive datasets for analysis. Furthermore, machine 
learning integration into clinical workflows presents its own set of challenges 
[41]. Although this review focuses on the technical challenges of ML, it should 
be noted that clinical decision support tools have implications on the treatment 
and subsequent outcomes of the patients and thus must be handled with great 
care. Machine learning models must gain the trust of clinicians through inter-
pretability, collaboration between researchers and medical experts, and prospec-
tive validation in clinical settings [42]. Some of the challenges of machine learn-
ing algorithms for lung cancer prediction are that data annotation is not done 
accurately [43]. Though there is this huge presence of data, annotated exam-
ples or the output label for predictions are not present. Since some of the best 
machine learning algorithms would work well under supervision when there is 
an output class label, there is a need to provide data that is annotated [44]. 
Another issue is the need for hyper-parameter tuning as there are a lot of 
complex ML models being developed, with some of them being random forests, 
decision trees, and neural networks that face setbacks of not being able to tune 
the hyper-parameters so that they result in very good performance on the test 
data [45] [46]. 

The modeling power and complexity of neural networks come at the expense 
of interpretability, where the neural networks are coined as black box methods 
as a result of the difficulty in extracting insights [47]. Rustam et al. discussed that 
lung cancer detection, in general, is carried out using radiological imaging tech-
niques through image testing [48]. However, these techniques still result in low 
survival rates because the malignant cells are detected in late stages of lung can-
cer. They used SVM and SVM-RFE for feature selection for lung cancer detec-
tion. 

Tang et al. discussed that the major challenge in machine learning and data 
mining areas is to build accurate and computationally efficient classifiers for 
medical applications and tumor immunotherapy [49]. The limitations expe-
rienced for KNN were that the KNN algorithm is slow since it reviews all the in-
stances each time, it is vulnerable to dimensionality, sensitive to irrelevant and 
correlated attributes, and that a wrong choice of the distance or the value of k 
degrades the performance [50]. 

Jayaraj et al. [51] developed a random forest (RF) for lung cancer prediction. 
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The classification of images was carried out using a random forest classifier, 
which provided an output that classified images into normal and abnormal. 
However, there still exists problem with Missing data imputation, hard to build 
accurate and efficient classifiers for medical applications. 

Eali et al. [52], found out that the classification of benign and malignant tu-
mors was not predicted accurately. In medical informatics, a small minute error 
can result in erroneous results. Algorithms like SVM, DT, KNN, and NB still 
face problems like over-fitting, computationally expensive as they require more 
time to train the model, high dimensionality feature space, noise, and irrelevant 
results in degradation of accuracy [53].  

It is demonstrated that supervised machine learning algorithms still face chal-
lenges in cancer prediction, such as high computational complexity, prone to 
over-fitting, building accuracy and computationally efficient classifiers, compu-
tationally expensive, missing data imputation, high dimensionality feature space, 
high error rates due to non-reduction of false negative rates, low prediction ac-
curacies and it’s sensitive to irrelevant correlated attributes. In view of this, 
proper classifiers with improved algorithm techniques should be employed for 
better accuracy.  

2.3. Theoretical Description of Classifiers 

In this section, we used Convolutional Neural Networks (CNN), Decision tree 
classifier (DT), and Random forest classifier (RF). Grey wolf optimization was 
used as a hyper-parameter optimization algorithm to select the best hy-
per-parameters to increase accuracy of diagnosis of lung cancer. 

2.3.1. Convolutional Neural Networks (CNN) 
The CNN comprises two primary stages. First stage is feature extraction, where 
in, the network does continuous convolution and pooling operations in order to 
detect the features in the image and utilizes the fully connected layer to classify 
the extracted features. Second stage is classification. The layers in the CNN are 
arranged in three dimensions separating the neurons from one layer to the next. 
The output is usually reduced to single vectors based on the probability scores. 
The CNN does the convolution employing a filter or kernel by scanning images 
from top to bottom; the process continues transforming the width of the screen 
until the entire image is scanned. The filter or kernel multiplies its own values with 
overlapping values and adds them to the output single values for each overlap until 
the whole message is passed through. 

