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Abstract: In this paper, we explore a novel model for pricing Chinese convertible bonds that seam-
lessly integrates machine learning techniques with traditional models. The least squares Monte
Carlo (LSM) method is effective in handling multiple state variables and complex path dependen-
cies through simple regression analysis. In our approach, we incorporate machine learning tech-
niques, specifically support vector regression (SVR) and random forest (RF). By employing Bayesian
optimization to fine-tune the random forest, we achieve improved predictive performance. This in-
tegration is designed to enhance the precision and predictive capabilities of convertible bond pric-
ing. Through the use of simulated data and real data from the Chinese convertible bond market, the
results demonstrate the superiority of our proposed model over the classic LSM, confirming its ef-
fectiveness. The development of a pricing model incorporating machine learning techniques proves
particularly effective in addressing the complex pricing system of Chinese convertible bonds. Our
study contributes to the body of knowledge on convertible bond pricing and further deepens the
application of machine learning in the field in an integrated and supportive manner.

Keywords: convertible bonds; machine learning; Monte Carlo simulation
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1. Introduction

Convertible bonds are complex financial instruments that have grown in popularity
in recent years due to their unique features, such as path dependence and an embedded
call option on the issuer’s stock. Despite the growth of the convertible bond market in
China, pricing these instruments remains an ongoing challenge. The least squares Monte
Carlo (LSM) method proposed by Longstaff and Schwartz [1] has gained popularity for
its effectiveness in handling multiple state variables and complex path dependencies
through simple regression analysis, particularly in the context of convertible bond pricing.
Researchers have frequently attempted to adapt conventional convertible bond pricing
models with factor adjustments, but directly applying these established methods to the
pricing of domestic convertible bonds in the Chinese market would not always produce
good results. This misalignment has led to a substantial discrepancy between the theoret-
ical price and the actual closing price of convertible bonds, underscoring the need for in-
novation in pricing models [2]. The distinctions between domestic and foreign market
environments have further complicated the application of international research results
to the Chinese convertible bond market [3]. The existing pricing system for convertible
bonds in China is incomplete, resulting in frequent discounting and market instability [4].
Establishing a healthy and stable convertible bond market in China necessitates the de-
velopment of a standardized pricing system that enables issuers to optimize financing
methods and various terms while providing investors with accurate convertible bond
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price estimates and optimal investment portfolios. This underlines the importance of re-
search on convertible bond pricing within China’s financial market.

Recently, machine learning has been widely applied in research across various finan-
cial sectors, demonstrating the potential for achieving superior results [5]. By combining
traditional pricing methods with advanced machine learning techniques, it is expected to
improve the accuracy and efficiency of convertible bond pricing, thereby contributing to
the development of a healthy and stable convertible bond market in China. This study
aims to extend the least squares Monte Carlo method by replacing linear regression with
machine learning regression techniques. In this way, nonlinear relationships among state
variables would be able to be captured and therefore more insights from simulated paths
would be gained. Empirical findings substantiate the efficacy of machine-learning-driven
convertible bond pricing across diverse circumstances, thus implying the viability of our
method as a credible alternative to conventional OLS-based pricing methodologies.

2. Literature Review

The convertible bond has attracted the attention of many scholars because of its
unique characteristics as a hybrid of bonds and options. As a member of the contingent
claim asset, that is, a security whose expected value depends on the performance of the
underlying asset, the research on the pricing theory of the convertible bond can be roughly
categorized into two ways: the analytical method, such as the B-S option pricing method,
and the numerical method including the finite difference method, binary tree method, and
least square Monte Carlo simulation method. As follows, we briefly review the history of
the development of the pricing methods with an emphasis on research achievements on
Chinese convertible bond valuation.

