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Abstract: Effectively strategizing the trajectories of multiple Unmanned Aerial Vehicles (UAVs)
within a dynamic environment to optimize the search for and tracking of mobile targets presents
a formidable challenge. In this study, a cooperative coevolution motion-encoded particle swarm
optimization algorithm called the CC-MPSO search algorithm is designed to tackle the moving
target search issue effectively. Firstly, a Markov process-based target motion model considering
the uncertainty of target motion is investigated. Secondly, Bayesian theory is used to formulate
the moving target search as an optimization problem where the objective function is defined as
maximizing the cumulative probability of detection of the target in finite time. Finally, the problem
is solved based on the CC-MPSO algorithm to obtain the optimal search path nodes. The motion
encoding mechanism converts the search path nodes into a set of motion paths, which enables
more flexible handling of UAV trajectories and improves the efficiency of dynamic path planning.
Meanwhile, the cooperative coevolution optimization framework enables collaboration between
different UAVs to improve global search performance through multiple swarm information sharing,
which helps avoid falling into local optimal solutions. The simulation results show that the CC-MPSO
algorithm demonstrates efficacy, reliability, and superior overall performance when compared to the
five commonly used swarm intelligence algorithms.

Keywords: cooperative coevolutionary approach; particle swarm optimization; multi-UAV planning;
moving target search

1. Introduction

Due to their excellent maneuverability and adaptability, along with their ability to
carry out diverse tasks in challenging environments, Unmanned Aerial Vehicles (UAVs)
are increasingly being utilized in the fields of navigation and localization, target search and
rescue, border patrol, agricultural production, and cargo transportation [1–4]. Conducting
coordinated UAV searches in crucial areas is a typical kind of UAV task aimed at enhancing
target detection and gathering intelligent information. For such tasks, the traditional
approach is based on search theory, and the corresponding search strategy is formulated in
advance, so that the target detection probability is maximized [5]. However, for dynamic
target search, usually, the specific location information of the target is unknown or only part
of the a priori information can be grasped. As the search time passes, the initial position
information and environment information of the target will be attenuated to a large extent,
and the probability of finding the target will decrease rapidly. Consequently, the search
for moving targets utilizing UAVs relies on the starting position information of the target
and the UAV’s sensor detection capacity. Path planning is then conducted for the UAVs
to achieve the highest possible target detection probability within a certain timeframe.
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The key to solving the dynamic target search problem lies in the development of a path
planning algorithm that exhibits efficient search performance.

Classical approaches to addressing UAV target search problems such as the Dijkstra
method [6], A* method [7], and dynamic programming method [8] ensure the superiority of
the final solution but require significant time and resource consumption during processing.
In the work of [9], a comprehensive overview of UAV path planning algorithms is provided.
The study revealed that the path planning method based on computational intelligence has
the capability to achieve higher efficiency, greater flexibility, and enhanced adaptability in
complex environments. Swarm-based intelligent algorithms are a subfield of computational
intelligence methods, which have excellent performance in modeling collective intelligence
and collaborative behavior in nature, making them suitable for use in a wide range of
robotics applications. In recent years, swarm-based intelligent target search algorithms
have received increasing attention and research (swarm-based intelligent target search
algorithm) [10–12]. A dynamic target search method for UAV based on motion-encoded
particle swarm optimization algorithm (MPSO) was first proposed in the literature [13].
The method encodes each search path of a UAV as a set of motion paths, which makes the
particles search in motion space instead of Cartesian space. The method is simple, intuitive,
and very conducive to engineering implementation. It lays theoretical guidance for the
development of subsequent UAV intelligent search path planning techniques. However,
the method may lack sufficient adaptability and perform sub-optimally when dealing with
complex dynamic search problems. On this basis, reference [14] combines the charged
particle optimization algorithm (ECPO) with the motion encoding (ME) mechanism and
proposes the ECPO-ME algorithm for solving the UAV moving target search problem.
Compared with the MPSO algorithm, the ECPO-ME algorithm has strong global search
performance, but the increase in population diversity causes its convergence speed to
become slower. Reference [15] proposed an ant colony path search optimization algorithm
(ASPV) with visibility for the optimal search path problem (OSPV) for Markovian motion
objectives, and the improved ASPV variant has good convergence performance. However,
the algorithm usually involves some additional hyperparameters, such as Initial Pheromone
Level, Pheromone Update Strength, etc. The selection of these parameters has a great
impact on the performance of the algorithm, and it is difficult to find a generalized set of
optimal parameters. Reference [16] proposed an improved hybrid ant colony optimization
algorithm (JPIACO) based on the jump point search strategy, where the initial pheromone
concentration distribution obtained by jump point search can guide the algorithm to find
the search path quickly and reduce the inflection points of the path, which effectively
improves the parameter sensitivity of the algorithm. However, the performance of this
algorithm has not been verified in dynamic environments. All of the above algorithms
have been applied to single-UAV target search tasks. Single-UAV systems are usually easy
to control, easy to deploy, and suitable for small-scale tasks, but for large-scale and highly
dynamic search areas, the search efficiency of single UAVs may be low.

Compared with single-UAV target search, multi-UAV collaborative target search has
higher search efficiency and wider search scope, and it has gradually become a research
hotspot. Ref. [17] models multi-UAV moving target search as a parallel optimization
problem and proposes the MEGA-MPC algorithm, which combines the motion encoding
mechanism (ME) and the multi-parent genetic algorithm (GA-MPC), for the solution.
Unfortunately, the method does not consider mutual communication between UAVs, and
the search efficiency is low when multiple areas with high probabilities (MPCs) exist at the
same time. Reference [18] proposes a distributed robotic PSO (DRPSO) method to improve
the exploration capability of clustered robots in dynamic multi-target search in unknown
environments. The method can search out both static and dynamic targets simultaneously
while considering realistic constraints such as unknown target initialization, different robot
position initialization, limited communication, different obstacle layouts, and decentralized
cooperation. Ref. [19] proposes a rule-inspired collaborative search algorithm based on
multiple ant colony UAVs which utilizes association rules to drive target probability graph
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updates. The model is characterized by rule linking, which effectively improves the
accuracy of target detection probability in unknown environments. Reference [20] proposes
a dynamic discrete pigeon heuristic optimization algorithm for the UAV coordinated search
and attack mission planning problem, which combines centralized task assignment and
distributed path generation. The algorithm is more easily adaptable to complex, dynamic,
and uncertain environments due to its dynamic adaptability and heuristic search properties.
However, the algorithm needs to maintain the balance of task allocation and path generation
simultaneously, which increases the complexity of the algorithm, and the computational
expense is large when dealing with large-scale problems.

