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Host genetic regulation of human gut 
microbial structural variation

Daria V. Zhernakova1,18, Daoming Wang1,2,18, Lei Liu3,18, Sergio Andreu-Sánchez1,2, Yue Zhang1,2, 
Angel J. Ruiz-Moreno1,2, Haoran Peng1, Niels Plomp3,4, Ángela Del Castillo-Izquierdo1,3, 
Ranko Gacesa1,4, Esteban A. Lopera-Maya1, Godfrey S. Temba5,6,7, Vesla I. Kullaya6,8, 
Sander S. van Leeuwen9, Lifelines Cohort Study*, Ramnik J. Xavier10,11, Quirijn de Mast5,7, 
Leo A. B. Joosten5,12, Niels P. Riksen5, Joost H. W. Rutten5, Mihai G. Netea5,7,13,14, 
Serena Sanna1,15, Cisca Wijmenga1, Rinse K. Weersma4, Alexandra Zhernakova1, 
Hermie J. M. Harmsen3,19 ✉ & Jingyuan Fu1,2,19 ✉

Although the impact of host genetics on gut microbial diversity and the abundance  
of specific taxa is well established1–6, little is known about how host genetics regulates 
the genetic diversity of gut microorganisms. Here we conducted a meta-analysis of 
associations between human genetic variation and gut microbial structural variation 
in 9,015 individuals from four Dutch cohorts. Strikingly, the presence rate of a 
structural variation segment in Faecalibacterium prausnitzii that harbours an 
N-acetylgalactosamine (GalNAc) utilization gene cluster is higher in individuals who 
secrete the type A oligosaccharide antigen terminating in GalNAc, a feature that is 
jointly determined by human ABO and FUT2 genotypes, and we could replicate this 
association in a Tanzanian cohort. In vitro experiments demonstrated that GalNAc 
can be used as the sole carbohydrate source for F. prausnitzii strains that carry the 
GalNAc-metabolizing pathway. Further in silico and in vitro studies demonstrated 
that other ABO-associated species can also utilize GalNAc, particularly Collinsella 
aerofaciens. The GalNAc utilization genes are also associated with the host’s 
cardiometabolic health, particularly in individuals with mucosal A-antigen. Together, 
the findings of our study demonstrate that genetic associations across the human 
genome and bacterial metagenome can provide functional insights into the reciprocal  
host–microbiome relationship.

Gut microorganisms and humans have evolved in a symbiotic relation-
ship. Humans provide an intestinal environment with resources for 
microorganisms to live, and gut microbes can provide bioactive mol-
ecules that affect human physiology and mediate the impact of dietary 
and environmental exposures on humans7–11. Gut microorganisms can 
also protect their host against other pathogenic microorganisms, train 
the immune system and play other important roles in human health12,13. 
Although there are some data showing host–microorganism symbiotic 
relationships14–16, genetics-based evidence remains limited. So far, 
several human genomic loci have been associated with the abundance 
of several taxa, including well-replicated associations with the LCT 
and ABO genes1. However, little is known about genetic interaction 
between the human genome and the gut microbiome, a fact supported 

by the discovery of population-specific strains17. This led us to reason 
that associations between genetic variants in the human genome and 
those in the human metagenome can provide functional insights into 
the host–microorganism symbiotic relationship. To our knowledge, 
such analyses have not yet been carried out at the whole-genome scale.

Bacterial genomes are known to evolve rapidly. Genomic variation 
leads to bacterial strains that can differ in fitness, carbohydrate uti-
lization, metabolizing capacity, pathogenicity and other biological 
properties18. Bacterial structural variations (SVs) are highly variable 
genomic segments, of variable lengths, that can exert pronounced 
effects on microbial functionality, increasing bacterial genome plastic-
ity and enabling rapid adaptation to environments19. SVs are common 
in human gut microbial genomes and there is a large inter-individual 
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difference in microbial SVs between humans20–22. Identification of dele-
tion SVs (dSVs; genomic regions that are either detectable or absent in 
the metagenomic sample) or variable SVs (vSVs; genomic regions whose 
abundances are highly variable across samples) using metagenomic 
sequencing has revealed that gut microbial SVs are related to human 
health20–22. Longitudinal analysis has demonstrated that gut microbial 
SVs show species-specific temporal stability22. This suggests a potential 
adaptation of gut bacteria to the individual-specific intestinal environ-
ment. However, little is known about how human genetics shapes the 
individual’s intestinal environment and exert selective pressure on the 
genetic landscape of the gut microbiome. The limited studies carried 
out thus far usually focused on bacterial or viral isolates23,24. Genetic 
association between human genetic variants and microbial SVs may 
thus help us understand the mechanisms underlying the symbiotic 
relationship between gut microorganisms and their human host.

In the present study, we carried out a large-scale meta-analysis of 
genetic associations between human genotypes and microbial SVs 
in the gut microbiome, involving 9,015 individuals from four Dutch 
cohorts. Associations significant at the Bonferroni-corrected P < 0.05 
level were then replicated in a Tanzanian cohort (n = 279). Follow-up 
bioinformatics and experimental validation pinpointed causal genes 
involved in host–microbiome interaction and improved our functional 

understanding of human genetic regulation of gut microbial genetic 
diversity.

Heritability of gut microbial SVs
This study involved 9,015 Dutch individuals for whom both metagen-
omic and host genetic data were available (Fig. 1a). These individuals 
came from four Dutch cohorts: the Dutch Microbiome Project8 (DMP; 
n = 7,372), Lifelines-DEEP25 (LLD; n = 981), the 500 Functional Genom-
ics Project26 (500FG; n = 396) and 300-Obesity21 (300OB; n = 266). To 
replicate associations in individuals with a different genetic background 
and lifestyle, we involved the 300-Tanzanian cohort (300TZFG; n = 279) 
as a replication cohort. The analysis workflow is presented in Fig. 1a.

We used SGV-Finder20 to generate SV profiles. In brief, this method 
mapped sequencing reads to reference genomes, resolved possible 
ambiguous read alignments and then split the microbial genomes into 
bins. The metagenomic coverage of these bins was compared across 
samples (Methods). SGV-Finder identifies bins with coverage close to 
0 in 25–75% of samples as dSVs and bins that show variable coverage as 
vSVs. SV identification is possible only for gut microbial species with 
sufficient metagenomic sequencing coverage (Methods). In total, we 
detected 14,196 SVs in 108 gut microbial species, including 10,265 dSVs 
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Fig. 1 | An overview of the workflow and microbial SV data. a, The workflow 
of this GWAS on gut microbial SVs. In this study we integrated data for 9,015 
individuals from whom both gut microbial metagenomic and host genetic  
data are available from four cohorts. Data from a Tanzanian cohort of 279 
individuals were included as a replication cohort. We generated gut microbial 
SV profiles based on metagenomic sequencing, with the dSVs and vSVs then 
subjected to association analysis with the genotypes of more than 6 million 

common SNPs in the human genome. The genetic associations are presented  
in box plots for vSVs, bar plots for dSVs and Manhattan plots for the whole- 
genome level. Created with BioRender.com. b, The number of common 
microbial SVs detected in 49 species for GWAS. Each bar represents a species. 
The y axis refers to the number of common SVs detected in that species. dSVs 
and vSVs are coloured in green and blue, respectively. c, A pie chart of the 3,552 
common SVs, including 1,666 dSVs and 1,886 vSVs, involved in the GWAS.
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and 3,931 vSVs, with 3–379 SVs per species (Extended Data Fig. 1a,b and 
Supplementary Table 1). The species with the largest number of SVs 
were Dorea formicigenerans, Dorea longicatena and Blautia wexlerae 
(Extended Data Fig. 1c and Supplementary Table 1). The number of sam-
ples with sufficient coverage to detect SVs ranged from 11 to 7,716 for dif-
ferent species. The abundance of these species collectively accounted 
for an average of 80.8% of faecal microbiome composition (range 17.8% 
to 97.1%; Extended Data Fig. 1d). To ensure statistical power for associa-
tion with host genetics, we selected those vSVs that were detected in at 
least 10% of samples and dSVs with deletion rates between 5% and 95% 
(Methods). This resulted in 3,552 SVs including 1,666 dSVs and 1,886 
vSVs from 49 bacterial taxa (Fig. 1b,c and Supplementary Tables 1–3).

To assess the extent to which the gut microbial SVs can be determined 
by host genetics, we first estimated the heritability of 1,339 out of 3,552 
SVs that were present in 1,092 first- or second-degree relative pairs from 
the DMP cohort. After correcting for species abundance, family-based 
heritability estimation (h2) revealed one heritable dSV at a false dis-
covery rate of <0.05 (Supplementary Table 4): a 2-kilobase (kb) dSV of  
F. prausnitzii (577–579 bp) with an estimated h2 of 0.38. In addition,  
26 dSVs and 51 vSVs showed nominally significant heritability (P < 0.05), 
with an average h2 of 0.28 and 0.41, respectively (Supplementary 
Tables 4 and 5). Next, we compared SV heritability with species abun-
dance heritability and observed an additional effect of host genetics 
on microbial SV level (Extended Data Fig. 2 and Supplementary Note 1). 
However, this study still lacks sufficient power for heritability calcu-
lation and comparison. Accurate heritability estimations of species 
abundance and microbial genetic variation would require a much larger 
sample size and careful experimental design (for example, twin studies).

ABO locus and F. prausnitzii SVs
Next we associated the 3,552 SVs with more than 6 million human 
single nucleotide polymorphisms (SNPs) per cohort, followed 
by a meta-analysis. The genetic associations significant at the 

Bonferroni-corrected P < 0.05 level were all associations between the 
ABO locus and SVs of F. prausnitzii, including four dSVs and one vSV 
(Fig. 2, Extended Data Fig. 3a and Supplementary Tables 6 and 7). The 
strongest association was found between rs635634 and a 2-kb dSV 
region (577–579 kb) of F. prausnitzii (bmeta = 0.88, Pmeta = 1.21 × 10−45). 
The SNP rs635634 is located in the ABO gene, which encodes a glyco-
syltransferase that modifies oligosaccharides on the cell surface and 
determines the ABO blood group. The ABO locus is one of the few loci 
that have repeatedly been associated with the abundances of several  
gut bacteria, including Collinsella species, Bifidobacterium and  
Faecalibacterium2,6,27.