2.1. Brief History for Pricing Convertible Bonds

The B-S option pricing method proposed by Black and Scholes [6] and Merton [7] is
the pioneering work for pricing the contingent claim asset. Subsequently, Merton [8] de-
rived partial differential equations (PDEs), subject to boundary conditions, to estimate the
value of securities and treated firm value as the dynamic underlying asset, which is called
the structural form approach. But the closed-form solutions to the PDEs could be hard to
find without restrictive assumptions according to Ingersoll [9]. Brennan and Schwartz
[10,11] first applied the finite difference method to solve the structural model that incor-
porated features that fit the real market, such as discrete coupon and dividend payments,
redemption, and early conversion. McConnell and Schwartz [12] initiated the reduced-
form approach, which regarded the convertible bond as a contingent claim asset on the
stock price. Under this method, the value of convertible bonds is considered as the maxi-
mum of the bond face value and the conversion value of stock price rather than the firm
value influenced by the capital structure in the structural approach. In the reduced-form
approach assuming stock price as the underlying asset, various improvements focus on
the volatility of stock price movement (see e.g., [13-15]). Cox et al. [16] first established the
binary tree pricing model and it was further developed by Hung and Wang [17] and Das
and Sundaram [18] in convertible bond pricing by incorporating effects from different un-
derlying stochastic factors. When more factors and assets are taken into account, the com-
putation time it takes by using the classical binary tree model increases exponentially as
the number of nodes grows over time [19]. The LSM method has extensive applications in
the financial field and can be employed for pricing various financial instruments, such as
pricing commodity options. The value of commodity options is dependent on the price
fluctuations of physical commodities (such as energy, agricultural products, etc.). Similar
to the American option valuation process, the LSM method can be used to estimate the
continuation value function through regression analysis [20]. It is also applicable to capa-
bility investments and inventory/production management issues involving updating de-
mand/supply forecasts in operations and hydroelectric power plant management [21].
The LSM methodology can also be used for portfolio management, especially when
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estimating the future cash flows of portfolios. The risk of portfolios can be better predicted
and managed by regression analysis on simulated paths [22]. By simulating share prices
and estimating the conditional expected value, the LSM methodology can help to deter-
mine the optimal conversion time as well [23].

2.2. Research on Pricing Chinese Convertible Bonds

In the context of research on pricing Chinese convertible bonds, domestic scholars
have conducted a lot of improvement studies based on international theoretical achieve-
ments. Considering that the convertible bond market is still an emerging market in China,
the bond contract is normally designed with some complex and special clauses. Many
attempts have been made to solve such specialized pricing problems that involve certain
clauses for convertible bonds, for example, downward revision clauses [24], reset clauses
[25], sell-back clauses, and redemption clauses [26,27]. In addition, more efforts are spent
on the construction of new pricing models which challenge the standard B-S approach to
valuing derivatives by using innovative statistical methods to describe the dynamic un-
derlying asset price or risk factors [28,29].

2.3. Machine Learning Method for Pricing Convertible Bonds

In recent years, more and more scholars have embarked on analyzing financial data
using machine learning models because these models are relatively easy to implement in
empirical experiments and are adept at capturing unique statistical characteristics of fi-
nancial series [30,31]. In the field of convertible bond pricing, Zhou et al. [32] made a com-
parison analysis of the B-S model, binary tree model, and artificial neural network model
on convertible bond pricing, noting that the artificial neural network model yielded supe-
rior estimation results. Recently, Niu and Ba [33] conducted a convertible bond pricing
project, specifying 31 factors as input variables to predict convertible bond prices. They
found that the support vector regression model effectively completed the prediction task.
While numerous scholars have embraced the wave of machine learning models, there has
been limited work carried out on integrating machine learning techniques with traditional
models [34]. Therefore, we try to bridge the gap by using machine learning models to
replace the regression analysis of the standard LSM.

2.4. Motivation and Overview

Although the least squares Monte Carlo simulation has been widely used, the least
squares regression method has drawbacks such as overfitting and the curse of dimension-
ality. For example, Fabozzi et al. [35] proved that the assumption of the OLS method —
homoscedasticity of errors—does not hold in the LSM model and the resulting OLS esti-
mation is not unbiased, it is actually more prone to overfitting the continuation value
curve. So, necessary improvement can be made in the way of replacement of OLS with
different regression methods such as weighted least square regression [15] and the FAST
model [36]. However, the theoretical methods to correct the estimation bias of OLS still
lack support from the real market data [37,38].

In this study, we refer to the idea from Ling and Almeida [39], using machine learn-
ing techniques to replace the OLS part in LSM to enhance the performance of the bond
pricing model, with experiments on both simulated data and real market data.