2.3.2. Random Forest 
Random forests are known for their high performance and generalizability. RF 
model is applied to resolve the classification as well as regression problems. In 
order to perform the classification, an RF model can be used where the depen-
dent variable is categorical. Based on the rules, the data is divided by the tree. 
The dataset can be split into many regions by using these rules. The variable’s 
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influence on the homogeneity or cleanliness of the subsequent child nodes (X2, 
X1) can be used to compute these rules. The variable x1 becomes a root node 
because it leads to the maximum homogeneity in child nodes. In this study, RF 
is applied as a classifier model where the dependent variable is categorical. 
• When a data frame of (n X P a tree splits the data depending upon the rules. 

These rules partition the dataset into a number of different and non-overlapping 
regions.  

• These rules are computed using a variable’s influence on the homogeneity or 
cleanliness of the subsequent child nodes (X2, X3).  

• The variable X1 leads to maximum homogeneity in child nodes. Therefore, it 
becomes a root node. The variable at the root node is considered an essential 
variable in the dataset. 

RF model has some other features that help in the classification process. The 
classification process under RF depends on the following ways: In the classifier 
tree, the partitioning decision is mainly depending on the following ways: 
• Gini Index: It is used to compute the trueness of a node. When the Gini in-

dex indicates a lower value, it recommends that the node is actual. The Gini 
index for a child node is lesser than the parent node when carrying out the 
splitting process. 

• Entropy: It is used to compute the impurity of a node. In the case of a binary 
class (a, b), the entropy will be calculated as follows. The entropy value will 
be highest at the value of p is 0.5. At the same time, the entropy value will be 
lowest at the probability value of 0 or 1. 

( ) ( )( ) ( ) ( )( )( )Entropy log logp a p a p b p b a= − ∗ − ∗           (1) 

In this study, the Gini index was used for parameter setting. Random Forests 
allow us to look at feature importance, which is how much the Gini Index for a 
feature decreases at each split. The more the Gini Index decreases for a feature, 
the more important it is.  

Gini Index calculates the amount of probability of a specific feature that is 
classified incorrectly when selected randomly. If all the elements are linked with 
a single class, then it can be called pure. The Gini index is determined by de-
ducting the sum of squared probabilities of each class from one, mathematically 
Gini Index is expressed as: 

( )2
1Gini Index 1 n

ii P
=

= −∑                      (2) 

where Pi denotes the probability of an element being classified for a distinct 
class. The classification and regression tree (CART) algorithm deploys the me-
thod of the Gini Index to originate binary splits. 

2.3.3. Decision Tree 
Decision trees use supervised learning techniques to build a model, which is a set 
of nodes arranged in a hierarchical fashion. It is a tree-based technique in which 
any path beginning from the root is described by a data-separating sequence un-
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til a Boolean outcome at the leaf node is achieved. Decision trees consist of two 
parts: It is the hierarchical exemplification of knowledge relationships that con-
tain nodes and connections. When relationships are used to classify, nodes 
represent purposes. Decision tree classifies cases into groups or predict values of 
a dependent (target) variable based on values of independent (predictor) va-
riables. The procedure provides validation tools for exploratory and confirma-
tory classification analysis. DTs that are grown very deep often cause over-fitting 
of the training data, resulting in a high variation in classification outcome for a 
small change in the input data. They are very sensitive to their training data, 
which makes them error-prone to the test dataset. 

When implementing the decision trees algorithm to detect lung cancer, the 
leaf nodes are divided into three categories: malignant and benign. Rules will be 
established among the chosen data set attributes in order to determine if the tu-
mor is benign or malignant. 

2.4. Evaluation Measures 

The metrics used in this study include; Accuracy (ACC), Precision (PPV), F1 
score and recall, False negative rate (FNR) and True Positive Rate (TPR). They 
are explained in Table 1. 

2.5. Hyper-Parameter Feature Selection Using Grey Wolf  
Optimization Algorithm (GWOA) 

In this step, the best hyper-parameters were obtained that produced the best 
performance based on the architecture used and the metrics that were being 
monitored. 
 
Table 1. Performance metrics used in lung cancer diagnosis. 

Metric Definition Note 

Accuracy 
TP TN

TP TN FP FN
+

+ + +
 

Overall correctness of the 
model. The total true results. 