We further replicated identified associations in the 300TZFG28 
cohort, which had distinct genetic background, lifestyle and environ-
mental exposures (Supplementary Note 2). SVs of F. prausnitzii were 
detected in 201 individuals from 300TZFG, either at similar or differ-
ent frequencies compared to those observed in the Dutch cohorts 
(Extended Data Fig. 3b). We detected 156 associations with the ABO 
locus at a nominally significant level (P < 0.05; Supplementary Table 8). 
Two F. prausnitzii dSVs, 575–577 and 577–579, showed association with 
ABO (Extended Data Fig. 3c,d), encompassing both shared signals and 
population-specific signals.

In addition to the ABO association, our study also yielded 210 inde-
pendent suggestive associations (clumping linkage disequilibrium 
r2 < 0.1) at the genome-wide significance P < 5 × 10−8 level: 58 associa-
tions with dSVs involving 17 species and 152 associations with vSVs 
involving 33 species (Supplementary Tables 6 and 7).

ABO association is dependent on FUT2
ABO genotype determines host blood type, and we further analysed 
whether the association with ABO SNPs represented the associa-
tion with ABO-coded blood groups in Dutch samples. Blood groups 
were imputed using SNP genotype data (Methods). Indeed, all five 
ABO-associated F. prausnitzii SVs were associated with the host’s ABO 
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Fig. 2 | A Manhattan plot of genome-wide associations of human SNPs and 
gut microbial SVs. GWAS results for dSVs (top) and vSVs (bottom). The x axis 
shows the genomic position on the human chromosomes (chromosomes 1–22) 
for both the top and bottom panels. The y axes in both panels show statistical 
significance as −log10[P] estimated using a linear mixed model by fastGWA.  

The plotted P values are not adjusted for multiple testing. The red horizontal 
lines indicate the study-wide significance cutoffs determined using the 
Bonferroni method: 3.00 × 10−11 for dSV and 2.65 × 10−11 for vSV associations. 
Significantly associated loci are highlighted in yellow and labelled with the 
nearby human gene and the corresponding species name.
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blood group (Extended Data Fig. 4 and Supplementary Table 9). The 
F. prausnitzii 577–579-kb dSV region was more frequent in individu-
als with blood group A or AB than in individuals with blood group B 
or O (Pmeta = 1.24 × 10−44, PDMP = 1.03 × 10−32). The association was also 
dependent on FUT2 secretor status, which determines whether fucosyl 
precursors of A- or B-antigens are secreted into body fluids and intes-
tinal mucus. The secretor-determining SNP rs679574 itself was sug-
gestively associated with the presence of this dSV (Pmeta = 2.92 × 10−9), 
and A-antigen presence was associated with the F. prausnitzii 577–579 
dSV only in FUT2 secretors (Pmeta = 4.85 × 10−51, PDMP_secretors = 9.39 × 10−37, 
PDMP_nonsecretors = 0.88; Fig. 3a). After correcting for the population genetic 
structure of F. prausnitzii (Extended Data Fig. 5a and Supplementary 
Table 10), F. prausnitzii associations with the ABO locus remained sig-
nificant (PDMP = 2.24 × 10−32; Supplementary Table 11).

The ABO locus was previously associated with the abundance of  
Faecalibacterium species in a German cohort, with a rather modest 
effect size (β = −0.14, P = 4.33 × 10−9)6. This association was not rep-
licated in two other studies2,27 or in our cohorts (PDMP_secretors = 0.08; 
Extended Data Fig. 5b). Notably, we did observe a significant interaction 
between the blood group and dSV 577–579 (PDMP_secretors = 1.47 × 10−3) 
on the abundance of F. prausnitzii, suggesting that the ABO associa-
tion with F. prausnitzii abundance may depend on the presence of the  
dSV region.

GalNAc pathway in the SV region
A-antigen is an oligosaccharide that can be secreted into intestinal 
mucus and degraded by carbohydrate-active enzymes of gut bacte-
ria29–31. Therefore, we reasoned that the associated SV regions may give 
F. prausnitzii the capacity to utilize saccharides released from A-antigen 
as a carbohydrate source. All five ABO-associated F. prausnitzii SVs were 
modestly correlated with each other (Spearman correlation R > 0.13, 
P < 0.05; Supplementary Table 12). After adjusting for other associated 
SVs, the strength of associations decreased, and the association of two 
dSVs (577–579 and 1154–1155) out of the five SVs remained significant 
after Bonferroni-correction, suggesting that other SVs partially tag the 
same signal as the top 577–579 dSV (Supplementary Table 13). However, 
most of the dSVs still showed significant associations, especially the top 
ABO-associated 577–579-kb dSV region. This means that the 577–579-kb 
dSV captured most of the signal, but not all. To fine-map the microbial 
genomic region that captures the causal genes, we isolated F. praus-
nitzii from human faeces, carried out whole-genome sequencing and 
selected 12 distinct F. prausnitzii strains. Seven strains showed a deletion 
that overlaps with the top ABO-associated 577–579 segment (Supple-
mentary Fig. 1), expanding this 2-kb dSV region to a 23-kb region. We 
then used the F. prausnitzii HTF-238 strain with this complete region 
(2,640–2,663 kb) as the reference for gene characterization.

In this expanded region, we identified 27 genes (Supplementary 
Table 14), including those involved in carbohydrate metabolism, 
particularly the pathway involved in GalNAc metabolism, includ-
ing a cluster of genes responsible for the uptake and metabolism of 
d-galactosamine and GalNAc (Fig. 3b,c and Supplementary Table 14). 
GalNAc sugar is part of the A-antigen encoded by ABO, and it might be 
used as an energy source for bacteria when it is secreted to mucus32. 
Specifically, the region contains one gene, GH109, that encodes a gly-
coside hydrolase that can cleave GalNAc from A-antigen, as well as 
nine genes involved in five key metabolic steps of downstream GalNAc 
utilization (Fig. 3b and Supplementary Note 3). Moreover, the region 
also contains two genes involved in the galactose degradation pathway 
(the Leloir and tagatose 6-phosphate (T6P) pathways). Other genes and 
genetic elements in this region, including transcriptional regulators, 
transposons and several uncharacterized genes, were not likely to be 
directly involved in carbohydrate metabolism.

Furthermore, we found that this SV region is likely to be a mobile ele-
ment. By investigating SV sharedness between cohousing individuals, 

we found evidence to support the transmission of GalNAc-containing 
strains between people. Moreover, a 4-year follow-up analysis in 
119 individuals shows a higher frequency of gain than of loss of 
GalNAc-containing strains over time (Extended Data Fig. 6a–e, Sup-
plementary Fig. 2 and Supplementary Note 4).

Bacteria can use GalNAc as a carbon source
As multiple genes involved in carbohydrate metabolism were identified 
in the SV region of F. prausnitzii, we next investigated whether the genes 
in this region are crucial for bacterial utilization of the specific mono-
saccharide substrates, including GalNAc, galactose, glucose, lactose, 
mannose, N-acetylglucosamine, fructose, N-acetylneuraminic acid and 
2′-fucosyllactose. All 12 selected F. prausnitzii strains were subjected to 
growth rate experiments in yeast casitone fatty acids (YCFA) medium 
with the monosaccharides above as the sole carbohydrate source, and 
YCFA without a carbohydrate source was used as a negative control.

The GalNAc utilization pathway turned out to be crucial for bacte-
rial growth in the GalNAc medium. Strains lacking the GalNAc path-
way could not grow (Fig. 3d), whereas six out of seven strains (except 
ATCC 27768) with the GalNAc pathway could grow, although HTF-383 
exhibited slightly slower growth and reached a similar cell density 
level at a later time (Extended Data Fig. 7a). In contrast to the findings 
for GalNAc utilization, all strains were able to grow on galactose, but 
those with the region containing the Leloir and T6P pathways showed 
a higher growth rate than those without (Fig. 3e), indicating that these 
pathways, although not essential, can improve galactose utilization 
efficiency. The presence or absence of pathways in this region did not 
show a notable influence on bacterial utilization of other monosac-
charides (Extended Data Fig. 7b).

Inversion affects GalNAc gene expression
ATCC 27768 was the only strain that harbours the GalNAc pathway that 
did not grow in the GalNAc medium. However, the GalNAc region is 
reversed in ATCC 27768 (Fig. 3c), and this genomic inversion may result 
in dysfunction of this pathway. Thus, we carried out a GalNAc induc-
tion experiment to investigate the transcription of GalNAc genes and 
potential regulators (ptsH, rhaR and immR) in this region. ATCC 27768 
was first pre-cultured in a glucose medium, and the resulting bacterial 
culture was split and transferred to either glucose or GalNAc medium 
(Methods). We then compared the expression fold change in GalNAc 
medium to that in glucose medium. The positive control was the close 
relative strain HTF-495, which can grow in GalNAc medium. The negative 
control was HTF-441, which lacks the GalNAc utilization gene cluster 
(Extended Data Fig. 8).

Gene expression of GalNAc genes was not detected in HTF-441, con-
firming their absence (data not shown). Notably, following GalNAc 
induction, the expression of three GalNAc uptake genes, agaC, agaD 
and agaV, was only marginally increased in ATCC 27768, whereas these 
genes showed a marked increase in HTF-495. For instance, GalNAc induc-
tion resulted in a 63.5-fold increase in agaC expression in HTF-495 com-
pared to glucose induction, but in only a threefold change in ATCC 27768 
(Fig. 3f). However, the expression of other GalNAc genes showed similar 
fold changes in ATCC 27768 and HTF-495 (Extended Data Fig. 8). This 
suggests that genomic inversion of ATCC 27768 affects the expres-
sion of only GalNAc uptake genes and not GalNAc metabolism genes.