To sum up, focusing on the Monte Carlo simulation method to price Chinese con-
vertible bonds, given the drawbacks of least squares regression, and inspired by the pow-
erful performance of machine learning models, we are going to use SVR and RF to replace
least squares regression to improve the accuracy of valuation.
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3. Methods

3.1. Fundamental Framework for Pricing Convertible Bonds via Regression-Based Monte Carlo
Approaches

In the pricing of convertible bonds, it is important to take into account the various
embedded options along with the debt component. A thorough comparison of the value
of these options is essential for determining the appropriate pricing of convertible bonds.
At maturity, the final boundary condition can be expressed as V; = max(n;Sy, F) where
the maximum value between the conversion value n;S; and redemption value F is ex-
plained in Table 1. Throughout the convertible bond’s lifetime, investors engage in strate-
gic decision making to choose conversion or continue holding the bond, i.e., the continu-
ation value Y;, and more detailed rules on exercise decisions are presented in Table 2.

Table 1. The meanings of each letter in the discounted cash flow model.

Name Meaning
S The conversion value equals the payoff in terms of the cor-
et responding number of shares
ng The conversion ratio
St The underlying stock price at time t
F The final redemption value of the convertible bond

Table 2. Rules of optimal exercise decision in convertible bonds.

Payoff Condition Decision
nySr F <n;Sr Forced conversion
n:S; Y, <n.S; Voluntary conversion
F nySy < F Redemption at maturity
0 Otherwise Continuation

3.2. The Standard Procedure of Basic LSM with OLS

The fundamental framework for pricing convertible bonds using the least squares
Monte Carlo (LSM) method, assuming static credit risk, is as follows.

(1) Define a complete probability space (Q,F,P) within the bounded time horizon
[0, T]. Q is the whole set containing all possible outcomes w of the state variable S,
and Q is an equivalent martingale measure under the assumption of no arbitrage
opportunities. Divide [0,T] into a set of finite number of stopping times [0 =
to, ty, to, ..., ty = T]. Considering a series of cash flows from a convertible bond
C(w,t;) alongthe w path at discrete time point t;, with risk-neutral pricing measure
Q, the continuation value at a given time t; can be expressed as the expectation of
the future cash flows discounted by risk-free interest rate r(w, s),

Y(w; t;) = E, [zj-vzm exp (- J9 r(w, s)ds) Clw,t)) | Fti] 1)

(2) Facing the difficulty of the computation of the above conditional expectation formula
(1), Longstaff and Schwartz (2001) proposed an approach of a least squares regression
on some basis functions of the state variables to make the estimation. Usually, the
first few Laguerre polynomials are chosen to be the basis functions. The estimated
conditional expectation value would be derived in the form of a linear combination
of the state variable S;:

Y(w;t;) =a +bS,, + ¢S, 2.

The coefficients a,b,c can be found through the OLS regression.
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(3) For each path, when ¥(w;t;) is greater than the conversion value n,St;, a rational
investor would continue holding the convertible bond, so the optimal stopping value
remains unchanged. Otherwise, the optimal stopping time point t; and stopping
time value M;; are updated.

(4) By Monte Carlo simulation, K stock price paths are generated based on the Heston
model. Once the optimal exercise decisions and corresponding payoffs are deter-
mined for each path, the time-0 price of the convertible bond is calculated by averag-
ing the discounted each M;; back to the time t, over all K simulated paths.

K
1 b
Vo = —z exp (—J- r(w, s)ds> ME.
Kk:l 0 l

(5) To provide a more intuitive illustration of the pricing process in the LSM model, Fig-
ure 1 depicts the simulated price paths in different scenarios. Path 1 represents the
path of the convertible bond when early redemption is triggered. Path 2 and Path 3
represent the paths of the convertible bond in the money and out of the money, re-
spectively.

1.3X

3 I
& 1.0X A \ i
\ )
v |
—— Path 1 (CB price (early redemption))
—— Path 2 (CB price (in the money))
—— Path 3 (CB price (out the money))
0.7X T T
0 T
Time

Figure 1. Simulated Paths.