Precision 
TP

TP FP+
 

Ratio of positive cases that we 
predicted appropriately. 
The positive predicted  
value (PPV). 

Recall/TP-Rate 
TP

TP FN+
 

The ratio of correctly identified 
positive cases. 

F1-Score 
2TP

2TP FP FN+ +
 

The weighted average of  
precision and recall. 

False Negative Rate 
(Miss Rate) 

FP FP
TN FP N

=
+

 
It is the probability that a true 
positive will be missed by the 
test 

True Positive Rate  
(Sensitivity) 

TPTPR
TP FN

=
+

 
It is the probability that an 
actual positive will test positive 
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The GWOA relies on a clear definition of labor and cooperation to survive. 
They mimic the leadership hierarchy and hunting mechanism of grey wolves in 
nature. Due to the clear division of labor grey wolf population is divided into 
four levels. The leading grey wolf is called the alpha (α) wolf, the next level is 
called the beta (β) wolf, the third level is called the delta (δ) wolf and the lowest 
level is called the omega (ω) wolf. 

The inspiration for using GWOA is the behavior of the grey wolf, which hunts 
large prey in packs and relies on cooperation among individual wolves. The 
main aspects of this behavior are social hierarchy and hunting mechanisms. 

The alphas, betas, deltas, and omegas are classified as dominant hierarchies, 
whereby the wolves are ranked according to strength and power. The levels em-
ployed for simulating leadership are shown below: 

1) The alpha male and females are at the top of the hierarchy, and they lead 
the pack. All members of the pack have ordered within a specific rank. The 
wolf’s hierarchical system is not just about dominance and aggression; it also as-
sists vulnerable members of the pack who cannot hunt for themselves. 

2) Afterward, the beta wolf supports the alpha wolf’s decisions and helps keep 
discipline within the pack. 

3) The delta wolf is below the beta wolf in rank. They are often strong but lack 
leadership skills and confidence in themselves to take on leadership responsibili-
ties. 

4) The last one is the omega wolf which does not have any power at all, and 
other wolves will quickly chase him. Omega wolf is also responsible for watching 
over younger wolves. 

The main phases of grey wolf hunting include tracking, chasing, and ap-
proaching the prey, pursuing, encircling, and harassing the prey until it stops 
moving, and finally attacking the prey. 

3. Materials and Methods 
3.1. Dataset 

The Computed Tomography data images were collected from the Cancer Imag-
ing Archive TCIA) public access kaggle dataset repository (TCIA). The dataset 
used for this study is specifically for non-small cell lung cancer (NSCLC), which 
contains 4, 946 samples of adenocarcinomas (ADCs), 4952 samples of benign, 
and 4842 samples of squamous cell carcinomas (SCCs) totaling to 14,740 sample 
image dataset. This data set is partitioned into 80% training data set and 20% 
testing data set, which translates to 11,793 training and 2947 for testing. The 
10-fold cross-validation of the accuracy, precision, recall, and F1 score was per-
formed (See Table 2). 

3.2. Data Preprocessing 
Procedure of the Proposed GWOA Algorithm 
In this study, a method consisting of six phases was proposed for the diagnosis  
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Table 2. Summary of dataset used in this study. 

Sno. 
Lung cancer Dataset 

samples 
No. of CT  

scan images 
Data Source 

1. Adenocarcinomas (ADCs) 4946 Albertina et al., 2016 

2. Benign 4952 Albertina et al., 2016 

3. 
Squamous cell Carcinomas 

(SCCs) 
4842 Albertina et al., 2016 

 Total 14,740  

 
of lung cancer using GWOA for hyper-parameter selection. The phase includes; 
dataset uploading, data preprocessing, data partitioning, feature selection, classi-
fication of data, cross-validation, and classifier evaluation. The proposed archi-
tecture is shown in Figure 1. 