To summarize, while swarm intelligence algorithms offer numerous benefits in ad-
dressing dynamic target search issues, they are susceptible to getting trapped in local
optimal solutions as the number of target regions grows and the impact of low-probability
regions extends. Furthermore, some swarm intelligence algorithms may exhibit limited
adaptability to changes in the environment. To effectively pursue a target that frequently
changes its location or deviates significantly, the algorithms must enhance their adaptability.
Intelligent optimization algorithms based on the Cooperative Coevolution framework usu-
ally decompose a complex problem into multiple sub-problems, each of which is evolved
by a sub-swarm, while the sub-swarms share and compete with each other through the
co-evolutionary mechanism for information sharing [21]. Such algorithms have excellent
performance in solving large-scale, high-dimensional optimization problems and have been
tested in real-world problems such as control parameter optimization, function approxima-
tion, and classification [22,23]. Learning from the research of co-evolutionary algorithms
applied in other fields, this paper proposes a particle swarm optimization algorithm incor-
porating multiple swarm co-evolutionary and motion coding mechanisms and applies it
to a dynamic target search problem. Specifically, the multi-UAV cooperative search path
planning problem is decomposed into numerous single-UAV path planning subproblems,
each of which is evolved by an independent particle swarm. By designing a cooperative
evolution strategy among multiple swarms, it enables them to co-evolve to find the global
optimal solution. In addition, the introduction of motion coding mechanism effectively
changes and extends the search space, enhances the population diversity of the algorithm,
and improves the probability of searching the target.

The main contributions of this paper are presented as follows: (1) We have pro-
posed a novel particle swarm optimization algorithm incorporating multiple swarm co-
evolutionary and motion encoding mechanisms, which effectively changes and expands the
search space, strengthens the population diversity, and raises the probability of searching
for the dynamic target. (2) Based on the problem decomposition strategy, a cooperative
coevolution PSO framework is proposed for dealing with complex optimization problems,
which improves the convergence speed and accuracy of the algorithm by means of parallel
optimization computation. (3) A mathematical derivation of a target motion model that
corresponds to a Markov process is given. The conclusion is that the initial prior informa-
tion of the target will be highly attenuated and the probability distribution of the target
will be extremely dispersed over time, thus enhancing the search difficulty. Based on this
model, we have designed six dynamic search scenarios that are more complex compared to
previous studies to assess the performance of the proposed algorithm.

The rest of the paper Is organized as follows: Section 2 introduces the steps to establish
an objective function. The proposed CC-MPSO algorithm is specified in Section 3. Simula-
tion results and a discussion of searching for moving targets by multi-UAVs are offered in
Section 4. Finally, conclusions and plans for future research are drawn in Section 5.

2. Problem Formulation

This section analyzes and establishes the target motion model based on the Markov
process, as well as the airborne sensor model and the Markov search probability model.
Based on the aforementioned models, multi-UAV dynamic target search tasks are modeled
as corresponding probability optimization problems.
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2.1. Target Motion Model

In this work, we consider a target motion model that conforms to the Markov pro-
cess [24], moving randomly through a series of grids, with each grid representing a fixed
time step and each time step determining the target’s position in the grid. The search area
is divided into grids and this search problem is simplified to a path planning problem in
the discrete domain range. As shown in Figure 1a, a 3 × 3 grid is arranged according to
numerical order. As shown in Figure 1b, assuming that the target is located in grid 5 at time
t, the target can only move to the neighboring grids at the time t + 1 or remain stationary.
The probability of the target moving from grid 5 to the other grid is shown in Figure 1c.
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Figure 1. (a) Grid segmentation; (b) target position transfer direction; (c) target position transfer
probability.

Before the search begins, the target location is modeled from the available information
using a probability distribution function. Supposing that the search space is S, let the
unknown variable indicate the position of the target at the time t. The initial probability
distribution of the target at time t = 0 is given by the following equation:

ρ(x0) = P(x(0) = x), x0 ∈ S (1)

where P(x(0) = x) denotes the probability that the initial position of the target is located at
x and satisfies ∑

x∈S
ρ(x0) = 1.

The position of the target motion is represented according to a certain transfer proba-
bility, and the conditional probability distribution of its future state depends only on the
current state. Then, the single-step transfer probability at time t is:

Pi,j(t) = P[xt+1 = j|xt = i ] (2)

where Pi,j(t) is the single-step transfer probability conditional on xt = i to xt+1 = j at time
t to time t + 1. It is characterized by two distinct attributes:

(1) Pi,j(t) ≥ 0, i, j ∈ S denotes the nonnegativity of the elements in the single-step transfer
probability matrix;

(2) ∑
i∈S

Pi,j(t) = 1, i ∈ S denotes that the sum of the elements in the single-step transfer

probability matrix is 1.

Based on the single-step transfer probability of the moving target, the k-step transfer
probability of the target can be further obtained as:

Pk
i,j(t) = P[xt+k = j|xt = i ] (3)

where Pk
i,j(t) denotes the probability that the target is transferred from x = i to x = j at

time t to time t + k. When k = 1, it is equivalent to the single-step transfer probability.
The k-step transfer probability of a Markov process satisfies the Kolmogorov–Chapman

equation:
P(k+r)

i,j (t) = ∑
x∈S

P(k)
i,x (t)P(r)

x,j (t + k), i, j ∈ S (4)
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Based on the Markov motion model, the available information regarding the initial
position distribution of the target can be employed to consistently estimate and revise the
target’s motion position. This allows for the acquisition of a precise posterior distribution
for the target. Subsequently, a search algorithm can be employed to determine the optimal
search node for the subsequent step.

2.2. Airborne Sensor Model

The airborne sensor model is the basic element of target search, which describes the
detection and discovery relationship of the UAV to the search target. In this paper, we
consider the UAV airborne infrared sensor, whose field of view is shown in Figure 2. When
the UAV flies horizontally at a fixed altitude, the width of the ground detection range of the
on-board sensors can be estimated by the following equation, assuming that the influence
of roll angle is disregarded:

ds = 2 · h · tan γs

tan αs

√
1 + (tan αs)

2 (5)

where h ≤ hmax is the altitude of the UAV, αs is the mounting angle of the sensor, and γs is
the field of view of the sensor, the value of which is related to the physical properties of the
specific sensor.
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To simplify the problem, the detection range ds of the airborne sensor is considered
to cover a grid cell. The UAV searches for a target with the airborne sensors and makes
one observation of a grid cell at one time step, and the results of each observation are
independent of each other. Assume there are only two possible outputs, namely the
detection of the target Ot = Dt and the failure to detect the target Ot = Dt. Consider that
there is a certain detection error in the sensor. Even if the target exists at location xt, it is not
guaranteed that the target position can be detected. Then, the probability of not detecting
the target when the target is located in xt is as follows:

P
(

Dt|xt
)
= 1 − P(Dt|xt ) (6)

where P(Dt|xt ) indicates the probability that the sensor will detect the target at the location xt.