3.3. Foundations of Convertible Bond Valuation through Machine Learning Methodology

While commonplace in regression analysis, the ordinary least squares (OLS) method
is subject to limitations such as overfitting and the misspecification of polynomial degrees
of foundational functions and interactions between variables. Furthermore, performing
OLS requires a sufficiently large data sample size, thus resulting in a considerable com-
putational burden. To overcome limitations in linear regression within the Longstaff-
Schwartz algorithm, some efforts have been spent on the improvement of the OLS under
the LSM framework like matching projection pursuit, Gaussian process regression, and
an enhanced GPR-MC framework. Details about approaches can be found in the work led
by Tompaidis and Yang [40], Mu et al. [41], and Goudenége et al. [42]. Here, we also at-
tempt to explore sensible alternatives to traditional linear regression. In this paper we fol-
low the same framework of the basic LSM algorithm; only the continuation value is esti-
mated by support vector regression or random forests instead of OLS.

3.3.1. Support Vector Regression

Unlike linear regression aiming to minimize the sum of squared errors, the objective
function of support vector regression (SVR) is to find the minimum coefficients under the
condition that the error term is set at an acceptable level. Therefore, using SVR in the
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model will give us more flexibility to control error to a certain degree and reduce the fea-
tures used to avoid potential overfit.
The formulation of SVR is given by the following equations:

flx,B) =Bx+c.

Define a specified margin e that satisfies the equation:

0,if IZ-f(x,p)l<¢
|Z_f(xtﬁ)|s=y .
|Z — f(x,B)| — €, otherwise

The SVR aims to minimize the value of margin ¢ and the coefficient vector || 8 [1?
in Equation (2).

C 1
R()=d Y 12~ filx Bl +5 1 1P @

Equation (2) reduces to Equation (3) under the conditions defined in Equations (4)
and (5).

= 1
RPY=d) G+ ++5 181 )
(ﬁtxi"l'C)—Zng"l'(i (4)
Zi—(B'xito)<e+ @)

where {; and { are defined as slack variables to tolerate deviation from the margin ¢.

As an alternative to OLS in the LSM pricing model, we are allowed to decide how
tolerant we are of errors by selecting an acceptable error margin and the tolerance value
to deviate from the acceptable error rate. It is expected that SVR can attain a similarly
satisfactory fitting result when the sample size is not sufficiently large.

Further, kernel functions can be used in SVR. The common forms of kernel functions
include linear, radial basis function (RBF), and polynomial. In our empirical experiment,
the radial basis function K(x;x;) = ekl is chosen as the kernel and the hyperpa-
rameter § > 0 is tuned to gain the desired accuracy of the model.

3.3.2. Random Forest

Breiman [43] introduced the random forest technique, an ensemble tree-based algo-
rithm wherein a regression tree serves as the foundational regressor. In the classical least
squares approach, the expected continuation values can be approximated by a linear re-
gression on a countable set of basis functions of random variable X.In our study, a depth-
p regression tree J,(X) is used to estimate the continuation values. The basic idea is to
write the conditional expectation of X as a piecewise constant function of X.

Consider a partition A of [0,1]¢ with 2P elements obtained in the regression tree
T,

For (ag)1<n<2p € R¥, P, is defined as the piecewise constant function on the parti-
tion A with values a;. For x € [0,1]¢,

2P
Fo (x, (ag_l)osnszp’ (ag)lsnszp) - z “g]l{xE[a%‘l.aﬁ)}
n=1

If we choose a; = IE[Y | X € [ag_l, a;l)], then the regression tree 77 (X) can be writ-
ten in this form:

TP(X) = :Pp (X' (ag_l)osiszp’ (ag)miszp)'
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When exercised at time t;, we denote the discounted payoff of the convertible bond:
N .
Z, = z exp (— f r(w, s)ds> C(w, ).
j=i+1 ki
Then, the continuation value at a given time t; is
Y (w; &) = Eq [zt]. | Fti].
7; is the smallest optimal stopping time after ¢;, that is,

= tiﬂ{"fisfiZEQ[Zfiﬂl'Ffi]} * Ti+1]1{ntisti<EQ[ZTi+1lFti]}

The main task is to find the continuation value Eq [Zrm | Ftl.] by the regression tree.
Let ([a,_1(P), an (p)))lsnszp be the partition generated by 7, (Stl.). We define
2P
T(S:) = ) ElZe, 15, € [ana), a5, ctarsorano)
n=1