Lung CT image preprocessing was performed to improve their quality and to 
achieve better results in the diagnosis of the lung cancer nodule. The lung con-
tains several structures that can be confused with nodules, and the importance of 
this step was to enhance the image. All dataset was converted from RGB to 
grayscale images, reduced to 224 × 224 pixels to make all images uniform and 
remove any distraction. Histogram equalization was used to improve contrast in 
images. This was done by effectively spreading out the most frequent intensity 
values and stretching out the intensity range of the image. All these were 
achieved using bin smoothing, which was applied to enhance the color of images 
and increase contrast so that features can easily be seen by the learner.  

Binning is a technique for smoothing noisy values by consulting their neigh-
borhood. This requires that the data be sorted in some order before it is parti-
tioned into a specific number of bins. Thereafter, smoothing is accomplished by 
bin means, median, or bin boundary. Taking L as the lowest value of a certain 
feature, H as the highest value of a feature, then the width of intervals, Ɯ is given 
by (1): 

Ɯ = (H − L)/ƕ                         (3) 

where ƕ is the number of partitions.  

3.3. Feature Selection 

After normalization, feature selection was performed on both training and test-
ing datasets for dimensionality reduction using the grey wolf optimization algo-
rithm (GWOA). 

3.3.1. Mathematical Model of Grey Wolf Optimization (GWOA)  
The GWO is a population-based meta-heuristic swarm intelligence algorithm 
inspired by leadership behavior and unique mechanism of hunting of grey 
wolves (See Figure 2). It has the ability to avoid local optima stagnation and 
good convergence ability towards the optima. In general, GWO advances itself  

https://doi.org/10.4236/oalib.1111172


T. K. Abuya et al. 
 

 

DOI: 10.4236/oalib.1111172 12 Open Access Library Journal 
 

 
Figure 1. Phases of lung cancer prediction architecture. 

 

 
Figure 2. Flow chart of the Grey Wolf Optimization Algorithm (GWOA). 
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strongly to exploitation. Four types of grey wolves, such as alpha, beta, delta, and 
omega, are employed for simulating the leadership hierarchy. In the hierarchy of 
GWO, alpha (α) is considered the most dominating member of the group. The 
rest of the subordinates are beta (β) and delta (δ), which help to control the ma-
jority of wolves in the hierarchy that are considered as omega (ω). The omega 
wolves are the lowest ranking in the hierarchy. 

The mathematical model of hunting mechanism of grey wolves implemented 
to perform optimization consists of the following: 

1) Tracking, Chasing, and Approaching the Prey. 
2) Pursuing, Encircling, and Harassing the prey. 
3) Attacking the prey. 
1) Encircling, pursuing, and harassing the prey. Grey wolves encircle and 

harass the prey during the hunting process. The mathematical model for encir-
cling behavior is written as follows: 

( ) ( )pD C X t X t= ⋅ −


                       (4) 

( ) ( )1 pX x X t A D+ = − ⋅


 

                    (5) 

where t represents the current iteration. A


 and D


 are co-efficient vectors. 

pX


 is the position vector of the prey, and X


 indicates the position vector of 
the grey wolf. The vectors A



 and C


 are calculated as follows: 

12A rα α= ⋅ −




   

22C r= ⋅




, 

where components of a  are literally decreased from 2 to 0 over the course of 
iteration and 1 2r r⋅

 

 are random vectors in [0, 1]. 
2) Hunting, tracking, and approaching the prey. The grey wolves will na-

turally recognize the location of their prey and will then encircle their food. This 
is guided by the α, and β and δ, followed by the ω. Some of the prey’s locations 
searched by the wolves are not known by humans. Thus, to understand their 
behavior, a representation of a mathematical equation was made to mimic their 
behavior by assuming alpha (the best candidate solution), beta, and delta have a 
broader knowledge about their prey’s location. Therefore, the first three wolves 
were saved as the best candidates’ solution while the other wolves (Omega) up-
dated their position according to the best search candidate. The following for-
mulas are proposed in this regard: 

1D C X Xα α= ⋅ −
  

                         (6) 

2D C X Xβ β= ⋅ −
  

                         (7) 

3D C X Xδ δ= ⋅ −
  

                         (8) 

( )1 1X X A Dα α= − ⋅
   

                       (9) 

( )2 2X X A Dβ β= − ⋅
   

                      (10) 
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( )3 3X X A Dδ δ= − ⋅
   

                       (11) 