GalNAc pathway in other taxa
So far, the ABO locus has been associated with the abundances of nine 
bacterial taxa2,6,27 (Supplementary Table 15), including those of three 
species: C. aerofaciens, Faecalicatena lactaris and Bifidobacterium 
bifidum. However, except for those of the genus Collinsella, none  
of these associations have been replicated in multiple studies.  

https://www.ncbi.nlm.nih.gov/snp/?term=rs679574
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We wondered whether the presence of the GalNAc pathway may explain 
the ABO association with the abundance of those taxa. We therefore 
extracted 10,487 assembled genomes of ABO-associated species from 

the Unified Human Gastrointestinal Genome collection33, including 
1,103 assemblies of C. aerofaciens, 484 of F. lactaris, 1,109 of B. bifidum 
and 7,791 of F. prausnitzii (Supplementary Table 16). We then carried 
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out an orthologue search for the GalNAc pathway genes. We found 
that GalNAc genes were present in 28–95% of assemblies (Fig. 4a and 
Supplementary Table 16). However, the complete pathway was found 
in only 2,678 assemblies (26%), including 1,794 F. prausnitzii strains 
(23%) and 884 C. aerofaciens strains (80%) (Fig. 4b,c and Supplementary 
Table 16). The high fraction of GalNAc-pathway-containing strains of  
C. aerofaciens supports the association between Collinsella abundance 
and ABO. In accordance with these results, we also confirmed GalNAc 
utilization capacity for two C. aerofaciens strains (Fig. 4d–g). However, 
we did not detect the complete GalNAc pathway in B. bifidum genomes, 
suggesting a potentially different underlying mechanism for B. bifidum 
associations with human blood type.

GalNAc utilization supports human health
We further estimated the total abundance of GalNAc genes in the whole 
microbial community. These GalNAc genes showed a strong intercor-
relation, indicating that they are probably present as a gene cluster 
and function collaboratively. Similarly, the abundance levels of Gal-
NAc genes were associated with the ABO blood type in FUT2 secretors 
(Extended Data Fig. 9 and Supplementary Table 17). The significance 
observed at the gene level was much stronger than the association 
with the F. prausnitzii SV region, with the lowest P value of 4.19 × 10−223 
observed for lacC (Extended Data Fig. 9 and Supplementary Table 17).

We further reasoned that the abundance of GalNAc genes might be 
more relevant for human health in individuals with mucosal A-antigens 
than for those without. To check this, we characterized individuals 
in our cohorts as having either genetically determined presence or 
absence of A-antigen in intestinal mucus, based on their ABO and FUT2 
genotypes. FUT2 secretors with A-antigens (A or AB blood type) were 
identified as individuals with mucosal A-antigen, and all others were 

considered individuals without mucosal A-antigen. In line with our 
previous findings, the abundance of GalNAc genes showed remarkable 
differences between individuals with and without mucosal A-antigen. 
The top associations were found for the lacC gene involved in cata-
lytic step 4 from T6P to tagatose 1,6-bisphosphate (P = 1.30 × 10−280) 
and the gatY–kbaY gene involved in catalytic step 5 from tagatose 
1,6-bisphosphate to dihydroxyacetone phosphate or glyceraldehyde 
3-phosphate (P = 2.60 × 10−259; Fig. 5a,b and Supplementary Table 17). 
As many gut microorganisms can have the GalNAc pathway, we further 
reasoned that the presence of mucosal A-antigen can provide an extra 
energy source to promote the growth of GalNAc utilizers. In agree-
ment with this, our findings showed that the abundances of GalNAc 
genes were positively associated with microbial richness and diversity 
and that these associations were stronger in individuals with mucosal 
A-antigen (Pheterogeneity < 0.05, I2 > 0.7; Fig. 5c, Extended Data Fig. 10a and 
Supplementary Table 18). For instance, the correlation between the 
abundance of the agaF gene and microbial richness was 0.26 (Spearman  
correlation, P = 1.79 × 10−29) in individuals with mucosal A-antigen 
but only 0.13 (Spearman correlation, P = 1.13 × 10−16) in individuals 
without mucosal A-antigen (Supplementary Table 18). We observed 
similar results after correcting for the presence of the 577–579 dSV and  
F. prausnitzii and C. aerofaciens abundances.

Similarly, we associated the abundances of microbial GalNAc 
genes with 240 environmental exposure and health-related param-
eters in individuals with and without mucosal A-antigen. At the 
Bonferroni-corrected P < 0.05 level, we detected 50 significant asso-
ciations in the A-antigen presence group and 17 associations in the 
A-antigen absence group. Notably, microbial GalNAc gene abundances 
were significantly associated with blood glucose, Bristol stool type 
and general health only in individuals with mucosal A-antigen (linear 
regression, Bonferroni-corrected P < 0.05, Pheterogeneity < 0.05; Fig. 5d,e, 
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Extended Data Fig. 10b, and Supplementary Table 19). Although we 
observed 11 significant associations between GalNAc genes and blood 
triglycerides and high-density lipoprotein in both groups, the effect 
sizes in the individuals with mucosal A-antigen are higher than in those 
without (Pheterogeneity < 0.05; Extended Data Fig. 10b).

Discussion
We carried out a genome-wide association study (GWAS) between host 
genetics and gut microbial SVs in 9,015 individuals from four Dutch 
cohorts. We found that the human ABO-encoded A blood group is 
strongly associated with a genomic fragment in F. prausnitzii harbour-
ing a GalNAc metabolism gene cluster. This association was replicated in 
a Tanzanian cohort. Strain culture experiments showed that the GalNAc 
pathway is essential for utilization of GalNAc as a carbohydrate source, 
which explains the previously observed associations between the ABO 
locus and the relative abundances of F. prausnitzii and C. aerofaciens.

Several studies have been carried out linking microbial abundance 
with host genetics in small- or medium-sized cohorts of up to several 
thousand samples, and genetic effects on microbial abundance were 
generally found to be small2–6,27,34–38. Although several attempts have 
been made to extend this to microbial functionality level, these analy-
ses were based on the annotations of metabolic pathways, which are 
far from complete. Our study demonstrates that associations of host 
genetics with bacterial SVs can help pinpoint putative causal genes 

and close the gap from species abundance to functionality. Notably, 
our study included taxonomic abundance as a covariate in the associa-
tion analyses to identify associations with specific SV regions that are 
independent of taxa abundance. Our study highlights the importance 
of moving from taxonomic abundance measurements to bacterial 
pathways and gene levels for developing a better understanding of the 
effect of host genetics on the gut microbiome. We have demonstrated 
this for the ABO locus, where the A or AB blood type coded by the ABO 
genotype in FUT2 secretors was associated with bacterial GalNAc gene 
abundances (lowest P = 4.19 × 10−223) and with an SV region containing 
the GalNAc pathway in F. prausnitzii (P = 4.85 × 10−51), whereas no ABO 
association was observed with the abundance of F. prausnitzii (P = 0.08) 
in our cohorts.

In addition to ABO, our analysis also yielded 210 suggestive asso-
ciations at the genome-wide significance level (P < 5 × 10−8), including 
genetic variants associated with diabetic neuropathy (rs10773589, 
located close to the TMEM132D gene) that affected the presence of 
an Anaerostipes hadrus dSV and variants affecting expression of the 
FBLN5 gene (encoding fibulin 5, an extracellular matrix protein that 
may have a role in bacterial adhesion) that were associated with dSVs 
of Collinsella species.

The association between ABO and the GalNAc pathway was previously 
observed in a mosaic pig population39. In pigs, the GalNAc pathway was 
identified in Erysipelotrichaceae species. However, the abundance of 
Erysipelotrichaceae species in our human cohorts is relatively low, 
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accounting for only 0.05% of the total community on average. We did 
not detect any associations between ABO and Erysipelotrichaceae or 
their SVs in our human cohorts. Instead, F. prausnitzii and C. aerofaciens 
were likely to be the major GalNAc users in the human gut, with 23.1% 
of F. prausnitzii and 81.1% of C. aerofaciens assemblies containing the 
complete GalNAc pathway. Moreover, in contrast to the findings of the 
study in pigs, in which the association between ABO and the GalNAc 
pathway was independent of the FUT2 genotype, the association we 
observed in humans was strongly dependent on FUT2 secretor status. 
Our data also suggest that the presence of GalNAc genes in individuals 
who are genetically predisposed to have secreted mucosal A-antigen 
may benefit human health. In addition, we found indications that the 
GalNAc genes can be made dysfunctional through genomic inversion 
and that they can be transmitted among bacteria and shared between 
humans.

The ABO blood group has been associated with various complex 
diseases and traits in humans, such as venous thromboembolism, 
lipid levels and other cardiometabolic phenotypes, as well as suscep-
tibility to and severity of many infectious diseases including dengue, 
malaria and severe acute respiratory syndrome coronavirus 2 infec-
tion40–42. For example, ABO A blood group has been found to increase 
the risk of early childhood asthma and Streptococcus pneumoniae 
infection43; affect the serum level of ICAM-1, a cell-surface glycopro-
tein typically expressed on endothelial cells and immune cells44; and 
increase the risk of coronary artery disease45 and affect circulating 
levels of cardiovascular-disease-related proteins46. The widespread 
relevance of the ABO locus in human health highlights the importance 
of our human-based microbiome association study. The strong asso-
ciation between ABO and bacterial GalNAc-metabolizing genes, and 
the link of the latter to microbial diversity and richness, support a new 
hypothesis that ABO may affect human health through its effect on the 
gut microbiome, in addition to already known mechanisms. Given this 
information, it might be beneficial to increase GalNAc-utilizing strains 
such as F. prausnitzii and C. aerofaciens to increase microbial diversity, 
which could have a beneficial impact on the general health of individu-
als with mucosal A-antigen. In line with this, our data also showed that 
bacterial GalNAc gene abundance is positively associated with human 
health, depending on the presence of mucosal A-antigen.