Then, we use 7;(S;,) to approximate the continuation value Eq[Z,, |Fy]|. The

Ti+1
smallest optimal stopping time after t; is expressed as:

D _
T = tiﬂ{ntisti”f(sti)] + Ti+1ﬂ{"fi5fi<flp(sfi)}

The results for convergence of the expected continuation value have been given by
the following theorem [44]:
Theorem 4.1.

mE|[Zp | 7| = E[Z,, | F,]inL2(Q) for 1< i< N
p—co i

Next, we proceed to present the result for convergence of the LSM algorithm with
regression trees. For the fixed regression tree depth p, we simulate K stock price paths
St(f), e Sg:) along with the corresponding payoff paths Zt(:), . Zg\j), k=1,..,K. For each
[

F(w;t;)] on the path k using the regression tree f;,i‘K (St(lk)) Finally, the present value of

time point t;, i =1,..,N —1 we approximate the conditional expectations EQ[ZTL. "

the convertible bond at t, is approximated by

1 K
DK _ (k)
Vo =% E Z .oy
k=1 '

where £ =ty o) + HAL 0 i ()

It remains to show the convergent behavior of the estimated price as the number of
sampled paths K goes to infinity for a fixed depth. The convergence result is summarized
in the following theorem.

Theorem 4.2. Assume that forall p € N*, andall 1 <i <N —1,P (Ztl. =7} (th.)) = 0. Then,
for a = 1,2 and for every i = 1,...,N,

K
lim %Z (ZT(’;,)(,\,_))“ =E[(z) ] as
k=1 ¢ '

The detailed proof can be seen in Ech-Chafiq et al. [44].

Note that Theorem 4.2 only proves the a.s. convergence of the estimated value for any
fixed p when K goes to infinity. The limiting behavior is still not clear when both K and
p go to infinity. In the empirical experiment, we will study the effect of increasing the
number of simulated paths on pricing accuracy.
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3.3.3. Bayesian Optimization

The computational time of the random forest method directly depends on the num-
ber of trees, the depth of the tree, and the number of samples in each node (leaf) inside
the forest. The splitting strategy and input feature selection also affect the accuracy and
robustness of the learning-based approach. Setting appropriate values for the parameters
is crucial to cut down the computational cost to a manageable size and avoid the overfit-
ting problem [45]. Bayesian optimization is a method of finding the minimum value of a
function, which has been applied to the parameter value search in machine learning [46].

In this study, with the aid of Bayesian optimization, we select the values for the num-
ber of trees (n_estimators), the depth of the tree (max_depth), the maximum number of
input features (max_features), the minimum number of samples of the split threshold
(min_samples_split), and the minimum number of samples in each node (min_sam-
ples_leaf) as recorded in Table 3. Since the parameter value in the model must be an inte-
ger, the nearest integer value for each parameter is selected as the optimal value.

Table 3. Parameter Optimization Information.

Optimum Value

Name Value Range (Simulation) Optimum Value (Real Case)
max_depth (5,20) 17.807 16.305
max_features (0,20) 17 16
n_estimators (10,150) 103.516 101.498
min_samples_split 1,5) 3
min_samples_leaf (1,5) 2 1

4. Empirical Studies

Our study uses numerical experiments to assess the effectiveness of our novel learn-
ing-based LSM algorithm. We start with simulated data analysis, adjusting simulation
paths, and time increments for pricing accuracy. Then, we compare predicted prices for
both methods with real-market valuations, focusing on the China Securities Convertible
Bond as a key case study for pricing. Moreover, for the call option characteristics embed-
ded in the convertible bond, we classified at-the-money (ATM) options as those with mon-
eyness ranging from 0.95 to 1.05. In-the-money (ITM) options were defined as those with
moneyness between 1.05 and 1.3, while out-of-the-money (OTM) options were identified
as having moneyness values between 0.7 and 0.95. It is important to note that, in the con-
text of convertible bond pricing, moneyness is determined by the ratio of the stock price
to the conversion price.