( ) 1 2 31
3

X X XX t + +
+ =

  



                     (12) 

3) Attacking the Prey (Exploitation). The grey wolves finish the hunt by at-
tacking the prey when it stops moving. In order to mathematically model ap-
proaching the prey, we decrease the value of α . Note that the fluctuation range 
of A



 is also decreased by α . In other words, A


 is a random value in the in-
terval [−2a, 2a] where a is decreased from 2 to 0 over the course of iterations. 
When random values of A



 are in [−1, 1], the next position of a search agent 
can be in any position between its current position and the position of the prey. 
The value |A| < 1 forces the wolves to attack the prey. 

a) If |A| < 1, then attacking prey (exploitation). 
b) If |A| > 1, then searching for prey (exploitation). 
After the attack again, they search for the prey in the next iteration, wherein 

they again find the next best solution α among all the wolves. This process re-
peats until the termination criterion is fulfilled. 

4) Search for Prey (Exploitation). 
Grey wolves mostly search according to the alpha, beta, and delta position. 

They diverge from each other to search for prey and converge to attack prey. In 
order to mathematically model divergence, we utilize A



 with random values 
greater than 1 or less than −1 to oblige the search agent to diverge from the prey. 
The |A| > 1 forces the grey wolves to diverge from the prey to hopefully find a 
fitter prey. Another component of GWO that favors exploration is C



 which 
contains random values in [0, 2]. This component provides random weights for 
prey to stochastically emphasize (C > 1) or deemphasize (C < 1) the effect of 
prey in defining the distance. Generally, the search process starts with creating a 
random population of grey wolves (candidate solutions) in the GWO algorithm. 
Throughout iterations, alpha, beta, and delta wolves estimate the probable posi-
tion of the prey. Each candidate solution updates its distance from the prey. The 
parameter a is decreased from 2 and tends to 0 in order to emphasize explora-
tion and exploitation, respectively. Candidate solutions diverge from the prey 
when 1>A

  and converge towards the prey when 1<A


. Finally, the GWO 
algorithm is terminated by the satisfaction of an end criterion. 

3.3.2. Pseudocode of the Proposed Grey Wolf Optimization  
Algorithm (GWOA) 
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The results of the optimization above were the best parameters that were fed 

into the model. The selection of the best (alpha) hyper-parameters was done in 
such a way that only the best were used in the training of the model. By this ap-
proach, there is optimism that they generated the best performance since this 
has been compared by the GWO algorithm. 

3.3.3. Convolutional Neural Networks (CNN) for Classification 
The CNN was used for classification to classify which of the three classes of 
adenocarcinoma (ADC), small cell cancer (SCC), and benign cancerous image 
falls under. The following is a demonstration of how CNN was used for classifi-
cation (See Figure 3). 

3.4. Experimental Design 

Upon Data preprocessing, the RF, CNN, and DT were applied to obtained data. 
To accomplish this, a computing environment with the following specifications  

 

 
Figure 3. Classification using CNN classifier. 
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was employed: HP EliteBook core i5-4300UCPU @ 1.90 GHz 2.50 GHz, RAM 
4.00 Gb, 64 bit OS, Python 3.8.5, spyder environment, and Anaconda IDE. The 
proposed lung cancer diagnosis algorithm was executed on the lung cancer da-
taset repository (Albertina et al., 2016), which consisted of 4946 samples of ade-
nocarcinomas (ADCs), 4952 samples of benign and 4842 samples of squamous 
cell carcinomas (SCCs) totaling to 14,740 sample image dataset. This data set 
was partitioned into 80% training data set and 20% testing data set, translating 
to 11,793 training and 2947 for testing. Random forest, decision trees, and Con-
volutional Neural Networks (CNN) were used for experimentation. The perfor-
mance of the lung cancer diagnosis algorithm was evaluated using the accuracy, 
precision, recall, F1-score, True positive rate (TPR) and false negative rate 
(FNR). A comparative study was employed whereby the experiments were car-
ried out to reflect the performance of CNN, RF, and DT before GWOA and after 
GWOA. Similarly, there was a comparison to demonstrate the performance of 
CNN, RF, and DT before GWOA with cross-validation and performance after 
GWOA with cross-validation. 