2.3. Target Probability Map Model

After rasterizing the search space, the probability of target presence in each raster
is represented by a target probability map model. The probability value depends on the
initial probability distribution of the target and the detection information of the on-board
sensors. The UAV formulates a corresponding search strategy based on the initial target
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probability map and, at the same time, dynamically updates the target probability map
as the search process continues, including prediction updates based on the target motion
model and detection updates based on the UAV’s sensors. In the prediction update phase,
the target probability map is recursive over time based on the target motion model. From
Section 2.1, the single-step transfer probability of the target at the time t − 1 is P[xt|xt−1 ];
then, at the time t, the predicted updated target probability map is:

ρ̃(xt) = ∑
xt−1∈S

P(xt|xt−1 )ρ(xt−1) (7)

where ρ̃(xt) represents the target probability map for predicting the position of the target
motion at time t, and P(xt|xt−1 ) denotes the conditional probability that the target moves
from the position at time t to the position at time t − 1.

During the detection update phase, the target probability map is revised by the
integration of detection and observation information acquired from the onboard sensors of
the UAVs. Suppose that the sequence of observations received by the sensor in t time steps
is O1:t, O1:t = {O1, . . . , Ot}; then, the probability that the target is detected at location xt at
time t is P(Ot|xt ). The target probability map after the detection event is updated based on
the Bayesian formula as follows:

ρ(xt) = γtP(Ot|xt )ρ̃(xt) (8)

where γt is a normalization factor. It makes the probability of the existence of the target in
each grid cell sum to 1. The formula is as follows:

γt = 1/ ∑
xt∈S

P(Ot|xt ) ρ̃(xt) (9)

2.4. Fitness Function for Moving Target Search

The search process of multi-UAVs for moving targets, utilizing airborne sensors, can
be conceptualized as a Markov process. The search results at time t are only relevant to the
observations at that moment. The formula is as follows:

P(Dt|xt ) = P
(

Dt
∣∣xt, Dt−1, Dt−2, . . . , D0

)
(10)

Suppose the probability that a single UAV failed to detect a target at time t is pt.
According to Bayesian theory, its value is obtained by multiplying the probability of not
detecting a target by its airborne sensors (Equation (6)) and the probability of target presence
in the prediction update phase (Equation (7)). This probability can be expressed as in the
whole search area:

pt = ∑
xt∈S

P
(

Dt|xt
)
ρ̃(xt) (11)

Since the probability of detecting a target at each time is mutually independent, the
probability Qt of not detecting a target from time 1 to time t is:

Qt =
t

∏
k=1

pk (12)

Therefore, the probability pt of detecting the target for the first time at time t is:

pt = Qt−1(1 − pt) (13)

Then, the cumulative probability of detection of the target in t time steps is:

Pt =
t

∑
k=1

pt = 1 −
t

∏
k=1

pt (14)
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Let M represent the number of UAVs and Pjt represent the probability that the j-th
UAV finds a target in t time steps. The joint detection probability of multi-UAVs can be
calculated as:

maxF = 1 −
M

∏
j=1

(
1 − Pjt

)
(15)

3. Methodology
3.1. Standard PSO

The PSO algorithm belongs to a class of swarm intelligence algorithms inspired by the
social behavior of bird flocks. It searches for the optimal solution to a problem by modeling
the collaborative search of flock members in the solution space. In PSO, a potential solution
in the solution space is called a particle. The position of the particle indicates the location of
the solution, and the velocity of the particle indicates the direction and speed of the solution
moving in the solution space. At the beginning of the algorithm, the particle population is
first initialized with random positions and velocities, and the fitness value of each particle
is calculated. For each particle, its optimal position and the global optimal position in the
whole population are recorded.

The position and velocity of the i-th particle in the population are denoted as xi(t) and
vi(t). Then, the updated formula for the particle is given as follows:

vi(t + 1) = ωvi(t) + c1r1(yi(t)− xi(t)) + c2r2(ỹi(t)− xi(t)) (16)

xi(t + 1) = xi(t) + vi(t + 1) (17)

where ω is the inertial weight, c1 is the cognitive coefficient, c2 is the social coefficient,
r1 and r2 are random sequences sampled from a uniform probability distribution in the
range [0, 1]. yi represents the historical optimal position of the particle and ỹi is the global
historical optimal position among all particles.

According to Equations (16) and (17), the movement of a particle is directed by three
factors, namely, following its way, moving toward its best position, or moving toward the
swarm’s best position. The ratio among those factors is determined by the values of w, c1,
and c2.

3.2. Motion-Encoded Mechanism

The particle’s encoding in PSO determines how a solution is represented in the search
space, and this encoding is typically tailored to the particular optimization issue in question.
In the context of the UAV cooperative target search problem, a widely used method of
representing the position of a particle is by defining it as a set of nodes that represent the
path taken by the UAV during the search. Utilizing this encoding technique allows for a
clear and intuitive representation of the desired search path, which is advantageous for
evaluating adaptability. However, it may not adequately encompass the surrounding nodes
throughout the search, resulting in the creation of erroneous paths. In addition, a method
based on angle encoding has also been proposed in [25], which has achieved better results
in dealing with path planning problems with specific constraints. However, the phase
angle of the particle is constrained within a specific range, [−π/2, π/2]. Additionally, it is
worth noting that the particle’s search capability is also limited.

To address the aforementioned issues, reference [13] proposed a motion-encoded
particle swarm optimization algorithm (MPSO). It is assumed that the UAV can only move
into the eight adjacent grid cells in each time step. The motion can be represented as a
vector γt = (ϕt, ϑt), where ϕt denotes the motion amplitude and ϑt denotes the motion
direction at time t. Assuming that the UAV searches for a dynamic target in t time steps,
the particle positions can be characterized accordingly as:

S = {γ1, γ2, . . . , γt}, t = 1, 2, . . . , T (18)
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The search paths of multi-UAVs are coded simultaneously using motion encoding,
as depicted in Figure 3. A search path, denoted as Si, comprises T motion segments
representing the position of each population individual. Therefore, if we have information
on the initial position of the UAV and the direction of movement for each successive step,
we can accurately represent the UAV’s search path, as depicted in Figure 4. The color of the
grid is indicative of the probability of the target materializing at that particular position.
The red dot represents the location of the UAV, while the white arrow in the top left corner
indicates the direction of movement of both the UAV and the target towards the adjacent
eight grid cells.
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In the process of updating the particles, it is essential to assess particle adaptation by
mapping the motion vectors of each step to the search route nodes of the UAV. The method
is as follows.
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Firstly, the motion amplitude and motion direction are normalized:

ϕt
′ = 1 (19)

ϑ′
t =

π

4

〈
ϑt/

π

4

〉
(20)

where the motion amplitude is normalized to 1, ⟨·⟩ represents the rounding operator,
and the motion direction is quantified as the direction from the current position to the 8
neighboring grids.