4.1. Data Description

In China, banks typically dominate the convertible bond market in terms of the larg-
est issuance volume, and convertible bonds issued by banks tend to carry higher credit
ratings [34]. Therefore, our sample primarily chooses existing convertible bonds issued by
China Everbright Bank (CEB) as of 1 January 2023. Descriptive statistics of the sample
bond price are presented in Table 4, where we computed the maximum value, minimum
value, median, standard deviation, mean, and three quartiles. The sample period ranges
from 1 January 2022 to 31 December 2022 with price predicted every day as a time step.
We utilized daily trading data of Everbright Bank’s convertible bonds, containing trans-
action prices, trading volumes, transaction dates, risk-free interest rates, and price volatil-
ity, among other factors. These real trading data reflect the market demand and trading
behavior of investors in the convertible bond market. Our objective is to conduct pricing
analysis to compare the accuracy of different models, namely, basic LSM with OLS, LSM
with SVR, and LSM with RF. The deviation between predicted and observed values is
measured by root mean square error (RMSE). As an indicator of model goodness-of-fit to



Axioms 2024, 13, 218

9 of 15

check the degree of mispricing, RMSE indicates the average level of prediction error and
is calculated as:

RSME = ,
N-—P

where y; is the actual value for the ith observation, J; is the predicted value for the ith
observation, N is the number of observations, P is the number of parameter estimates.

Table 4. Descriptive statistics of sample data.

Name

Mean

Median Max Min

CEB
CB Price

107.09
STD
2.18

105.61 115.95 104.358

Q1 Q2 Q3
105.04 105.61 106.82

4.2. Model Description

At first, a large number of stock price paths are generated through Monte Carlo sim-
ulation. For each path, three different regression techniques are used to estimate the value
of continuation at each time step. The estimated continuation value is compared with the
conversion value to determine whether immediate exercising is optimal. If immediate ex-
ercising is optimal based on the exercise rules, the exercise decision is revisited at the next
exercise time step. This process iterates backward from the last time step until reaching
the beginning. Finally, the mean of the exercise values across all paths is computed to
derive the final price of the convertible, marking the conclusion of the algorithm.

Table 5 records the specific values for input parameters that are needed in the LSM
pricing model. In the simulated data experiment, an initial stock price S, was set at 100
and for the real market data experiment, the closing stock price on the first day of the year
2022 was 112.97. The selection of volatility o, refers to the long-term mean volatility of
the underlying stock before the issuing date. As for the risk-free rate r,, we choose the 6-
year risk-free interest rate at the issuing date.

Table 5. Parameters of underlying assets of two studies.

So Os To

Simulated
data
CEB 112.97 0.2672 0.03158

100.00 0.2672 0.03158

4.3. Simulated Data Study

Table 6 presents the results of various convertible bond pricing techniques, with ini-
tial stock price (Sy) set at 100, time to maturity (T) spanning from 1 month to 2 years, and
conversion prices ranging from 70 to 130. The bond price obtained via the finite difference
with a sufficiently large number of grids method serves as the benchmark for the compar-
ison purpose. The root mean square error (RMSE) is computed as a metric for evaluating
pricing accuracy from different models. A higher RMSE indicates a higher degree of mis-
pricing and vice versa.

Table 6. RMSE results with 1000 simulated paths and 100 time steps.

Moneyness

Total

ITM ATM OT™M

Bys-RF
SVR
LSM

0.4922
0.5324
0.7295

0.6001 0.6122 0.3673
0.6326 0.6426 0.3987
0.9355 0.8126 0.6532

Note: Bys-RF refers to the random forest model with hyperparameter tuning by Bayesian optimiza-
tion and the parameter settings can be found in Table 2.
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As presented in Table 6, both learning-based approaches achieve better results than
the ordinary LSM model. Furthermore, the Bys-RF approach exhibits the best perfor-
mance. As follows, we start to investigate the impact of the number of simulated paths
and the number of time steps on the pricing accuracy. Detailed outcomes are displayed in
Tables 7 and 8.

Table 7. RMSE results for the different number of paths with 100 time steps.