4. Results and Discussion 

This section is divided into three parts: Study design, the performance of GWOA 
before and after optimization, results after GWO without cross-validation, and 
performance after GWOA with cross-validation. Finally, we show the difference 
in performance of all the parameters used. 

4.1. Study Design  

In this work, a comparative study was employed whereby the experiments were 
carried out to reflect performance without using the grey wolf optimization al-
gorithm (GWOA) and when using GWOA. The main aim was to reduce as 
much as possible the false negative rate to be able to deal with incorrect classifi-
cation of data, which leads to misdiagnosis. 

Therefore a comparative study was employed whereby the experiments were 
carried out to reflect the performance of CNN, RF, and DT before GWOA and 
after GWOA. Another comparison was to demonstrate the performance of 
CNN, RF, and DT after GWOA with cross-validation. 

4.2. Performance of Classifiers before GWOA and after GWOA 

To determine the effects of feature selection and hyper-parameter optimization 
that were used in this study, evaluation metrics like accuracy, F1 score, precision, 
recall, TPR and FNR were computed before optimization and after optimization 
using Grey Wolf Optimization Algorithm (GWOA). Table 3 shows the perfor-
mance of the classifiers before GWOA. 

Figure 4 shows that before applying GWOA, the performance of CNN was 
generally good, followed by RF and DT. The accuracy was at 0.955975, F1 score 
at 0.954851, precision of 0.956991, recall of 0.954591, True positive rate (TPR) of  
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Table 3. Performance of CNN, DT and RF before GWOA. 

Sno. Label Accuracy F1 Score Precision Recall TPR FNR 

1 CNN 0.955975 0.954851 0.956991 0.954591 0.954591 0.045409 

2 Decision Tree 0.711876 0.714437 0.718333 0.711943 0.711943 0.288057 

3 
Random  

Forest 
0.862651 0.860464 0.861317 0.862766 0.862766 0.137234 

 

 
Figure 4. Performance of CNN, DT, and RF before GWOA. 
 
0.954591and finally, the false negative rate (FNR) of 0.045409 followed by RF 
and lastly DT, respectively, as shown in Table 1. The FNR values for RF were 
0.137234 and DT at 0.288057, respectively. The FNR values for all classifiers 
went up to 0.28. Table 4 shows the performance of classifiers after the GWOA 
application. 

As illustrated in Figure 5, the performance of CNN improved greatly com-
pared to Figure 4, where the best results were at an average of 0.95 before 
GWOA. After GWOA in Figure 5, the performance significantly improved to an 
average of 0.97 after GWOA in terms of accuracy, F1 score, precision, recall, and 
TPR, followed by the random forest, whose average performance before GWOA 
and after GWOA was at an average of 0.86. The poorest performance was with 
Decision trees, whose average performance before GWOA and after GWOA was 
at 0.71. The false negative rate (FNR) reduced significantly after GWOA across 
with CNN FNR reducing from 0.045409 to 0.023676, DT from 0.288057 to 
0.285266, and lastly, RF reducing from 0.137234 to 0.132411, respectively. 
Theoretically, low FNR means it was possible to diagnose lung cancer with mi-
nimal incorrect classification errors, implying a successful prediction of lung 
cancer disease. 

In Table 5, there was a positive deviation across CNN in terms of accuracy, 
F1-score, precision, recall, and TPR. That was the best performance compared to  
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Table 4. Performance of CNN, DT, and RF after GWOA. 

Sno. Label Accuracy F1 Score Precision Recall TPR FNR 

1 CNN with GWOA 0.976939 0.976418 0.976633 0.976324 0.9766324 0.023676 

2 
Decision Tree with 

GWOA 
0.714630 0.714247 0.713856 0.714734 0.714734 0.285266 

3 
Random  

Forest with GWOA 
0.867470 0.865096 0.866270 0.867589 0.865789 0.132411 

 
Table 5. Performance of CNN, DT, and RF before GWOA and after GWOA. 