Then, the position vector of the current moment is added with the normalized motion
vector to get the position vector of the next moment:

χi,t+1 = χi,t + γ′
i,t (21)

γ′
i,t = ϕt

′(〈cos ϑ′
t
〉
,
〈
sin ϑ′

t
〉)

(22)

In general, MPSO improves the movement and variety of the particle swarm in the
search area by using a more adaptable encoding method, which ultimately enhances the
algorithm’s ability to do global searches. Furthermore, this method ensures that the spacing
between adjacent nodes in the trajectory aligns with the UAV’s maneuverability, thereby
ensuring the reachability of the nodes in the path. Consequently, the search pathways that
have been described stay relevant even after each generation of swarm updates.

3.3. Proposed CC-MPSO Algorithm

Based on Bayesian theory, this paper constructs the multi-UAV dynamic target search
problem as an optimization problem that maximizes the target detection probability in finite
time. With the increase in the number of UAVs and targets, the complexity of the problem
grows exponentially, and the performance of traditional algorithms can no longer meet
the requirements. A cooperative coevolution framework (CC framework) is an important
tool for solving optimization problems. The idea is to divide the original optimization
problem into multiple subproblems, each corresponding to a sub-population. Through
the coevolution between sub-problems, the global optimal solution can be searched for
more efficiently. Potter. et al. applied this framework to genetic algorithms [26], where they
divided the solution vector into multiple chromosomes, and each chromosome belonged
to a different population. F. van den Bergh et al. applied a similar framework to PSO
algorithms [27], where the space of n-dimensional solution vectors is partitioned into
one-dimension solution space, and each solution space corresponds to a sub-population
that is independent in the update.

Considering that the objective function in this paper is determined by the joint target
detection probability of multiple UAVs, the CC-MPSO fusion algorithm is proposed based
on the CC framework and the MPSO algorithm by drawing on the idea of cooperative
evolution. Unlike traditional optimization algorithms, our approach views the search
task of multi-UAVs as a co-evolutionary process, an idea that makes the algorithm more
adaptive, flexible, and better adapted to complex environments. Another innovation is
that we introduce a motion-encoded mechanism. Coding based on UAV motion paths not
only optimizes their detection performance but also enables more effective information
sharing and collaborative decision-making in collaborative tasks, thus improving overall
performance. A schematic overview of numerous swarms cooperating to optimize the
search paths of multi-UAVs is shown in Figure 5, and the basic steps of CC-MPSO are
shown as follows:
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Step 1: Problem modeling. The challenge of dynamically searching for targets using
multi-UAVs is divided into several sub-problems, with each sub-problem corresponding
to a specific UAV. Each sub-problem defines the state representation, search range, and
objective function for its own UAV.

Step 2: Population initialization. The particle of each population is initialized for each
subproblem and motion-encoded. The position vector of each particle reflects the motion
path of each UAV.

Step 3: Subpopulation update. The standard PSO algorithm is used to update the
position and velocity of the particles in each subpopulation with the following equations:

Skvi(t + 1) = wSkvi(t) + c1r1[Skyi(t)− Skxi(t)] + c2r2[Sk ỹi(t)− Skxi(t)] (23)

Skxi(t + 1) = Skxi(t) + Skvi(t + 1) (24)

where Skxi(t) and Skvi(t) denote the position and velocity for particle i of swarm k, respectively.
The personal best position Skyi(t) for each particle i of each swarm k depicts the best

result found for this particle up to iteration t:

Skyi(t + 1) =

 Skyi(t), i f
Skxi(t + 1), i f

F
(

S{1:M}−{k}ỹ(t), Skyi(t)
)
≥ F

(
S{1:M}−{k}ỹ(t), Skxi(t + 1)

)
F
(

S{1:M}−{k}ỹ(t), Skyi(t)
)
≤ F

(
S{1:M}−{k}ỹ(t), Skxi(t + 1)

) (25)

The global best position of each particle i for each swarm is updated using:
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Sk ỹ(t) = argmax
Skyi(t)

F
(

S{1:M}−{k}ỹ(t), Skyi(t)
)

(26)

In addition, the velocity of each particle Skxi is controlled by a clamping Skvmax that
regulates the maximum velocity update to a defined range of [−Skvmax, Skvmax]. The clamp-
ing constant controls the exploration–exploitation trade-off by modifying the particle’s
ability to explore a narrow or large search space.

Skvi(t + 1)
{

Skvi(t + 1), i f ∥Skvi(t + 1)∥ ≤ Skvmax
±Skvmax, otherwise

(27)

Step 4: Particle fitness evaluation. In CC-MPSO, each sub-population corresponds to a
specific part of the solution vector in the optimization process. Therefore, to evaluate the
value of individual fitness in each population, the particle needs to be solved in association
with the globally optimal particles of the remaining populations. The formula is shown
as follows:

Fitness(Skxi) = F
(

S{1:M}−{k}ỹ, Skxi

)
(28)

where S{1:M}−{k}ỹ denotes the global best position of each particle in all populations except
the swarm k.

Step 5: Update coevolution information. Based on the fitness of each subpopulation,
the information on coevolution is updated to guide the algorithm to search towards the
global optimal solution. To avoid the algorithm trapping in suboptimal solutions, the
swarm particles can be reset into new random positions when one of the swarms converges
in a small region of the search space while the global best position of the complementary
swarm changes. The determination of whether the swarm is locally convergent or not is
based on the computation of the sum of the normalized distances of all particles in the
present swarm from the global optimal position, using the following formula:

Skdnorm(t) =
Skd(t)
Skd(0)

(29)

Skd(t) =
N

∑
i=1

[∥Skxi(t)− Sk ỹ(t)∥] (30)

where Skd(t) denotes the sum of the Manhattan distances between the positions of all
particles in the swarm k and the global optimal position. The swarm k is considered to be
trapped in stagnation when Skdnorm(t) is smaller than a convergence constant ε.

Step 6: Repeat the above steps until the maximum number of iterations is reached.
Based on the output of the algorithm, the optimal solution to the problem is obtained, in-
cluding the optimal path for each UAV and the final target location probability distribution.

The algorithm presented in this paper offers two benefits for the challenge of dy-
namically searching for targets using several UAVs. One benefit is that once the update
is finished, each set of individual UAV path parameters will be updated with the path
parameters of other UAVs. This more detailed updating mechanism circumvents the issue
of making progress and then regressing, which is frequently experienced with conventional
PSO. An additional benefit is that the algorithm presented in this research effectively in-
tegrates many individuals from distinct communities to augment the diversity of global
solutions. Pseudo-code for the proposed CC-MPSO algorithm for dynamic target search
using multi-UAVs is given in Algorithm 1.
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Algorithm 1: The pseudo-code of CC-MPSO.