Our study represents a framework of investigating the crosstalk 
between our human ‘first genome’ and microbial ‘second genome’. 
We acknowledge several limitations in our study. First, we focused on 
the common dSVs and vSVs in gut microbial genomes, assessed on the 
basis of the abundance and distribution of short reads mapped along 
bacterial genomes. Our study did not capture other types of SV, such 
as inversions and translocations, whose comprehensive identification 
will require whole-genome resequencing and de novo assembly of short 
or, ideally, long reads. Nonetheless, we could show that genomic inver-
sion could result in dysfunction of the GalNAc pathway. Second, our 
study did not include other types of genetic variation, such as single 
nucleotide variants (SNVs), which have great potential impact on bac-
terial functionality and host–microorganisms interaction. However, 
analysing genetic associations across the millions of SNVs in the human 
genome and the hundreds of millions of SNVs in the metagenome would 
require a much larger sample size. Moreover, functional annotation 
of SNVs is still challenging. The third limitation of the current study is 
related to the use of faecal microbiota data to represent the gut micro-
biome. It is important to note that the microbiome is not entirely the 
same across the different intestinal compartments, and further investi-
gation into the microbiome of different gastrointestinal tract segments 
and mucosal layers would provide a more comprehensive landscape 
of host–microorganisms genetic crosstalk47. Fourth, our primary 
analyses involved only Dutch cohorts, which are very geographically 
and genetically homogeneous, although we were able to include a  
Tanzanian replication cohort with a different genetic background, 
diet and environmental exposure profile. Future work is needed to 

assess host genetic and microbial genetic associations in more diverse 
populations to build a better understanding of host–microbiome 
co-adaptation and co-divergence, as well as to aid in fine-mapping 
of causal genes.
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Methods

Cohort description
DMP. The DMP consists of 8,719 individuals and is part of the Lifelines 
study, a multidisciplinary prospective population-based cohort study 
that utilizes a unique three-generation design to examine health and 
health-related behaviours in 167,729 people living in the northern 
Netherlands. Lifelines uses a broad range of investigative procedures 
to assess the biomedical, socio-demographic, behavioural, physical 
and psychological factors that contribute to health and disease, with 
a special focus on multi-morbidity and complex genetics48.

Microbiome data generation for the DMP was described elsewhere8. 
In brief, fresh-frozen faecal samples were collected from participants of 
the DMP study. Microbial DNA was isolated using the QIAamp Fast DNA 
Stool Mini Kit (Qiagen) by the QIAcube automated sample preparation 
system (Qiagen). Metagenomic sequencing was carried out at Novo-
gene, China using the Illumina HiSeq 2000 sequencer. After filtering, 
8,534 DMP samples were used for SV calling.

DMP genotype data generation was described previously2. In 
brief, genotyping was carried out using the Infinium Global Screen-
ing Array MultiEthnic Diseases version. Missing genotypes were 
imputed using Haplotype Reference Consortium (HRC) panel v.1.1  
(ref. 49). Only bi-allelic SNPs with imputation quality >0.4, minor allele  
frequency (MAF) > 0.05, call rate >0.95 and Hardy–Weinberg equilib-
rium P-value > 10−6 were retained. A total of 7,738 samples had both 
metagenomic and genotype data after quality control (QC)2. We further 
removed 349 samples overlapping with the LLD cohort. This resulted 
in phenotype, metagenomic and genotype data being available for 
7,389 DMP samples.

LLD. The LLD cohort is another part of the Lifelines cohort consisting of 
1,539 individuals. Microbiome data generation for LLD was described 
elsewhere25. Fresh-frozen faecal samples were collected, and DNA was 
isolated with the AllPrep DNA/RNA Mini Kit (Qiagen, catalogue number 
80204). Sequencing was carried out using the Illumina HiSeq platform 
at the Broad Institute, Boston. A total of 1,135 metagenomic samples 
passed QC.

Genotyping was carried out using the CytoSNP and ImmunoChip 
assays, as previously described50, and missing genotypes were imputed 
using the HRC v.1.1 reference panel49. A total of 984 samples had phe-
notype, metagenomic and genotype data.

500FG. The 500FG cohort is part of the Dutch Human Functional 
Genomics Project (DHFGP) and consists of 534 individuals. The metagen-
omic data generation was described previously26,51. Briefly, DNA was 
isolated from faecal samples with the AllPrep DNA/RNA Mini Kit, and 
libraries were sequenced on the Illumina HiSeq 2000 platform. A total 
of 450 metagenomic samples passed QC and were included in SV calling.

500FG genotype data generation was described previously52.  
Briefly, genotyping was carried out using the Illumina HumanOmni
ExpressExome-8 v.1.0 SNP chip. Missing genotypes were imputed using 
the Genome of the Netherlands as a reference panel53. After QC, 396 
samples had phenotype, metagenomic and genotype data.

300OB. 300OB is also part of the DHFGP and consists of 302 indivi
duals with body mass index > 27 kg m−2. Metagenomic data genera-
tion was described previously26,54 and was carried out using a similar 
protocol and analysis pipeline to those of LLD. A total of 302 samples 
had metagenomic data available for SV calling.

300OB genotype data generation was described previously55. In 
brief, samples were genotyped on the Illumina HumanCoreExome-24 
BeadChip Kit or the Illumina Infinium Omni-express chip. Imputation 
was carried out using the HRC v.1.1 reference panel49. After genotype 
QC, 274 samples had phenotype, genotype and metagenomic data  
available.

300TZFG. For replication in non-European individuals, we included 
300TZFG, a population cohort of 323 individuals from both rural and 
urban areas of Tanzania. This study is part of the DHFGP. Metagenomic 
data generation has been described previously28. Briefly, bacterial DNA 
was isolated using the AllPrep 96 PowerFecal DNA/RNA kit (Qiagen), 
and libraries were sequenced on the Illumina NovaSeq 6000 platform. 
A total of 320 samples passed QC and were available for SV calling.

Host genotype data generation was described previously56. In brief, 
samples were genotyped on the Global Screening Array SNP chip, and 
genotype imputation was carried out using Minimac4 with the HRC 
v.1.1 reference panel. After genotype QC, phenotype, genotype and 
metagenomic data were available for 279 samples.

QC of metagenomic sequencing data
We removed host-genome-contaminated reads and low-quality 
reads from the raw metagenomic sequencing data using KneadData 
(v.0.7.4), Bowtie2 (v.2.3.4.3)57 and Trimmomatic (v.0.39)58. In brief, the 
data-cleaning procedure included two main steps: raw reads mapped 
to the human reference genome GRCh37 (hg19) were filtered out; and 
adapter sequences and low-quality reads were filtered out using Trim-
momatic with default settings (SLIDINGWINDOW:4:20 MINLEN:50).

Taxonomic abundance
We estimated the relative abundance of gut microbial species from the 
cleaned metagenomic reads using Kraken2 (v.2.1.2)59 in conjunction 
with Bracken (v.2.6.2)60 based on the same reference genomes included  
in the database of SGV-Finder, and MetaPhlAn 3 (ref. 61) based on the  
MetaPhlAn database of clade-specific marker genes (mpa_v30). The 
first of these was used in the GWAS analysis to remove the confounding 
effect of species abundance, and the last of these was used for the gut 
microbiome diversity and richness calculation.

Metagenomic SV detection
SVs are highly variable genomic segments within bacterial genomes that 
can be absent from the metagenomes of some individuals and present 
with variable abundance in other individuals. On the basis of the cleaned 
metagenomic reads, we detected microbial SVs using SGV-Finder with 
default parameters. SGV-Finder (v.1) was developed and described 
previously20 and can detect two types of SV—vSVs and dSVs.

In brief, the SV-calling procedure includes two main steps: resolving 
ambiguous reads with multiple alignments according to the mapping 
quality and genomic coverage using the iterative-coverage-based read 
assignment algorithm and reassigning ambiguous reads to the most 
likely reference with high accuracy; and splitting the reference genomes 
of each microbial species into genomic bins and examining the cover-
age of genomic bins across all samples. For the determination of dSVs 
within each species, the genomic bins are classified as deleted (cover-
age close to 0) or retained (coverage close to median coverage of the 
genome) bins in each sample, and those that are deleted in 25–75% 
of samples are kept in the analysis as raw dSVs. The raw dSVs that are 
highly correlated in co-occurrence are further merged into larger SV 
regions to produce the final dSV profile. For the determination of vSVs 
within each species, the coverage of genomic bins within each sample 
is standardized using the Z-score approach. Each bin is then assessed 
across all samples, and those that are highly variable on the basis of a 
β′ distribution are kept as raw vSVs. The raw vSVs that are highly corre-
lated in standardized coverage are further merged into large SV regions 
to produce the final vSV profile.

To define the genes that belong to the SV region, we expanded the 
genomic coordinates of SVs 1 kb upstream and downstream, with the 
genes that overlap with the expanded genomic region considered genes 
that belong to the corresponding SV.

To identify highly variable genomic segments and detect SVs, we 
used the reference database provided by SGV-Finder, which is based 
on the proGenomes database (http://progenomes1.embl.de/)62.  

http://progenomes1.embl.de/


We called SVs using default parameters in a larger panel of 13,195 samples  
from 10 datasets: 7 population cohorts (HMP1 (ref. 63), HMP2 (refs. 64,65),  
DMP8, LLD baseline25,48, LLD follow-up22, 500FG66 and 300TZFG28) and 
3 disease cohorts (300OB67, IBD68 and HIV69). This resulted in 10,265 
dSVs and 3,931 vSVs. All bacterial species with SV calling were present 
in at least 75 samples. For the current study, we focused on the four 
Dutch cohorts for which host genetic data were also available: DMP, 
LLD baseline, 500FG and 300OB. We removed samples with <5% of SVs 
called. After sample removal, SV and genotype data were available for 
9,015 samples from the four cohorts: DMP (n = 7,372), LLD baseline 
(n = 981), 500FG (n = 396) and 300OB (n = 266).

SV filtering and normalization
First, we carried out filtering per cohort. Only SVs that were called in 
>10% of samples were used in the analyses. In addition, we removed 
dSVs with a MAF (frequency of either deletion or its absence) <5% and 
with both reference and alternative allele count ≤80 (this number was 
determined on the basis of the recommendation that the number of 
cases and controls is >10× the number of predictors in the generalized 
linear model association test70; see below). Next, we kept only SVs that 
were present in at least two cohorts. vSV data were normalized using 
inverse normal rank transformation for the heritability and associa-
tion analyses.