Number of Paths Moneyness Bys-RF SVR LSM
Total 0.6345 0.6789 1.0224

500 IT™ 0.7536 0.7452 1.324
ATM 0.6948 0.6879 1.0321
OT™M 0.4927 0.4523 0.7987

Total 0.5011 0.5324 0.7295

1000 IT™ 0.6012 0.6326 0.9355
ATM 0.6023 0.6426 0.8126
OT™M 0.3751 0.3987 0.6532
Total 0.4029 0.5221 0.6254

1500 IT™ 0.5012 0.6178 0.7659
ATM 0.4564 0.5748 0.6588
OTM 0.2918 0.3889 0.5114

From Table 7, it is evident that the price prediction error reduces along with the in-
creasing number of simulation paths. Moreover, as the number of paths increases, the two
learning-based models consistently yield more precise outcomes and the Bys-RF approach
outperforms the other two algorithms given the same time steps. This particular outcome
is consistent with Table 5, highlighting the advantage of the Bys-RF method used in LSM
pricing analysis.

Table 8. RMSE results for the different numbers of time steps with 1000 simulated paths.

Number of Time

Steps Moneyness Bys-RF SVR LSM
Total 0.5901 0.6144 0.6378
500 I™ 0.6984 0.7865 0.8569
ATM 0.6512 0.6978 0.7894
OoT 0.4325 0.4556 0.5985
Total 0.4897 0.5324 0.7295
1000 I™ 0.6012 0.6326 0.9355
ATM 0.6215 0.6426 0.8126
OT™M 0.3698 0.3987 0.6532
Total 0.4215 0.5978 0.7015
1500 I™ 0.5078 0.7145 0.8123
ATM 0.4598 0.6878 0.7564
OTM 0.3021 0.4589 0.6545

Table 8 reveals a similar result: under the impact of varying numbers of time steps,
the Bys-RF model performs best among all different simulated scenarios. Interestingly, we
can observe that only the pricing accuracy achieved by the Bys-RF model steadily im-
proves with the increment in the number of time steps. The robust performance of the
Bys-RF model validates the convergence results previously discussed.
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4.4. A Case Study of CEB Convertible Bond

To test the real-world applicability of our proposed methods, we now perform a case
study on the CEB convertible bond. There are two main reasons to select Everbright
Bank’s convertible bonds for our research. Firstly, from an empirical perspective, Ever-
bright Bank’s convertible bonds are a prominent and representative product, with signif-
icant issuance and trading activity that influences the Chinese financial market. Secondly,
in terms of data availability, as a publicly listed company, Everbright Bank’s convertible
bonds offer abundant and easily accessible data, including issuance announcements, fi-
nancial reports, and market trading data. This rich dataset provides a robust foundation
for our research, enhancing the reliability and validity of our empirical study. All of these
make the CEB convertible bond an ideal subject for studying convertible bond pricing,
exploring pricing mechanisms and investor behavior in the convertible bond market, and
contributing to the research in finance and investment. Our study collected daily trading
price data for this bond from 1 January 2022 to 1 December 2022 (see Table 9) and we
simulated convertible bond pricing for the three models using 10,000 paths and 240 time
steps (one year).

Table 9. CEB Convertible Bond Basic Terms.

Issue Date 2017.3.31
Time horizon 6
Face value 100
Coupon (%) 0.2,05,1.0,1.5,1.8,2.0
Call value till maturity 105
The first conversion price 4.36
Change of conversion price 2017.7.5, adjusted to 4.26

In 30 consecutive trading days, the closing stock price is
lower than 80% of the conversion price in 15 trading days
In 30 consecutive trading days, the
Call on condition closing stock price is not less than 130%
of the conversion price in 15 trading days

Reset clause

Call value Face value plus the accrued interest
Put on condition When the use of the capital is changed
Put value Face value plus the accrued interest
- The long-term mean volatility of the underlying stock be-
s fore the issuing date
r The 6-year risk-free interest rate at the issuing date

Table 10 provides a summary of the performance of the three models. Similar to the
results computed with simulated data, it is not surprising to see the RF model outperforms
both SVR and LSM models. Nonetheless, the performance of the SVR method is not im-
pressive as its prediction accuracy falls below that of the original LSM method. This ob-
servation also confirms our previous discussion that SVR might be more efficient when
handling relatively small datasets, i.e., with fewer Monte Carlo pricing paths.

Table 10. RMSE results of CEB convertible bond valuation without tuning hyperparameters.