Input: ω, c1, c2, r1, r2: PSO operational parameters
ε: swarm convergence parameter

M: number of swarms
N: number of particles in each swarm
MaxIt: The maximum number of iterations per swarm run

Output: Optimal search paths of Multi-UAVs
1: Initialize M motion-encoded swarms randomly
2: For k = 1 : M
3: For i = 1 : N
4: Compute the fitness of particle Skxi according to F(S1xi, . . . SMxi)
5: Initialize individual optimal position Sky(0) accordingly
6: End for
7: Initialize the global optimal position Sk ỹ(0) of each swarm
8: End for
9: While t < MaxIt
10: For k = 1 : M
11: Select the swarmk
12: Compute the normalized sum of distances Skdnorm(t) for swarmk
13: If t > 1 and S{1:M}−{k} ỹ(t − 1) ̸= S{1:M}−{k} ỹ(t − 2) and dk < ε

14: Then reset particles of swarmk to the random position
15: For i = 1 : N
16: Compute fitness of Skxi(t)
17: Update personal optimal position Skyi(t) according to Equation (21)
18: Calculate velocity Skvi(t + 1)
19: Calculate position Skxi(t + 1)
20: End for
21: Update global optimal position Sk ỹ(t) according to Equation (22)
22: End for
23: End while

3.4. Computational Complexity Analysis

Worst-case time complexity is a vital measure for assessing the efficiency of an algo-
rithm, indicating its ability to effectively solve a task. In order to represent the worst-case
temporal complexity, the notation “big-O” is used. The complexity mostly depends on
criteria such as the size of the population, the dimension of each individual, the number of
iterations, and the number of fitness function evaluations needed. The time complexity for
CC-MPSO is given as follows.

In CC-MPSO, it is assumed that N is the swarm scale, and M is the number of swarms.
Dim refers to the dimension of the detection space, and the time complexity of the initial
stage of the swarm individuals is O(N × M × Dim). Therefore, when the total number
of iterations of the optimizer is MaxIt, the complexity of the CC-MPSO algorithm is
O(N × M × Dim × MaxIt).

4. Simulation Experiment and Discussion

The algorithm proposed in this paper was fully programmed in the MATLAB2021b
environment. The main configuration of the hardware environment is a win10 laptop, Intel
Core i9-11900H, 2.50 GHz CPU, and 16 GB RAM.

4.1. Scenarios

To thoroughly assess the performance of the algorithm, six variable search scenarios
were employed to evaluate the optimal search performance of CC-MPSO. Scenarios 1 to
4 are drawn from the works of Phung and Ha [13] and Alanezi et al. [17]. Scenarios 5
and 6 are developed based on scenarios 1 to 4. In addition, scenarios 5 and 6 encompass
more intricate initial probability distributions of targets, coupled with an increased count
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of UAVs. According to Markov motion model, this will influence the probability values of
the other regions, thus improving the search difficulty of the algorithm.

Figure 6 depicts the tested scenarios whereby the target probability map is color-coded
such that warmer color cells represent higher target probabilities. A red dot indicates the ini-
tial position of UAVs. A white arrow depicts the dynamics of the moving targets; the values
on the arrows correspond to the probability of the target moving in different directions.
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The scenarios represent different searching situations and are described as follows:
Scenario 1 has one small dense region moving rapidly. The motion state transfer

probability of this target indicates that its approximate direction of motion is northeast.
Two UAVs are searching at the same time in this scenario; it thus tests the algorithm on its
exploration and adaptability capability.

Scenario 2 has two separated high-probability regions with two UAVs on either side
of them; their approximate direction of motion is both northeast. The scenario necessitates
the algorithm’s autonomous selection of a more optimal region for target detection.

Scenario 3 consists of two adjacent regions with a high probability of occurrence. Their
position and values differ slightly, which can make it challenging to identify a more suitable
place to search for the target.

Scenario 4 includes two separated high-probability regions located opposite to each
other over the two UAV locations. The algorithm has to quickly identify the better region
to search and track as the target is moving southwest.

Scenario 5 has three neighboring probability regions, all of which show the direction
of target movement to be southeast according to the motion state transfer probability. Three
UAVs are searching simultaneously on the map. This setting evaluates the algorithm’s
ability to efficiently search for the correct target region along a diagonal trajectory.
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Scenario 6 has two sets of targets, each containing two adjacent high-probability areas.
Four UAVs are searching simultaneously; the increased complexity of the initial probability
distribution of the targets and the elevated number of UAVs make the solution space of
the algorithm much higher and put high requirements on the efficiency and robustness of
the algorithm.

4.2. Methods Configuration and Parameter Selection

Parameter selection of the CC-MPSO algorithm is mainly derived from the recommen-
dations in the literature [17], in conjunction with trial and error. Compared to the standard
PSO algorithm, CC-MPSO has multiple swarms, and the number of swarms depends on
the number of UAVs used for searching. The swarm scale remains consistent with the
standard PSO, MPSO algorithm. The inertial weight ω, cognitive coefficient, and social
coefficient c2 of different swarms use the same values. For the velocity clamping constant
Skvmax, a problem-dependent approach is used to select the velocity clamping constant
of each swarm, whose magnitude is associated with the input space dimension [23]. The
size of the swarm convergence constant has a significant impact on the performance of the
algorithm. To optimize this parameter, we gradually increment its value in the range of
[0, 1] by trial-and-error experiments to determine the value at which optimal performance
can be achieved.

For comparison purposes, five widely used swarm intelligence algorithms were also
tested in six scenarios. These include the Particle Swarm Algorithm (PSO) [24] and Ant
Colony Algorithm (ACO) [25], as well as the improved algorithms MPSO [26], ECPO-
ME [10] for PSO, and RI-MAC [15] for ACO. The above algorithms were chosen because
they are extremely competitive and have been applied in work related to multi-UAV target
search. The list of algorithms along with their abbreviation, main reference and operational
parameters are given in Table 1. The population sizes for ACO, ECPO-ME, RI-MAC,
and CC-MPSO are all set to 100. However, the PSO and MPSO is set to 500 due to poor
performance in simulation and difficulties in convergence when the population size is set
too low. The other crucial parameters of the algorithm are set from its original references.
To mitigate the inherent instability and uncertainty of a single experiment, we conducted
100 experiments for each scenario using Monte Carlo simulation. In each experiment, the
algorithms were run for a maximum of 200 iterations. The results of these experiments
were then subjected to statistical analysis. The specific discussions are in Section 4.3.

Table 1. Operational parameters of comparing algorithms.

Algorithm Abbreviation Main Reference Parameters

Particle Swarm Optimization PSO [28] Population size = 500, Inertia weight = 0.8 cognitive
factor = 2.5, social factor = 2.5.

Ant colony optimization ACO [15] Colony size = 100, Pheromone importance factor = 1,
Pheromone Evaporation Rate =0.85.

Motion-encoded Particle
Swarm Optimization MPSO [13]

Population size = 500, Inertia weight = 1 at the
damping rate of 0.98 cognitive factor = 2.5, social
factor = 2.5.