Heritability estimation
We estimated SV heritability using the GREML software from the GCTA 
toolbox (v.1.94.1). We applied the family-based approach71 implemented 
in GREML on the SV data from the DMP cohort because this cohort has 
the largest sample size and contains relatives. A total of 7,389 samples 
with genotype and microbiome data were used for the analysis. To 
estimate heritability, we used default settings correcting for age, sex, 
total metagenomic sequencing read number and species abundance. 
Heritability estimates for species abundance and the corresponding 
confidence intervals were obtained from ref. 8, which estimated herit-
ability on the basis of family relations in the same DMP cohort.

GWAS and meta-analysis
The manipulation of human genotype datasets was conducted using 
PLINK (version alpha 2.1). Association analysis was carried out using 
fastGWA from the GCTA toolbox (v.1.94.1)72, per cohort per SV. For 
dSVs, we used the generalized linear mixed model-based version of the 
tool (--fastGWA-mlm-binary)73. In the association analyses, we used a 
sparse genetic relationship matrix (GRM) created from the full GRM 
built on genotyped (non-imputed) SNPs with MAF > 5% using GCTA with 
default options (--make-grm and --make-bK-sparse 0.05). The follow-
ing covariates were added to the model: age, sex, total metagenomic 
sequencing read number and centred log ratio (CLR)-transformed 
species abundance. The total read count was standardized to have 
a mean of zero and a variance of one. Meta-analysis was carried out 
using the Metal software (version 2020-05-05)74 with default options 
(weighting cohort-based P values according to sample size). To control 
for multiple testing, we applied the Bonferroni-corrected genome-wide 
significance threshold (5 × 10−8/SV number) and considered association 
results with P values below this threshold as statistically significant. For 
dSVs, the P-value threshold was 5 × 10−8/1,666 = 3.00 × 10−11. For vSVs, 
it was 5 × 10−8/1,886 = 2.65 × 10−11.

Association with ABO blood group
We used two approaches to determine the ABO blood group. In the DMP 
cohort, we determined the blood group on the basis of three variants 
(rs8176719, rs41302905 and rs8176746), as described previously2. For 
LLD and 500FG, in which some of these variants were not genotyped, 
we used a less sensitive approach based on two SNPs, rs8176693 (T allele 
determines blood group B) and rs505922 (T allele determines blood 
group O), as reported in previously published papers75,76. Association 

of blood groups with F. prausnitzii SVs was carried out in R (v.4.1.0) 
using (generalized) linear mixed models using the R package lme4qtl 
(v.0.2.2). This package allows a kinship matrix to be included as a ran-
dom effect to account for sample relatedness. For each cohort, we 
created a kinship matrix based on a GRM built by GCTA using the func-
tion kinship from the R package kinship2 (v.1.9.6). We corrected for the 
same covariates as in the GWAS as described above. Meta-analysis was 
carried out using Metal74.

Population genetic structure of F. prausnitzii
We calculated an SV-based between-sample microbial genetic dissimi-
larity based on Canberra distance for each microbial species separately 
using the vegdist() function of the R package vegan (v.2.6-2) to generate 
species-specific genetic distance matrices (MSV). We then carried out a 
principal coordinate analysis based on MSV using the pcoa() function 
of the R package ape (v.5.6-2), with the negative eigenvalues corrected 
with Cailliez’s method53.

Phylogenetic tree construction
For the F. prausnitzii strains with SVs containing the GalNAc utiliza-
tion gene cluster, we first constructed a phylogenetic tree using the 
RAxML approach based on 81 accurately selected single-copy marker 
genes77. We then constructed another phylogenetic tree using RAxML 
(v.8) based on the GalNAc utilization genes located in the SV region78. 
The phylogenetic trees were converted to between-strain cophenetic 
distances using the cophenetic() function from the R package stats 
(v.4.3.0).

The phylogenetic tree shown in Fig. 3c was constructed using CSI 
Phylogeny 1.4 on the basis of SNPs of whole-genome sequences of the 
12 isolates79 and was visualized using the R packages ggtree (v.3.2.1) 
and gggenomes (v.0.9.9.9000)80.

Cohousing and SV sharing
Cohousing information at the time of faecal sampling is known for 
8,880 individuals from the DMP cohort. For this cohort, we removed 
individuals not cohousing with any other participant and those with no 
microbial or genetic information. For 2,631 participants, we assessed 
whether any individual cohousing with them at the time of sampling 
had F. prausnitzii 577–579. We then used a logistic regression using the 
presence or absence of 577–579 as a dependent variable and the secre-
tion of A-antigens and the presence of household SV as independent 
variables to estimate the effect of the presence of SV in the household on 
SV presence in an individual. We also assessed the possible gain or loss 
of F. prausnitzii in 338 individuals whose gut microbiome was profiled 
again after 4 years22. For 119 individuals, F. prausnitzii SV profiles were 
generated at both time points.

Genomic island prediction
Genomic islands were predicted by SIGI-HMM81 and IslandPath-DIMOB82 
as integrated into IslandViewer 4, a computational tool that integrates 
multiple genomic island prediction methods83. Both SIGI-HMM and 
IslandPath-DIMOB have been shown to have high overall accuracy, 
with IslandPath-DIMOB having a slightly higher recall and SIGI-HMM 
having a slightly higher precision.

Microbial gene annotation
The genes of F. prausnitzii strains and reference genomes used for gut 
microbial SV calling were annotated using MicrobeAnnotator (v.2.0.5)84 
and Bakta (v.1.8.1)85. For the annotation of genes encoding glycoside 
hydrolase family 109 (GH109) in F. prausnitzii and C. aerofaciens strains, 
we first obtained 2,113 GH109 protein sequences from CAZy (http://
www.cazy.org/GH109_characterized.html)86 and then conducted a 
homologue search of GH109 genes in the genomes of F. prausnitzii 
and C. aerofaciens strains using tblastn (v.2.5.0+)87 with the following 
parameters: -outfmt 7 -evalue 1e-10.

https://www.ncbi.nlm.nih.gov/snp/?term=rs8176719
https://www.ncbi.nlm.nih.gov/snp/?term=rs41302905
https://www.ncbi.nlm.nih.gov/snp/?term=rs8176746
https://www.ncbi.nlm.nih.gov/snp/?term=rs8176693
https://www.ncbi.nlm.nih.gov/snp/?term=rs505922
http://www.cazy.org/GH109_characterized.html
http://www.cazy.org/GH109_characterized.html
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Homologue search in genes involved in the GalNAc pathway
We downloaded 10,487 assembled genomes of ABO-associated spe-
cies from the Unified Human Gastrointestinal Genome collection33, 
including 1,103 assemblies of C. aerofaciens, 484 of F. lactaris, 1,109 
of B. bifidum and 7,791 of F. prausnitzii. We then used the sequences of 
genes located in SV 577–579 as queries and carried out a homologue 
search in the assemblies using tblastn (v.2.5.0+)87 with the following 
parameters: -outfmt 7 -evalue 1e-10.

Protein family search and profiling with shortBRED
We searched the metagenomes for 27 bacterial proteins identified in 
the SV segment of F. prausnitzii (excluding dinB and HTF-238_02530, 
which were used as SV region markers and are not located within the 
SV), including the genes known to be involved in GalNAc metabolism, 
using the shortBRED toolkit (v.0.9.5)88. We extracted the genes located 
in the SV and converted the gene sequences to protein sequences, as 
required by shortBRED. We used the shortBRED tool shortbred_identify.
py (v.0.9.5) to identify unique markers for the query genes, using the 
UniRef90 database (downloaded on 1 November 2021) as a negative 
control.

Next, the shortbred_quantify.py tool (v.0.9.5) was used to quantify 
these markers in metagenomes. First, we assessed the association of 
these gene abundances with the ABO blood group. We log-transformed 
the RPKM values provided by shortBRED and carried out a linear mixed 
model analysis using shortBRED gene abundances as outcomes and 
ABO A or AB blood group as a predictor accounting for sample relat-
edness using random effects in the lme4qtl package. We also included 
other covariates as predictors, including age, sex, total metagenomic 
sequencing read number and CLR-transformed F. prausnitzii abun-
dance, together with four F. prausnitzii dSVs and one vSV found to be 
associated with ABO in the primary GWAS analysis.

Next, we estimated the association of gene abundance with the 
α-diversity (Shannon index and richness) of the gut microbiome in 
DMP using linear regression using the following formula:

α-diversity = SV 577–579 + F. prausnitzii taxonomic abundance +  
C. aerofaciens taxonomic abundance + gene abundance.

Bacterial strains and growth
The Faecalibacterium and Collinsella strains used in this study were 
from culture collections (ATCC and DSMZ) and our local strain collec-
tion (Department of Medical Microbiology, University Medical Center 
Groningen, Groningen, the Netherlands). On the basis of the presence 
or absence of SVs, the following Faecalibacterium strains were selected: 
F. prausnitzii A2-165 (DSM 17677), F. prausnitzii ATCC 27768, F. praus-
nitzii HTF-F (DSM 26943), F. prausnitzii HTF-112, F. prausnitzii HTF-495,  
F. prausnitzii HTF-238, F. prausnitzii HTF-383, F. prausnitzii 60C2,  
F. prausnitzii HTF-121, F. prausnitzii HTF-133, F. prausnitzii HTF−441 
and F. prausnitzii FM4. Two strains of C. aerofaciens were selected on 
the basis of the presence of the GalNAc genes: C. aerofaciens 4PBA and  
C. aerofaciens HTF-129.

Strains were cultured in a modified YCFA medium supplemented 
with different carbohydrates (glucose, galactose, GalNAc, man-
nose, lactose, fructose, N-acetylglucosamine, 2-fucosyllactose and 
N-acetylneuraminic acid). YCFA medium was prepared as for YCFA–
glucose (YCFAG) medium described before89 without the addition of 
glucose. YCFA medium was composed of (g l−1) 10 casitone, 2.5 yeast 
extract, 4 sodium bicarbonate, 0.45 dipotassium hydrogen phosphate, 
0.45 potassium dihydrogen phosphate, 0.9 sodium chloride, 0.09 
magnesium (II) sulfate heptahydrate, 0.12 calcium chloride dihy-
drate, 2.7 sodium acetate, 1 cysteine, 5 ml 0.02% resazurin and 0.2% 
haemin, 1 ml pink vitamin mixture and yellow vitamin mixture, and 
the liquid medium. The pink vitamin mixture (per 100 ml) contains 
1 mg biotin, 1 mg cobalamin, 3 mg p-aminobenzoic acid, 5 mg folic 
acid and 15 mg pyridoxamine. The yellow vitamin mixture (per 100 ml) 

contains 5 mg thiamine and 5 mg riboflavin. The liquid medium includes 
600 µl l−1 propionate (≥99% purity, Sigma-Aldrich), 100 µl l−1 isobu-
tyrate (≥99% purity, Sigma-Aldrich), 100 µl l−1 isovalerate (≥99% purity, 
Sigma-Aldrich) and 100 µl l−1 valerate (≥99% purity, Sigma-Aldrich). The 
medium is adjusted to a final pH of 6.5.