Sno. Label 
Accuracy  

(BO) 
Accuracy 

(AO) 
Deviation in 

Value 
F1 Score 

(BO) 
F1 Score 

(AO) 
Deviation in 

Value 

1 CNN 0.955975 0.976939 +0.020964 0.954851 0.976418 +0.021567 

2 Decision Tree 0.711876 0.714630 +0.002754 0.714437 0.714247 −0.00019 

3 Random Forest 0.862651 0.867470 +0.004819 0.860464 0.865096 +0.004632 

Sno. Label 
Precision 

(BO) 
Precision 

(AO) 
Deviation in 

Value 
Recall 
(BO) 

Recall 
(AO) 

Deviation in 
Value 

1 CNN 0.956991 0.976633 +0.019642 0.954591 0.976324 +0.021733 

2 Decision Tree 0.718333 0.713856 −0.004477 0.711943 0.714734 +0.002791 

3 Random Forest 0.861317 0.866270 +0.004953 0.862766 0.867589 +0.004823 

Sno. Label 
TPR 
(BO) 

TPR (AO) 
Deviation in 

Value 
FNR 
(BO) 

FNR 
(AO) 

Deviation in 
Value 

1 CNN 0.954591 0.9766324 +0.0220414 0.045409 0.023676 −0.021733 

2 Decision Tree 0.711943 0.714734 +0.002791 0.288057 0.285266 −0.002791 

3 Random Forest 0.862766 0.865789 +0.003023 0.137234 0.132411 −0.004823 

BO-Before Optimization; AO-After Optimization. 
 
RF and DT. Similarly, there was reduced FNR for CNN compared to RF and DT. 
The good performance for CNN was because CNN are highly adaptable learning 
algorithms which are able to detect non-linear relationships between the features 
and sample classes. In addition, the CNN is fault-tolerant and easy to adapt. The 
improved performance in RF was because they do not over-fit, and also they are 
capable of handling missing values automatically. The decision tree had the 
poorest performance before and after GWOA for all the metrics applied. This is 
attributed to the fact that decision trees require more training time and are 
computationally expensive.  

4.3. Performance of Classifiers after GWOA with Cross-Validation 

After getting the results of the performance of CNN, RF, and DT classifiers after 
using GWOA, there was a need to validate the performance of the algorithms 
free from bias and over-fitting. The 10-fold cross-validation was used for this va-
lidation, and the results are shown in Table 6 and Figure 6. 
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Figure 5. Performance of CNN, DT, and RF after GWOA. 

 

 
Figure 6. Performance of CNN, DT, and RF after GWOA with cross-validation. 
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Table 6. Performance of CNN, DT, and RF after GWOA with cross-validation. 

Sno. Label Accuracy F1 Score Precision Recall 

1 
CNN after GWOA with 

cross-validation 
0.968553 0.967912 0.969108 0.967893 

2 
Decision Tree after 

GWOA with 
cross-validation 

0.708463 0.708725 0.709297 0.708463 

3 
Random Forest after 

GWOA with 
cross-validation 

0.791710 0.791529 0.791640 0.791710 

 
From Figure 6 and Table 6 shown, the cross-validation is used to validate the 

results. Based on the values presented, the CNN achieved the best performance 
after GWOA with cross-validation compared to RF and DT. The performance of 
CNN was at an accuracy of 0.968553, an F1-score of 0.967910, a precision of 
0.969108, and a recall value of 0.967893. This was a drop from the previous re-
sults before cross-validation, which was at an average of 0.97. The performance 
of RF reduced greatly after cross-validation from an average of 0.86 to an aver-
age of 0.79. The poorest performance was with DT at 0.71 with cross-validation 
and before cross-validation. 

This means that at 96% performance for accuracy, F1-score, precision, and 
recall after cross-validation, the proposed CNN-GWOA was able to diagnose 
lung cancer with fewer misdiagnosis errors as cross-validation was able to flag 
over-fitting or selection bias. The results obtained are less biased. 