Motion-encoded electric
charged particles optimization ECPO-ME [14] Number of ECPs = 100, number of ECPs in

interaction = 3, size of the archive pool = 100.

Rule-inspired multi ant
colony optimization RI-MAC [19]

Population size = 100, the number of ant populations
corresponding to the UAV swarm, Initialization of
pheromone based on target prior probability.

Cooperative Coevolution
Motion-encoded Particle
Swarm Optimization

CC-MPSO This paper
Population size = 100, inertia factor = 0.6, cognitive
factor = 1.8, social factor = 1.8, velocity clamping
factor = 0.2, Convergence constant = 0.2.
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4.3. Experimental Results

In this section, we will statistically analyze the experimental results. The “BEST”, the
“WORST”, the “MEAN”, the “MEDIAN”, and the “Standard Deviation (SD)” for all the
compared algorithms and scenarios are tabulated and discussed, as given in Tables 2–7. It
should be noted that the global objective function constructed in this paper represents the
joint detection probability of multi-UAVs. To carry out a more fine-grained analysis, the
detection probability of each UAV in the same scenario is counted separately.

(1) Scenario 1

The results for scenario 1 are tabulated in Table 2. The acquired results indicate the
following conclusions:

• For the first UAV, the proposed CC-MPSO obtained the best results in terms of the
statistical parameters “BEST”, “MEAN”, and “SD”. Meanwhile, RI-MAC has obtained
the best results for the remaining statistical parameters. For the second UAV, CC-MPSO
has achieved the best results for all the considered statistical parameters.

• Except for the standard PSO, the other algorithms perform well in scenario 1. This
suggests their capability to formulate effective search paths within uncomplicated
settings. However, further examination is warranted to evaluate their efficacy in more
intricate scenarios.

Table 2. Statistical analysis of the outcome of all algorithms for scenario 1. (The bold data indicates
the optimal value for each row and * sign indicates the serial number of UAVs used in the scenario,
which is the same for Tables 2–7.)

UAV* Statistical
Analysis CC-MPSO PSO MPSO ECPO-ME ACO RI-MAC

UAV1

BEST 0.44171 0.35157 0.39275 0.42179 0.40926 0.43926
WORST 0.41095 0.29137 0.31151 0.35953 0.31654 0.41153
MEAN 0.43966 0.28414 0.34991 0.38946 0.35962 0.42027

MEDIAN 0.42153 0.27459 0.35107 0.37881 0.34717 0.42218
SD 0.00591 0.01454 0.00782 0.06110 0.01296 0.00432

UAV2

BEST 0.18294 0.15926 0.17926 0.18153 0.17895 0.18015
WORST 0.17151 0.13575 0.15784 0.17045 0.16796 0.16958
MEAN 0.17745 0.14154 0.16015 0.17456 0.17014 0.17414

MEDIAN 0.18001 0.13975 0.16792 0.17551 0.17442 0.17523
SD 0.00414 0.01879 0.01058 0.00793 0.01031 0.01294

Table 3. Statistical analysis of the outcome of all algorithms for scenario 2.

UAV* Statistical
Analysis CC-MPSO PSO MPSO ECPO-ME ACO RI-MAC

UAV1

BEST 0.21464 0.18324 0.19516 0.20153 0.19201 0.21123
WORST 0.18575 0.15421 0.16198 0.17559 0.17015 0.19091
MEAN 0.19911 0.16545 0.17759 0.18652 0.18552 0.19821

MEDIAN 0.19512 0.16137 0.17181 0.19033 0.18157 0.19541
SD 0.00458 0.01517 0.00845 0.01021 0.09258 0.00584

UAV2

BEST 0.16044 0.14926 0.15926 0.15975 0.15021 0.15886
WORST 0.14351 0.11926 0.13857 0.13211 0.12151 0.13952
MEAN 0.15281 0.12546 0.14511 0.13998 0.13095 0.14051

MEDIAN 0.15011 0.12617 0.14331 0.14014 0.13588 0.14541
SD 0.00686 0.01253 0.00984 0.00857 0.01102 0.00843
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Table 4. Statistical analysis of the outcome of all algorithms for scenario 3.

UAV* Statistical
Analysis CC-MPSO PSO MPSO ECPO-ME ACO RI-MAC

UAV1

BEST 0.21599 0.18798 0.19846 0.19846 0.17651 0.20151
WORST 0.18684 0.14321 0.15138 0.16846 0.15926 0.18754
MEAN 0.19021 0.15952 0.16315 0.17021 0.16532 0.19035

MEDIAN 0.19115 0.16123 0.17015 0.16941 0.16746 0.19151
SD 0.00541 0.02151 0.01218 0.00836 0.01151 0.00431

UAV2

BEST 0.21238 0.17465 0.18846 0.19941 0.17065 0.20185
WORST 0.18654 0.14135 0.16546 0.17056 0.15489 0.17651
MEAN 0.19165 0.15454 0.17035 0.18541 0.16035 0.18954

MEDIAN 0.19084 0.15135 0.17156 0.17954 0.16846 0.19135
SD 0.00451 0.01546 0.00515 0.01051 0.00984 0.00549

Table 5. Statistical analysis of the outcome of all algorithms for scenario 4.

UAV* Statistical
Analysis CC-MPSO PSO MPSO ECPO-ME ACO RI-MAC

UAV1

BEST 0.24595 0.20165 0.21151 0.21254 0.19456 0.23458
WORST 0.20235 0.15498 0.15687 0.18456 0.14354 0.21045
MEAN 0.22546 0.17416 0.17945 0.19453 0.15235 0.22054

MEDIAN 0.23015 0.16941 0.17456 0.19154 0.16020 0.21945
SD 0.00921 0.02481 0.02358 0.00985 0.02157 0.00845

UAV2

BEST 0.28209 0.25138 0.26165 0.26786 0.24198 0.27954
WORST 0.26135 0.19465 0.21546 0.20589 0.18454 0.26735
MEAN 0.27135 0.22054 0.23024 0.23498 0.21548 0.27218

MEDIAN 0.27984 0.22157 0.22098 0.23759 0.22085 0.26549
SD 0.00584 0.02565 0.01546 0.00984 0.01489 0.00448

Table 6. Statistical analysis of the outcome of all algorithms for scenario 5.