Growth experiments were carried out in a Bactron 600 anaerobic 
incubator (Kentron Microbiome BV) using a 24-well flat-bottom-plate 
with total volume of 1 ml per well YCFA medium supplemented with 
4.5 g l−1 of the desired carbohydrate source. Cultures were started at 
an initial OD600nm range of 0.10–0.15 by the addition of an overnight 
glucose-grown pre-culture, and growth was monitored anaerobically 
at 600 nm over 24 h at 37 °C. Readings were taken every 2 h, after 10 s 
shaking, using Epoch 2 (Agilent BioTek Instruments), and growth curves 
were generated using Gen5 software. Each growth condition was carried 
out in triplicate using three independent pre-cultures. Data of growth 
curves are reported as means ± s.d.

Gene expression analysis of GalNAc induction
Sample collection. The F. prausnitzii strains HTF-495, HTF-441 and 
ATCC 27768 were selected to test the mRNA expression level of genes 
on the basis of the shortest distance within the phylogenetic tree. The 
F. prausnitzii strains were pre-cultured individually in YCFAG medium 
overnight anaerobically at 37 °C in triplicate. To get enough biomass, 
these pre-cultures were used to inoculate fresh triplicates of each strain 
in a ratio of 1:20 (20 ml) and incubated for 24 h anaerobically at 37 °C in 
YCFAG medium. Each culture was then split into two tubes (10 ml per 
tube) and centrifuged at 3,000 r.p.m. for 10 min. The supernatants 
were removed and resuspended with 10 ml YCFAG or YCFA-GalNAc, 
separately for each culture, in a total of 18 samples. After 6 h of incuba-
tion, a 1:1 ratio (10 ml) of ice-cold killing buffer (20 mM Tris-HCl pH 7.5, 
5 mM MgCl2, 20 mM NaN3) was added to the cultures. Samples were 
centrifuged at 3,000 r.p.m. for 10 min at 4 °C, and the supernatants 
were removed. The pellets were resuspended in 1 ml TRIzol (Invitrogen) 
and stored at −80 °C until further RNA isolation.

RNA isolation and cDNA synthesis. For RNA isolation, 200 µl of RNAse- 
free chloroform was added to each sample and incubated at room 
temperature for 5 min. After incubation, the samples were centrifuged 
at 12,000g at 4 °C, and the aqueous phase was recovered into a new 
tube. To precipitate RNA, 500 µl of RNAse-free isopropanol was added 
to each sample and mixed briefly. Samples were incubated for 10 min 
at room temperature and centrifuged for 10 min at 12,000g and 4 °C. 
The supernatant was removed, and the pellets were washed in 1 ml of 
75% RNAse-free ethanol, vortexed briefly and centrifuged for 5 min 
at 7,500g at 4 °C. The supernatant was removed, and the pellets were 
air-dried at room temperature for 10 min. Afterward, the samples were 
resuspended with RNAse-free water.

Finally, DNA contamination was removed from 10 µg of the sample 
using TURBO DNA-free Kit (Invitrogen). cDNA was generated using 
the TaqMan Reverse Transcription Reagents (Invitrogen) with random 
hexamers.

Quantitative PCR. Samples were diluted to working concentration 
and used as a template for quantitative PCR (qPCR) amplification of 
the target genes (for primers, see Supplementary Table 20). Each reac-
tion contained 10 μl of GoTaq qPCR Master Mix (Promega), 9 μl of DNA 
template (10 ng) and two times 0.5 μl primer solution (20 µM) in a total 
reaction volume of 20 μl. The amplification was carried out in a 7500 
Real-Time PCR System (Applied Biosystems). The amplification pro-
gram comprised two stages: an initial denaturation step at 95 °C for 
2 min, followed by 40 two-step cycles at 95 °C for 15 s and at 60 °C for 
1 min. At the end of the run, a melting curve analysis was carried out. 
The cycle threshold (Ct) value was first determined using the 7500 
Real-Time PCR System detection system and then adjusted manually to  
set the threshold within the exponential phase of the curves. All qPCR  



reactions were carried out in triplicate. TheΔCt values of the genes of 
interest were obtained by correction for the Ct value of rpoA as the 
housekeeping gene. Afterward, the different 2 C−Δ t values of each strain 
were calculated per condition. These values were used to determine 
the relative fold change expression of the genes after GalNAc induction 
compared to growth in glucose.

Ethical approval. The Lifelines study was approved by the ethics com-
mittee of the University Medical Center Groningen (METc2007/152). 
All participants signed an informed consent form before enrolment. 
Additional written consents were signed by the DMP participants or 
legal representatives for children aged under 18 years. The LLD study 
was approved by the Institutional Ethics Review Board of the Univer-
sity Medical Center Groningen (ref. M12.113965), the Netherlands. The 
300OB study was approved by the IRB CMO Regio Arnhem-Nijmegen 
(number 46846.091.13). The 500FG study was approved by the Ethi-
cal Committee of Radboud University Nijmegen (NL42561.091.12, 
2012/550). The inclusion of volunteers and experiments was con-
ducted according to the principles expressed in the Declaration of 
Helsinki. All volunteers gave written informed consent before any 
material was taken. The 300FGTZ study was approved by the Ethical 
Committees of the Kilimanjaro Christian Medical University Col-
lege (CRERC; number 936) and the National Institute for Medical 
Research (NIMR/HQ/R.8a/Vol. IX/2290) in Tanzania. The Tanzanian 
cohort provided consent for the use of their data for the purposes 
of this analysis.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The profile of SVs of all samples and the full summary statistics of 
genetic associations with bacterial dSVs and vSVs are available at 
https://doi.org/10.25452/figshare.plus.c.6877849. The assembled 
bacterial genomes from the growth experiment are available at the 
National Center for Biotechnology Information (NCBI) with accession 
number PRJNA1024432. The raw metagenomic sequencing data of all 
four cohorts are publicly available. The data for three are deposited 
at the European Genome‒Phenome Archive: DMP (accession number 
EGAS00001005027), LLD (accession number EGAD00001001991) and 
300OB (accession number EGAD00001005083). The 500FG data are 
available at the NCBI Sequence Read Archive under accession number 
PRJNA319574. The metagenomic data of 300TZFG are available in the 
NCBI BioProject database under accession number PRJNA686265. To 
protect participant’s privacy and respect the research agreements in 
the informed consent, genotyping data and participant metadata are 
not publicly available and cannot be deposited in public repositories. 
The DMP and LLD data can be accessed by all bona fide researchers with 
a scientific proposal by contacting the Lifelines Biobank (instructions 
at https://www.lifelines.nl/researcher/how-to-apply). Researchers 
will need to fill in an application form, which will be reviewed within 
2 working weeks. If the proposed research complies with Lifelines 
regulations (for example, noncommercial use and guarantee of par-
ticipants’ privacy), researchers will then receive a financial offer and 
a data and material transfer agreement to sign. In general, data will be 
released within 2 weeks after signing the offer and data and material 
transfer agreement. The data will be released in a remote system (the 
Lifelines workspace) running on a high-performance computer cluster 
to ensure data quality and security. As Lifelines is a non-profit organiza-
tion dependent on (governmental) subsidies, a fee is required to cover 
the costs of controlled data access and supporting infrastructure. The 
fee for data access on the high-performance computer is €3,500 for 
1 year and the fee for the Lifelines Workspace environment is €4,500 

for 1 year, or less for shorter periods of time. There are no restrictions 
on the downstream re-use of aggregated, non-identifiable results (as 
approved by Lifelines), nor are there authorship requirements, but 
Lifelines does request that it is acknowledged in publications using 
these data. The data access policy, data access fees and an example 
Data and Material Transfer Agreement (which includes details on how 
to acknowledge the use of Lifelines data in publications) are described 
in detail at https://www.lifelines.nl/researcher/how-to-apply. Note that 
data access for replication can be arranged through Lifelines. Lifelines 
will not charge an access fee for controlled access to the full dataset 
used in the manuscript (including phenotype and sequencing data), 
for the specific purpose of replication of the results presented in this 
Article or for further assessment by the reviewers, for a period of three 
months. Researchers interested in such a replication study or review 
assessment can contact Lifelines at research@lifelines.nl. The geno-
type and metadata of the 500FG, 300OB and 300TZFG cohorts can 
be requested through the Human Functional Genomics Data Access 
Committee (Martin.Jaeger@radboudumc.nl). There are no conditions 
associated with their use, with the exception of those associated with 
data that may lead to compromising participant confidentiality, such 
as raw genomics data. The data are freely available, and no agreement 
or costs are required. The applicants would receive a response within 4 
weeks from application. Gut microbial SV calling was conducted on the 
basis of reference microbial genomes from the proGenomes database 
(http://progenomes1.embl.de/). ShortBRED analysis was carried out 
on the basis of the UniRef90 database (https://ftp.uniprot.org/pub/
databases/uniprot/uniref/uniref90/). Source data are provided with 
this paper.