Moneyness Total IT™M ATM OTM
RF 0.6589 0.7748 0.6897 0.5987
SVR 0.8945 1.0586 0.9465 0.7946
LSM 0.7365 1.0568 0.8654 0.7145

Note: RF represents the random forest model without hyperparameter tuning.
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To explore the possibility of enhancing the model’s performance through the adjust-
ment of hyperparameters, we conducted tests on China Everbright Bank (CEB) converti-
ble bond data during the first quarter of the year 2022 by employing the Bayesian optimi-
zation method previously described for tuning the hyperparameters of the random forest
(Table 2). Table 11 showcases the root mean square error (RMSE) for convertible bonds
traded in the first quarter of the year 2022, allowing for a comparison with and without
hyperparameter tuning.

Table 11. RMSE results with and without hyperparameter tuning.

Moneyness Bys-RF SVR LSM

With Total 0.5233 0.7 0.7643
hyperparameter IT™ 0.5931 0.8235 0.8878
Tuning ATM 0.5278 0.7978 0.8235

OT™M 0.4363 0.6912 0.6945

Total 0.6183 0.8141 0.7765

Without hyperparam- I™ 0.7238 1.0186 0.9568
eter tuning ATM 0.6497 0.8451 0.8654
OT™ 0.5895 0.7546 0.7145

Both SVR and Bys-RF methods yield better results, as presented in Table 11. The per-
formance of the Bys-RF method is superior to both SVR and LSM in both simulated data
experiments and real market data experiments, irrespective of whether the hyperparam-
eters were tuned or not.

In Figure 2, we compare the actual price and predicted price by using three models.
It can be seen that the trend of both prices is roughly the same, and inflection points occur
earlier than the real situation. The deviation of pricing results is mostly maintained within
a very narrow range, illustrating that pricing results are excellent.
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Figure 2. Market Price and Predicted Price for CEB Convertible Bonds.

In addition to examining error rates, we also measured the computational time of
each model as shown in Table 12.
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Table 12. Time Consumption Comparison.

Computational Cost Estimated
Algorithm . Computa- Reason for Difference
Estimate . .
tion Time
Traditional LSM Moderate Ab01.1t 10  Simple regression m.odel fitting, re'latively low computa-
min tional complexity.
Support vector regression (SVR) involves solving a quad-
ratic programming problem, which can be computation-
SVR replacing LSM High 15-20 min ally intensive, especially for large datasets. It also requires
tuning hyperparameters which may require additional
computation.
Random forest (RF) involves building multiple decision
trees, each of which requires training on subsets of the
RF replacing LSM High Ab01.1t 30 data. For la.rge' c.latasets ora large numbfer of trees, this
min can lead to significantly higher computational costs com-
pared to simple regression. Additionally, tuning the RF
hyperparameters adds to the computation time.
Bayesian optimization iteratively explores the hyperpa-
rameter space of the random forest model to find optimal
Bys-RF replacing LSM Very high 30_40 min settings. While it can improve model performance, this it-

erative process requires additional computation, resulting
in higher computational costs compared to standard ran-
dom forest fitting.

As can be seen from the results in Table 12, the LSM model with Bys-RF produces the
best result at the cost of the longest computation time. There may exist a tradeoff between
pricing accuracy and computation cost. We concluded that for a comparable accuracy, a
simpler algorithm like the basic LSM is efficient enough to deal with low-dimensional
problems. However, for large datasets, it is interesting to consider using the improved
LSM algorithm.

5. Conclusions and Limitations

In conclusion, our study proposes a novel approach for developing financial pricing
models that integrate machine learning models. Specifically, we replace the OLS in the
LSM model with two machine learning models, SVR and random forest, to construct a
new model with improved pricing accuracy. Our simulation experiment demonstrates
that the LSM model with SVR outperforms the traditional LSM model in terms of regres-
sion performance, particularly when the time step and simulated path quantity are in-
creased.

Our study has significant implications for the financial industry, as integrating ma-
chine learning models into traditional pricing models can substantially enhance pricing
accuracy. We suggest treading two new paths for future research: first, exploring the use
of deep learning in LSM to further improve the accuracy of random forest and, second,
applying the new model to more convertible bonds or investigating the usage of learning-
based methods in clearly defining the links between valuation and the underlying risk
factors.

Overall, our study contributes to the literature on financial pricing models by pre-
senting a new approach that leverages machine learning models and by evaluating the
performance of this approach through both simulation and market data experiments.
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