UAV* Statistical
Analysis CC-MPSO PSO MPSO ECPO-ME ACO RI-MAC

UAV1

BEST 0.16603 0.14135 0.15926 0.15055 0.13548 0.16015
WORST 0.15118 0.12125 0.12515 0.12835 0.10546 0.13456
MEAN 0.15756 0.13456 0.13548 0.13456 0.11548 0.14568

MEDIAN 0.15486 0.13875 0.13058 0.13816 0.12132 0.14125
SD 0.00486 0.00587 0.01289 0.00898 0.00789 0.00985

UAV2

BEST 0.18433 0.15165 0.14158 0.16489 0.14321 0.17189
WORST 0.15984 0.12346 0.11356 0.12151 0.11285 0.16154
MEAN 0.16865 0.13786 0.13156 0.14321 0.12486 0.13465

MEDIAN 0.16423 0.14032 0.13486 0.14154 0.12154 0.13515
SD 0.00358 0.00586 0.00786 0.00654 0.00145 0.00865

UAV3

BEST 0.17945 0.15654 0.16153 0.16479 0.15135 0.17156
WORST 0.15354 0.13546 0.14321 0.14315 0.13154 0.15868
MEAN 0.16321 0.14535 0.15135 0.15465 0.14535 0.16324

MEDIAN 0.16153 0.15154 0.12535 0.12454 0.14684 0.16054
SD 0.00518 0.00486 0.00589 0.01255 0.01086 0.00846
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Table 7. Statistical analysis of the outcome of all algorithms for scenario 6.

UAV* Statistical
Analysis CC-MPSO PSO MPSO ECPO-ME ACO RI-MAC

UAV1

BEST 0.15581 0.11235 0.12135 0.13153 0.12654 0.14985
WORST 0.13516 0.08486 0.10135 0.11235 0.09846 0.13158
MEAN 0.14155 0.10211 0.11232 0.12021 0.11205 0.14029

MEDIAN 0.14551 0.11213 0.10756 0.11954 0.10984 0.14689
SD 0.00483 0.01321 0.00865 0.00315 0.00846 0.00532

UAV2

BEST 0.15305 0.13155 0.12895 0.13158 0.12156 0.15123
WORST 0.13215 0.11215 0.10184 0.11218 0.09154 0.13847
MEAN 0.14516 0.12021 0.11055 0.12157 0.11484 0.14084

MEDIAN 0.14984 0.12566 0.11846 0.12786 0.11846 0.14235
SD 0.00485 0.00858 0.00684 0.01325 0.00987 0.00865

UAV3

BEST 0.14041 0.10513 0.11235 0.12154 0.11235 0.14335
WORST 0.12015 0.08356 0.09021 0.10213 0.08456 0.12154
MEAN 0.13031 0.09128 0.10212 0.11235 0.10215 0.12485

MEDIAN 0.12832 0.09513 0.10514 0.10984 0.10465 0.12984
SD 0.00516 0.00684 0.00846 0.01032 0.00846 0.00784

UAV4

BEST 0.15118 0.12032 0.13151 0.14651 0.12123 0.14987
WORST 0.12021 0.09125 0.10213 0.11238 0.09865 0.12346
MEAN 0.13456 0.10218 0.11215 0.12354 0.10125 0.12354

MEDIAN 0.13516 0.11098 0.11568 0.11984 0.11523 0.12865
SD 0.00746 0.00648 0.01028 0.00788 0.00589 0.00424

Figure 7 shows the optimal search paths for each UAV for all tested algorithms. In
the figure, the purple path indicates the path generated by UAV1, the white path indicates
the path generated by UAV2, and the red dot indicates the initial position of UAVs. It is
worth mentioning that the presented target probability map depicts the target’s final step.
By comparing the present map with the one shown in Figure 7, it is feasible to examine the
evolution of targets and track their progression. The rest of the scenarios are represented in
the same way as this figure. It can be seen that in the path planned by CC-MPSO, UAV1 can
search along the direction of the target’s motion trajectory, and UAV2 can quickly approach
the high-probability target area at an initial position farther away from the target.

(2) Scenario 2

The results for scenario 2 are tabulated in Table 3. The acquired results indicate the
following conclusions:

• For the first UAV, the CC-MPSO algorithm achieves the best results among the three
statistical parameters “BEST”, “MEAN”, and “SD”, and “RI-MAC” achieves the best
results among the two statistical parameters “WORST” and “MEDIAN”.

• For the second UAV, the CC-MPSO algorithm achieves optimal results in all statisti-
cal terms.

Figure 8 shows the optimal search paths for each UAV for all tested algorithms. In the
figure, the purple path indicates the path generated by UAV1, and the white path indicates
the path generated by UAV2. The path generated by the CC-MPSO algorithm closely
approximates the target’s motion trajectory. Both UAVs successfully locate the nearest
high-probability grid to their initial positions at the end of the path, demonstrating the
strong predictive capability of the CC-MPSO algorithm.
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(3) Scenario 3

The results for scenario 3 are tabulated in Table 4. The acquired results indicate the
following conclusions:

• For UAV1, the CC-MPSO algorithm achieves optimal results in the three statistical
parameters “BEST”, “MEAN”, and “MEDIAN”. “RI-MAC” achieves the best results
in “WORST” and “SD”.

• For UAV2, the CC-MPSO algorithm achieves the best results in “ BEST”, “WORST”,
“MEAN”, and “SD”; RI-MAC achieves the best results in “MEDIAN”; and RI-MAC
achieves optimal results in “BEST”, “WORST”, “MEAN”, and “SD”.

Figure 9 displays the most efficient search routes produced by all the algorithms that
were tested in scenario 3. The purple trajectory represents the flight route of UAV1, whereas
the white trajectory represents the flight path of UAV2. UAV1 starts at the bottom left
corner of the map, which is near the high probability target area. The CC-MPSO algorithm
enables UAV1 to search in the direction of the target’s path. UAV2 initially moves in the
opposite direction of the target during its search. As the target moves further away, UAV2
can dynamically change its search direction to the opposite side. This demonstrates the
strong adaptive capability of the CC-MPSO algorithm when searching along the diagonal.
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(4) Scenario 4

The results for scenario 4 are tabulated in Table 5. The acquired results indicate the
following conclusions:

• For UAV1, the CC-MPSO algorithm achieves optimal results in “BEST”, “MEAN”,
and “MEDIAN”, while the RI-MAC algorithm achieves optimal results in the rest of
the statistical parameters.

• For UAV2, CC-MPSO achieves optimal results in “BEST” and “MEDIAN”, while
RI-MAC achieves optimal results in the rest of the statistical parameters.



Appl. Sci. 2024, 14, 1326 20 of 25

• As the scenario becomes more complicated, the “SD” value of PSO, MPSO, and
ACO gradually becomes larger. However, CC-MPSO can maintain a smaller value,
indicating its superior robustness.

Figure 10 displays the most efficient search routes produced by all examined algo-
rithms in scenario 4. As the scenario becomes more complex, the paths produced by other
algorithms exhibit increasing bias and yield a small percentage of erroneous paths. How-
ever, the search path nodes produced by the CC-MPSO method maintain a strong alignment
with regions of high probability. The results suggest that the CC-MPSO algorithm may
successfully find the target’s location with high probability within a limited search period
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(5) Scenario 5

The results for scenario 5 are tabulated in Table 6. The acquired results indicate the
following conclusions:

• For UAV1, CC-MPSO achieves optimal results in all statistical parameters. In compari-
son to other algorithms, the results are far more advanced.