Code availability
The code for statistical analysis and visualization is available through 
https://doi.org/10.5281/zenodo.10018199.
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Extended Data Fig. 1 | Overview of gut microbial SVs detected in the Dutch 
cohorts before filtering. a, Number of dSVs and vSVs detected per species. 
Each bar represents a species, and the y-axis shows the number of SVs detected 
per species. The number of dSVs and vSVs are colored in green and blue, 
respectively. b, Percentages of the overall number of dSVs and vSVs detected. 
Pie chart shows the number of dSVs and vSVs and the corresponding proportions.  
c, Number of samples with detected SVs per species, colored by cohort. X-axis 

indicates the different species. Y-axis indicates the number of samples with 
detectable SVs in that species, colored by different cohorts. d, Distribution  
of the total relative abundance of species detected with SVs per cohort.  
X-axis is the total abundance in terms of proportion of a microbial community. 
Y-axis is density. The red dashed vertical line indicates the average total relative 
abundance of species with sufficient coverage to detect SVs in all Dutch samples.
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Extended Data Fig. 2 | Heritability of gut microbial SVs and corresponding 
species abundance. Bar height indicates heritability h2 values for vSVs (blue) 
and dSVs (cyan) that are nominally significant (P < 0.05), estimated using GCTA. 
Error bars in gray are the 95% confidence intervals (1.96 × standard error) of the 
estimated heritability. Solid red vertical lines indicate the heritability of the 

corresponding species abundance previously reported in Gacesa et al.  
Nature (2020), and the red opaque rectangles indicate the corresponding  
95% confidence interval. Species names marked with * indicate those with 
significant abundance heritability at P < 0.05 level. The number of samples 
used for SV heritability estimation is given on the right.
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Extended Data Fig. 3 | Comparison of F. prausnitzii dSV associations 
between the Dutch and Tanzanian cohorts. a, Q-Q plots of the associations 
between human SNPs and F. prausnitzii SVs in the Dutch cohorts. X-axis is the 
expected log-transformed P-value. Y-axis is the observed log-transformed 
unadjusted P-value derived from the linear mixed model. Each dot represents 
an association P-value. The diagonal is represented by the solid red line. The 
lambda (λ) value represents the genomic inflation factor. b, Comparison of the 
presence/absence ratio of dSVs between the DMP cohort (N = 5044) and the 
Tanzanian cohort (N = 201). Bar plots show the fraction of samples with (dark 

blue) or without (cyan) the dSV region. c, Association of F. prausnitzii dSV  
575–577 with rs550057 in both the Dutch and Tanzanian cohorts. Bar plots 
show the number of samples with (dark blue) and without (cyan) the dSV region 
per genotype. The P-value indicates the unadjusted association significance 
assessed by fastGWA using linear mixed models. d, Association of F. prausnitzii 
577–579 with rs1633513 in both cohorts. Bar plots show the number of samples 
with (dark blue) and without (cyan) the dSV region per genotype. The P-values 
indicate the unadjusted association significance assessed by fastGWA based 
using linear mixed models.

https://www.ncbi.nlm.nih.gov/snp/?term=rs1633513
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Extended Data Fig. 4 | The associations of F. prausnitzii SVs with ABO blood 
groups depend on FUT secretor status. Each row of panels represents a 
different SV region. Each column of panels represents a different cohort. The 
associations of dSVs are visualized using bar plots where the y-axis shows the 
fraction of samples with the dSV region. Number of samples for each group is 
given at the bottom of each bar. The associations of vSVs are visualized using 
violin plots where the y-axis shows the standardized coverage of vSVs. Violin 

plots show density distribution, whereas the inner boxplots represent 
summary statistics: the center line is the median, the box hinges are the lower 
and upper quartiles of the distribution, the whiskers extend no further than 
1.5× interquartile range from the hinges, and data beyond the end of the 
whiskers are outliers plotted as individual points. The x-axis of all plots shows 
the ABO blood group (A/AB or B/O) split by FUT2 status. Unadjusted P-values 
show the significance of the association estimated using linear mixed models.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Population genetic structure of F. prausnitzii and its 
association with ABO-associated SVs. a, The x-axis and y-axis show the top 
two PCs. Each dot represents a sample. In each panel figure, dots are colored 
differently based on the presence/absence status of dSVs or the standardized 
coverage of vSVs following the color key shown in the figure. The significance 
of associations between population genetic structure of F. prausnitzii and SVs 
was estimated by permutational multivariate analysis of variance (PERMANOVA),  
and all associations for the five ABO-associated SVs are significant (unadjusted 
P < 0.05). b, Association of F. prausnitzii abundance with ABO blood groups in 

the DMP cohort. Species abundance (CLR-transformed) of F. prausnitzii (y-axis) 
plotted against ABO-encoded blood groups for all DMP individuals (x-axis). 
Violin plots show density distribution, whereas the inner boxplots represent 
summary statistics: the center line is the median, the box hinges are the lower 
and upper quartiles of the distribution, the whiskers extend no further than 
1.5× interquartile range from the hinges, and data beyond the end of the whiskers 
are outliers plotted as individual points. Unadjusted P-value reflects the 
significance of association of ABO blood groups (A/AB vs B/O) with F. prausnitzii 
abundance after adjusting for covariates assessed using linear mixed models.



Article

60C2

HTF−238

ATCC27768

HTF−495

HTF−383

HTF−112

FM4 HTF−383

HTF−495

ATCC27768

FM4

HTF−238

HTF−112

60C2

0.02

0.04

0.06

0.05 0.10 0.15 0.20
0.00

0.05

0.10

0.15

0.20

GalNAc genes Marker genes

Phylogenetic tree based 
on marker genes

Phylogenetic tree based 
on GalNAc genes

Ph
yl

og
en

et
ic

 d
is

ta
nc

e 
ba

se
d 

on
 G

al
N

Ac
 g

en
es

Phylogenetic distance based on marker genes

Ph
yl

og
en

et
ic

 d
is

ta
nc

e

a b c

Person has A antigen 
  a household member has SV

Person has A antigen 
 NO household member has SV

Person has NO A antigen 
 a household member has SV

Person has NO A antigen 
 NO household member has SV

0.00 0.25 0.50 0.75 1.00

Fraction of samples with dSV 577−579

no
 5

77
-5

79
 re

gi
on

w
ith

 5
77

-5
79

 re
gi

on

no
 5

77
-5

79
 re

gi
on

w
ith

 5
77

-5
79

 re
gi

on

52

11

23

33

Baseline Follow-up
d e

Extended Data Fig. 6 | Transmission of F. prausnitzii SVs. a, Different 
phylogenetic distances between F. prausnitzii strains based on marker genes 
and GalNAc genes. Phylogenetic trees based on the phylogenetic distance of 
marker genes (left) and GalNAc genes (right). b, Scatter plot of between-strain 
genetic distance based on marker genes (x-axis) and GalNAc genes (y-axis). 
Each dot represents pairwise phylogenetic distance between two strains.  
c, Comparison of between-strain genetic distance based on marker genes and 
GalNAc genes. Each box plot represents the distribution of pairwise phylogenetic  
distances of strains based either on GalNAc genes or on species marker genes. 
The center line of the box is the median, the box hinges are the lower and  
upper quartiles of the distribution, and each dot represents a pair of two strains  

(npair = 21). d, Fraction of samples with or without SV 577–579 dependent on 
household members. Each blue bar represents the fraction of samples with the 
GalNAc-containing 577–579 dSV region in individuals with/without A-antigen 
and with/without household members with the dSV. e, Gain or loss of the  
F. prausnitzii dSV 577–579 region after 4 years. Alluvial plot shows the number 
of individuals with and without the 577–579 region in F. prausnitzii at two time- 
points 4-years apart. The number of individuals with the same presence or 
absence status for this region after 4 years is indicated in gray. The number of 
individuals who gained the region is indicated in red. The number of those who 
lost the region is indicated in blue.
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Extended Data Fig. 7 | Growth curves for F. prausnitzii strains in media 
supplemented with different sugars. a, Growth curve of F. prausnitzii strain 
HTF−383 in GalNAc medium over a longer growth time (40 h). X-axis refers to 
culturing time (in hours). Y-axis refers to the cell density measured as OD600 
value. The red points with bars on the growth curve represent the means ± 
standard deviation of three replicates. b, Red lines indicate the growth curves 
of strains with SV 577–579. Black lines indicate the growth curve of strains 

without this SV. YCFA is Yeast Casitone Fatty Acids (YCFA) basic medium 
without supplemental sugars. The other graphs are for the YCFA medium 
supplemented with the sugar indicated: glucose (Glc), lactose (Lac), mannose 
(Man), N-acetylglucosamine (GlcNAc), fructose (Fruc), N-acetylneuraminic acid 
(NeuNAc) and 2-fucosyllactose (2FL). X-axis is the culturing time (in hours). Y-axis 
is the cell density measured as OD600 value. The red and black points with bars on 
the growth curves represent the means ± standard deviation of three replicates.
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Extended Data Fig. 8 | Comparison of GalNAc-induced expression fold 
changes in GalNAc genes between HTF-495 and ATCC27768. Bar plots 
represent the average fold changes of gene expression induced by GalNAc 
compared to glucose induction. Each dot represents a sample, and the bar 
indicates the standard error of three replicates. The light blue and dark blue 

bars represent the expression fold change of glucose induction and GalNAc 
induction in relation to glucose induction, respectively. Thus, the fold change 
in glucose was set to 1. Unadjusted P-values estimated using the two-sided t-test 
are given for each gene. * Indicates a difference significant at unadjusted 
P < 0.05 level.
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Extended Data Fig. 9 | See next page for caption.



Article
Extended Data Fig. 9 | Association of nine key GalNAc pathway genes with 
A-antigen presence in FUT2 secretors and non-secretors. Y-axis of the violin 
plots is the gene abundance in the DMP cohort (n = 1868, 2496, 610 and 760 for 
FUT2 secretor A/AB, FUT2 secretor B/O, FUT2 non-secretor A/AB and FUT2 
non-secretor B/O, respectively). The RPKM value of gene abundance (number 
of reads per kilobase of transcript per million reads mapped) was profiled using 
ShortBRED. The y-axis unit ln(RPKM) stands for normalized gene abundance  
after ln(RPKM + 1) transformation, adjusted for covariates (age, sex, total read 
number, species abundance and the five F. prausnitzii SVs associated with ABO). 