5. Discussion 

From Figure 5, it is evident that, generally, performance improved for CNN af-
ter deployment of the feature selection algorithm GWOA compared with Figure 
4 before the application of GWOA. As shown in Table 5, the difference in per-
formance after optimization for CNN indicated an increase of +0.020964 for ac-
curacy, +0.021567 for F1 score, precision of +0.019642, recall value of +0.021733, 
TPR of 0.0220414 and a reduction in FNR of −0.021733 respectively. This was fol-
lowed by the performance of RF and, lastly, the DT. After GWOA with 
cross-validation in Figure 6 and Table 6, CNN produced consistent and best 
results compared with other classifiers with an accuracy of 0.968553, F1-score of 
0.967912, precision of 0.969108 and recall of 0.967893 and all of them recorded a 
positive deviation. This was followed by RF and, lastly, the DT. 

From the experiments performed, it is clearly evident that the CNN classifier 
proved to be an ideal classifier for lung cancer diagnosis, while decision trees 
displayed the worst results throughout the training, testing, and cross-validation 
instances. Overall, the deployed GWOA demonstrated boosted the performance 
of lung cancer diagnosis. Therefore the CNN combined with GWOA is pro-
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posed for early lung cancer diagnosis. 
The proposed lung cancer diagnosis algorithm was successful in determining 

whether the cancerous images were adenocarcinomas, benign, or squamous, ef-
fectively at 96% performance. Lung cancer diagnosis using the Grey wolf opti-
mization algorithm (GWOA) with CNN has proven to improve the diagnosis 
accuracy, precision, recall, and F1 sore while improving the TPR and reducing 
the FNR to reduce the misclassification error, which has boosted the overall pre-
diction rate while at the same time minimizing over-fitting of cancer features. 

Since precision represents the ratio of rightly predicted positive observations 
to the entire population of predicted observations, the proposed algorithm of 
CNN-GWOA had a low false negative rate. As such, of all 14,740 datasets that 
were labeled as cancerous, 96% of them were infected by lung cancer. On the 
other hand, recall represents the ratio of rightly diagnosed positive observations 
to the entire population of the actual class. As such, of all the datasets infected 
with lung cancer, the proposed algorithm labeled 96% of them. With the recall 
value being more than 50%, the proposed diagnostic algorithm represents a 
good model. Moreover, the false negative rates represent the number of the in-
correctly classified dataset. Since the FNR was significantly reduced to 0.023676, 
it means that misclassification error was considerably brought to a minimum. 
The true positive rate was 96%, meaning the rightly diagnosed dataset was cor-
rectly identified. 

It is evident from the two comparative experiments carried out before GWOA 
and after GWOA with 10-fold cross-validation that CNN with GWOA has 
proved to be the best algorithm for lung cancer prediction in that it produced 
the best results for accuracy, F1 score, precision, and recall and also had the 
lowest false negative rate of 0.023676. This is followed closely by RF, which had 
the second lowest false negative rate at 0.132411, and the decision tree at 
0.285266. The decision tree has demonstrated the worst performance measure in 
all the training carried out. On the other hand, the RF classifier has the 
second-best performance, while CNN has the best performance overall. 

6. Conclusion 

The research discusses significant challenges of diagnosing lung cancer early due 
to its advanced symptom manifestation and high mortality rates. It highlights 
the potential of convolutional neural networks (CNNs) and nature-inspired op-
timization algorithms like grey wolf optimization (GWO) in improving diagno-
sis accuracy. However, previous approaches have failed to effectively enhance 
diagnostic performance, leading to high false negative rates. To address this, the 
research proposes a CNN-based GWO algorithm, which significantly outper-
forms other methods with an average accuracy of 96% and a low false negative 
rate of 0.023676. Despite this improvement, there is still room for further en-
hancement in reducing false negative rates and enhancing classification algo-
rithms for better lung cancer diagnosis. 
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7. Future Work  

A potential future direction for this research involves exploring additional ma-
chine learning techniques or hybrid models that integrate different algorithms to 
further improve the accuracy of lung cancer diagnosis. For instance, researchers 
could investigate ensemble methods that combine the strengths of multiple clas-
sifiers or develop hybrid models that leverage both image-based features ex-
tracted by CNNs and clinical data to enhance prediction accuracy. Additionally, 
researchers could focus on expanding the dataset used in training these models 
to incorporate more diverse patient demographics, tumor characteristics, and 
imaging modalities. This could help in developing more robust and generaliza-
ble diagnostic models that perform well across different populations and imag-
ing techniques. 
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