• For UAV2, CC-MPSO achieves optimal results in “BEST”, “MEAN”, “MEDIAN”, and
“SD”, and “RI-MAC” achieves optimal results in “WORST”.

• For UAV3, CC-MPSO achieves optimal results in “BEST”, “MEDIAN”, and “SD”, and
RI-MAC achieves optimal results in the rest.

Figure 11 depicts the most efficient search paths produced by all the algorithms that
were tested in scenario 5. The purple line represents the trajectory of UAV1, the white path
represents the trajectory of UAV2, and the green path represents the trajectory of UAV3.
There are three adjacent regions with a high probability of occurrence simultaneously, and
they are located distant from the initial position of the UAV. The picture demonstrates that
the CC-MPSO algorithm efficiently identifies the area with the highest probability and
surrounds it in a circular situation. The remaining algorithms’ generated pathways exhibit
some divergence from the high-probability target region.
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(6) Scenario 6

The results for scenario 6 are tabulated in Table 7. The acquired results indicate the
following conclusions:

• For UAV1, CC-MPSO achieves optimal results in “BEST”, “WORST”, and “MEAN”;
RI-MAC is optimal in “MEDIAN”; and ECPO-ME is optimal in “SD”.

• For UAV2, CC-MPSO is optimal in “BEST”, “MEAN”, “MEDIAN”, and “SD”, and
RI-MAC is optimal in “WORST”.

• For UAV3, CC-MPSO is optimized in “MEAN” and “SD”, and RI-MAC is optimized
in “BEST”, “WORST”, and “MEDIAN”.

• For UAV4, CC-MPSO achieves the best results in “BEST”, “MEAN”, and “MEDIAN”,
and RI-MAC achieves the best results in “WORST” and “SD”.

Figure 12 depicts the most efficient search routes produced by all the algorithms
examined in scenario 6. In scenario 6, there are two sets of regions with high likelihood,
each consisting of two adjacent regions. One set is located above the map, while the other
is located below the map. The four UAVs are positioned centrally between the two clusters
of regions. The pathways produced by the PSO, MPSO, and ACO algorithms do not
immediately lead to the optimal region. In addition, the paths generated by the ECPO-
ME and RI-MAC algorithms can reach the high-probability target area, but their paths
produce some invalid nodes. Compared to other algorithms, the CC-MPSO algorithm
shows excellent performance in generating search paths that are not only unattracted by
interfering target regions but also find the optimal region quickly and directly.

4.4. Analysis of Convergence Behavior

To investigate the convergence behavior of the CC-MPSO algorithm in the above six
scenarios, a convergence analysis was performed based on FEs. FEs denotes the maximum
number of fitness evaluations of each algorithm, where FEs = NP × MaxIt. NP is the total
population size of all swarms and MaxIt is the maximum number of iterations. To conduct
a fair comparison, the FEs of each algorithm was set to 2 × 105. The convergence curves
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are summarized in Figure 13. The optimal fitness value in Figure 13 corresponds to the
combined probability of multi-UAVs detecting a target. It can be seen from Figure 13 that
the convergence rate of CC-MPSO does not slow down, although we use the multi-swarm
cooperative evolutionary framework to improve the diversity of the population. In all
scenarios, the convergence rate of CC-MPSO is fastest, and it obtains the highest fitness
value in scenarios 2, 4, 5, and 6. To summarize, CC-MPSO effectively maintains a balance
between population diversity and convergence speed in order to determine the optimal
fitness value.
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4.5. Discussion

The obtained results in this study demonstrate the superiority of CC-MPSO over the
well-known and widely used algorithms considered in this paper. The primary factor
contributing to this effectiveness stems from the following aspects:

Firstly, the algorithm is directed to explore the motion space rather than the Cartesian
space by the innovative motion encoding mechanism. This method effectively stops the
algorithm from generating useless paths throughout the search phase, resulting in fewer
search failures. Meanwhile, it can significantly increase algorithm search performance and
accelerate convergence speed, making it more suitable for dealing with dynamic target
search problems.

Secondly, the algorithm employs a problem decomposition strategy to break down the
multi-UAV target search problem into several subproblems, with each subproblem being
addressed by a solitary particle. Decomposition is beneficial in handling the intricacy of
the problem and enhancing the scalability of the method.

Thirdly, the implementation of the co-evolution mechanism enables various subprob-
lems to collaborate and achieve global search by exchanging knowledge. This aids in
circumventing the occurrence of local optima and enhancing the algorithm’s ability to
search globally.

Based on the statistical analysis, the CC-MPSO algorithm successfully optimizes
52 out of 75 statistical elements. It also shows suboptimal performance in the remaining
statistical items, with the majority of suboptimal outputs having a difference of barely one
to two percent compared to the optimal ones. These differences are almost insignificant
in actual applications. Furthermore, the simulation results have shown that the target
search method, which is based on RI-MAC, also has fine performance. The reason for this
can be linked to the algorithm’s implementation of an association mechanism for prior
information. In this mechanism, the target probability graph is continuously modified
based on the association rules matched by various sorts of targets. It can be utilized to
augment the performance of the CC-MPSO algorithm in the same way. Nevertheless, the
pressing task at hand is to improve the target association rule base in order to align it more
successfully with real-world application circumstances.

5. Conclusions

This paper uses a novel approach based on a variant of the famous particle swarm
optimization algorithm using a cooperative coevolution framework and a motion-encoded
mechanism to search for dynamic targets using multiple UAVs. On the one hand, the target
search problem was converted from a Cartesian problem to a motion-based one via space
transformation using the motion encoding feature. This transformation effectively prevents
the algorithm from generating invalid search paths in the search process. On the other
hand, the introduction of the co-evolution mechanism allows individuals to be guided
by dynamic elite individuals in multiple populations during the updating process, thus
preventing the algorithm from falling into premature convergence. The created algorithm
was tested on six distinct scenarios with increasing levels of complexity, using different
quantities of UAVs. The algorithm’s performance was assessed by comparing it with five
well-regarded swarm-based intelligent algorithms. The analysis of the results showcased
the efficacy and dependability of the suggested approach when employed for dynamic
target search with numerous UAVs.

This paper solely focused on cumulative probability in the objective function. Addi-
tional objectives, such as minimizing fuel usage and avoiding restricted regions, barriers,
and other limitations, may be explored in future research. These factors would transform
the problem into a multi-objective one, which would require future extensions. Meanwhile,
the primary focus of this paper is algorithmic investigation and subsequent validation
through simulation. Nevertheless, real experiments are crucial and indispensable. Explor-
ing the practical implementation of the algorithms proposed in this study for real search
situations is a crucial area of future study.
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