The violin plots for FUT2 secretors are colored in blue. Plots for FUT2 non-
secretors are in gray. Violin plots show density distribution, while the inner 
boxplots represent summary statistics: the center line is the median, the box 
hinges are the lower and upper quartiles of the distribution, whiskers extend no 
further than 1.5× interquartile range from the hinges, and data beyond the end 
of the whiskers are outliers plotted as individual points. Unadjusted P-values 
show the significance of the association between the ABO blood group and gene 
abundance while adjusting for covariates estimated using linear mixed models.
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Extended Data Fig. 10 | Association of GalNAc pathway genes with gut 
microbiome diversity and host phenotypes. a, Community-level GalNAc 
utilization capacity is positively associated with gut microbiome diversity and 
richness. Bar plot shows the Spearman correlation coefficients (R) between the 
abundance of GalNAc genes in a microbial community with the alpha diversity 
(Shannon index) (top panel) and richness (bottom panel) of the community for 
individuals with (red, n = 1,868) and without (blue, n = 3,866) mucosal A-antigen.  
Y-axis is the Spearman correlation coefficient. X-axis indicates different GalNAc  
genes. b, Heterogeneity of associations between gut microbial GalNAc 
utilization genes and human phenotypes in individuals with and without 

mucosal A-antigen. Scatter plot shows the association effect size (standardized 
beta-coefficient from linear regression) between GalNAc metabolism gene 
abundance and host phenotypes in individuals with mucosal A-antigen (x-axis) 
and those without (y-axis). Error bars indicate the confidence interval of the 
beta-coefficient estimation. The associations between GalNAc metabolism 
gene abundance and host phenotypes are significantly higher in individuals 
with mucosal A-antigen (n = 1,868) compared to those without (n = 3,866) 
(Unadjusted Pheterogeneity < 0.05; Cochran’s Q test). Dots are colored differently 
for different phenotypes.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No specific software was used for data collection.

Data analysis All data analyses were conducted using publicly available tools. For this study the following software was used: R v4.1.0, PLINK (v.alpha 2.1), 
KneadData v.0.7.4, Bowtie2 v.2.3.4.3,  Trimmomatic v.0.39, Kraken2 v.2.1.2, Bracken v.2.6.2, MetaPhlAn v3,SGV-Finder v.1, GCTA toolbox 
v.1.94.1, Metal v.2020-05-05, MicrobeAnnotator v2.0.5, Bakta v1.8.1, tblastn v2.5.0+, shortBRED toolkit v.0.9.5, RAxML v8, CSI Phylogeny 
v1.4, IslandViewer v4. The following R packages were used: lme4qtl v.0.2.2, kinship2 v.1.9.6, vegan v.2.6-2, ape v.5.6.-2, stats v.4.3.0, ggtree 
v.3.2.1, gggenomes v.0.9.9.9000 
The analysis code is available at https://github.com/GRONINGEN-MICROBIOME-CENTRE/SV_GWAS.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The profile of SVs of all samples and the full summary statistics of genetic associations with bacterial dSVs and vSVs are available at figshare: https://
doi.org/10.25452/figshare.plus.c.6877849. The assembled bacterial genomes from the growth experiment are available at NCBI with accession number 
PRJNA1024432. 
The raw metagenomic sequencing data of all four cohorts are publicly available. Three are deposited at the European Genome‒Phenome Archive: Dutch 
Microbiome Project (accession number EGAS00001005027), Lifelines-DEEP (accession number EGAD00001001991), and 300OB (accession number 
EGAD00001005083). The 500FG data is available at NCBI SRA under accession number PRJNA319574. The metagenomic data of 300TZFG is available in the NCBI 
BioProject under accession number PRJNA686265. 
To protect participant’s privacy and respect the research agreements in the informed consent, genotyping data and participant metadata are not publicly available 
and cannot be deposited in public repositories. The DMP and LLD data can be accessed by all bona-fide researchers with a scientific proposal by contacting the 
Lifelines Biobank (instructions at https://www.lifelines.nl/researcher/how-to-apply). Researchers will need to fill in an application form, which will be reviewed 
within 2 working weeks. If the proposed research complies with Lifelines regulations, e.g., noncommercial use and guarantee of participants’ privacy, researchers 
will then receive a financial offer and a data and material transfer agreement to sign. In general, data will be released within 2 weeks after signing the offer and data 
and material transfer agreement. The data will be released in a remote system (the Lifelines workspace) running on a high-performance computer cluster to ensure 
data quality and security. As Lifelines is a non-profit organization dependent on (governmental) subsidies, a fee is required to cover the costs of controlled data 
access and supporting infrastructure. The fee for data access on the HPC is €3,500 for 1 year and the fee for the Lifelines Workspace environment is €4,500 for 1 
year, or less for shorter periods of time. There are no restrictions on the downstream re-use of aggregated, non-identifiable results (as approved by Lifelines), nor 
are there authorship requirements, but Lifelines does request that it is acknowledged in publications using these data. The data access policy, data access fees and 
an example Data and Material Transfer Agreement (which includes details on how to acknowledge the use of Lifelines data in publications) are described in detail at 
https://www.lifelines.nl/researcher/how-to-apply. Note that data access for replication can be arranged via Lifelines. Lifelines will not charge an access fee for 
controlled access to the full dataset used in the manuscript (including phenotype and sequencing data), for the specific purpose of replication of the results 
presented in this Article or for further assessment by the reviewers, for a period of three months. Researchers interested in such a replication study or review 
assessment can contact Lifelines at research@lifelines.nl.  
The genotype and metadata of 500FG, 300OB, and 300TZFG cohorts can be requested via the Human Functional Genomics Data Access Committee (Martin Jaeger, 
e-mail: Martin.Jaeger@radboudumc.nl)]. There are no conditions associated with its use, with the exception of those associated with data that may lead to 
compromising patient confidentiality, such as raw genomics data. The data are freely available, and no agreement or costs are required. The applicants would 
receive a response within 4 weeks from application. 
Gut microbial SV calling was conducted based on reference microbial genomes from the proGenomes database (http://progenomes1.embl.de/). ShortBRED analysis 
was performed based on the UniRef90 database (https://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref90/).

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender We added sex as covariate in association analyses as the primary goal of the project was to identify associations between 
host and microbial genetic variants irrespective of sex.

Population characteristics Data from five population-based cohorts were used in this study.  
DMP cohort is a prospective cohort from the north of the Netherlands that consists of 8,719 individuals. 57.4% of 
participants are female, the mean age (SD) of participants is 48.42 (14.79) years, mean BMI is 25.56 (4.40). 
LLD cohort is a prospective cohort from the north of the Netherlands that consists of 1,135 individuals. 58.20% of 
participants are female, the mean age (SD) of participants is 45.04 (13.60) years and their mean BMI is 25.26 (4.18). 
The 500FG cohort consists of 534 healthy adult volunteers from the Netherlands. 56.50% of participants are female, the 
mean age of participants is 27.43 (12.35) years and their mean BMI is 22.70 (2.72). 
The 300OB is a part of the Functional Genomics project and consists of 302 individuals from the Netherlands with a BMI >27.   
44.30% of participants are female, the mean age of participants is 67.07 (5.39) years and their mean BMI is 30.73 (3.48). 
The 300TZFG cohort consists of 323 individuals from both rural (N = 70, median age 39.6) and urban (N = 253, median age 
27.6) areas of Tanzania. A total of 279 individuals with both genotype and metagenomics data are included in the study.

Recruitment DMP and LLD are subsets of the Lifelines cohort, which has been recruited in three stages: recruitment of an index 
population via general practitioners, subsequent inclusion of their family members, and online self-registration. This cohort is 
considered representative of adult population of the North of the Netherlands. 500FG and 300OB cohorts are part of the 
Functional Genomics project. The inclusion of the volunteers took place between 8/2013 until 12/2014 in the Radboud 
University Medical Center, the Netherlands. 500FG is a population-based cohort, while around half of 300OB participants are 
clinically diagnosed with metabolic syndrome. 
The participants of 300TZFG were recruited from the Kilimanjaro region of the Northern Tanzania between March and 
December 2017, at the Kilimanjaro Christian Medical Center and Lucy Lameck Research Center, in Moshi municipal. Exclusion 
criteria were pregnancy, a known acute or chronic disease, use of antibiotics or anti-malarials in the previous three months, 
or receiving treatment for tuberculosis infection in the past year. The information on the study was given through leaflets or 
announced during the mass gathering. All volunteers were interviewed by a member of the study team using a guided pre-
screening questionnaire prior to being invited to the study center.

Ethics oversight The Lifelines study was approved by the ethics committee of the University Medical Center Groningen (METc2007/152). All 
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Ethics oversight participants signed an informed consent form prior to enrollment. Additional written consents were signed by the DMP 

participants or legal representatives for children aged under 18 years. The Lifelines-DEEP study was approved by the 
Institutional Ethics Review Board of the University Medical Center Groningen (ref. M12.113965), the Netherlands. The 300-
Obesity study was approved by the IRB CMO Regio Arnhem-Nijmegen (nr. 46846.091.13). The 500FG study was approved by 
the Ethical Committee of Radboud University Nijmegen (NL42561.091.12, 2012/550). The inclusion of volunteers and 
experiments were conducted according to the principles expressed in the Declaration of Helsinki. All volunteers gave written 
informed consent before any material was taken. 
The 300TZFG study was approved by the Ethical Committees of the Kilimanjaro Christian Medical University College (CRERC) 
(no. 936) and the National Institute for Medical Research (NIMR/HQ/R.8a/Vol. IX/2290) in Tanzania.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size In order to ensure the analysis power, the study includes as much as subjects as possible from the five cohorts. Thus no sample size 
calculation was performed. For each cohort we used samples that had both metagenomic and genotype data available: DMP (N = 7,372), LLD  
(N = 981), 500FG (N = 396), 300OB (N = 266), and 300TZFG (N = 279).

Data exclusions We excluded samples with < 5% of structural variations called. 

Replication We used all available samples of four independent Dutch cohorts for meta-analysis. To ensure the replication of the identified associations, 
we required that the associations were not only significant at Bonferroni-corrected P <0.05 in meta-analysis but also nominally significant (p < 
0.05) in at least two cohorts with consistent effect direction. The 300TZFG was used as an extra independent replication cohort in non-
European population, with a nominally significant threshold (p < 0.05).

Randomization This is human cohort-based analysis. The sample collection and sequencing were performed in a random order. No extra randomization was 
done for this study.

Blinding This study is a human cohort based, observational study. Thus no blinding was performed.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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