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Abstract: The growing distributed energy resource (DER) penetration into distribution networks,
such as through residential and commercial photovoltaics (PV), has emerged through a transition from
passive to active networks, which takes the complexity of planning and operations to the next level.
Optimal PV allocation (sizing and location) is challenging because it involves mixed-integer non-
linear programming with three-phase non-linear unbalanced power flow equations. Meta-heuristic
algorithms have proven their effectiveness in many complex engineering problems. Thus, in this
study, we propose to achieve optimal PV allocation by using several basic evolutionary algorithms
(EAs), particle swarm optimization (PSO), artificial bee colony (ABC), differential evolution (DE),
and their variants, all of which are applied for a study of their performance levels. Two modified
unbalanced IEEE test feeders (13 and 37 bus) are developed to evaluate these performance levels,
with two objectives: one is to maximize PV penetration, and the other is to minimize the voltage
deviation from 1.0 p.u. To handle the computational burden of the sequential power flow and
unbalanced network, we adopt an efficient iterative load flow algorithm instead of the commonly
used and yet highly simplified forward–backward sweep method. A comparative study of these
basic EAs shows their general success in finding a near-optimal solution, except in the case of the
DE, which is known for solving continuous optimization problems efficiently. From experiments run
30 times, it is observed that PSO-related algorithms are more efficient and robust in the maximum
PV penetration case, while ABC-related algorithms are more efficient and robust in the minimum
voltage deviation case.

Keywords: distributed energy resources; evolutionary algorithms; optimal PV allocation; PV penetration

1. Introduction

The high penetration of distributed energy resources (DERs) into distribution networks
has positive impacts on the environment, system reliability, and flexibility, yet it also brings
challenges from operation and planning perspectives [1]. Today, the distribution network
has become more active in the sense of exchanging energy, decentralizing control so it is
local and occurs almost in real time, and is continuously developing distributed energy
resource (DER) technologies and information and communication technologies (ICT) [2].
The IEEE 1547-2018 standard was released in 2018 to assist with the high penetration of
DERs, which launched a new era for DER planning and management [3]. Photovoltaic (PV)
systems are among the popular DERs considered by planners thanks to their flexibility,
scalability, low operational costs, and mitigation of a demand peak [4]. Yet, PV systems can
also bring challenges. One major challenge is that they can cause rapid voltage changes in
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the network, especially during sudden changes in solar irradiance. Maintaining voltage
within acceptable limits thus becomes a challenge. To overcome this, the optimal allocation
of PV systems in terms of location and size is critical for planners.

Distributed power flow, invented in the 1990s [5], is the fundamental tool used to
ensure that the allocation of DERs does not violate operating limits such as the node
voltage and line current flow. The Newton Raphson method is widely used to solve power
flow problems in transmission networks and has recently been adopted for distribution
networks [6]. Yet, the computational cost is high due to the Jacobian matrix inversion at
each iteration. Another popular and well-known method, backward/forward sweep, was
proposed in the early 1990s [5]; however, one of the obvious drawbacks is that it only fits
a balanced network. In this work, a simple yet efficient fixed-point method is adopted to
tackle three-phase unbalanced load flow. The fixed-point method models power conversion
elements (generators, loads) as Norton current equivalent circuits such that node voltages
can be solved iteratively with a constant system admittance matrix. In other words, the
matrix inversion is calculated only one time and it can solve very unbalanced networks [7].
Details are provided in the Problem Formulation section of this article.

The PV allocation problem can be considered a variant of the optimal power flow (OPF)
problem, where the objectives are to maximize PV penetration or minimize the voltage
deviation from 1.0 per unit (p.u.) in distribution networks. Per unit (p.u.) is a dimensionless
quantity used in power system analysis to normalize various electrical quantities to a
common base value. It allows for a more convenient and consistent representation of
system parameters and facilitates comparisons between different parts of the power system.
The PV allocation problem essentially involves mixed-integer non-linear programming
(MINLP), which is hard to carry out with traditional mathematical approaches. The
objective of classical OPF is to determine a set of control variables that optimize a certain
objective function while satisfying a set of constraints, such as power flow equations,
voltage limits, and generator capacity limits [8]. However, in practical power systems, there
are various sources of uncertainty, such as load variations, renewable energy generation,
and transmission line outages, that make it difficult to accurately predict the system
behavior. Bienstock et al. [9] proposed a chance-constrained OPF (CCOPF) formulation for
transmission networks that incorporates risk-aware decision making under uncertainty.
The CCOPF framework involves optimizing the control variables while satisfying a set of
probabilistic constraints that ensure that the system operates within acceptable risk levels.
The authors formulated the CCOPF problem as a mixed-integer linear programming (MILP)
model, which can be efficiently solved using existing optimization solvers. Nammouchi
et al. [10], meanwhile, proposed a novel and robust opportunistic optimization approach,
where a conditional value-at-risk (CVaR) measure is employed to capture the impact of
uncertainties on the microgrid’s operation. The objective in this article, however, is to
evaluate the performances of EAs for a variant of OPF in a distribution network, and thus,
it is assumed that the load and PV output are known. In other words, uncertainty has not
been considered.

Acharya et al. [11] suggested an analytical expression to optimize the size and the loca-
tion of a single DG. In [12], an analytical approach was also used to optimize the allocation
of the DG, to minimize the power loss of the distribution system. However, the analytical-
based optimization approach could only give a solution for a single DER effectively. Re-
cently, meta-heuristic methods have proven their effectiveness in complex engineering
problems [8,13,14]. Janamala and Rani [15] recently implemented meta-heuristics with the
Archimedes optimization algorithm (AOA) to solve the optimal allocation problem. Ku-
mawat et al. [16] proposed a modified group experience with the teaching–learning-based
(TLB) optimization approach to address the optimal planning of DERs in harmonic-polluted
systems. Furthermore, Nogueira, Negrete, and Lezama [17] conducted a comparative study
between PSO and symbiotic organism search (SOS) to determine the size and locations of
the DERs using interval power flow. The well-known no free lunch theorem states that no
meta-heuristic algorithm can be superior to other algorithms for all optimization problems
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universally [18]. Therefore, one of the goals of this work is to explore the effectiveness
of the well-known EAs artificial bee colony (ABC), particle swarm optimization (PSO),
differential evolution (DE), and their variants for PV allocation problems. The work is
an extension of our work in [19], such that additional test cases and more comprehensive
study are conducted. In addition, we implement the fix-point method to calculate the
unbalanced load flow and test algorithms on a standard unbalanced distribution network,
which provides a framework for their practical use. Much research on the optimal allocation
of DERs still assumes a balanced network can be tested and a pure radial configuration,
which are not practical [20,21]. In all, the contributions of this paper are as follows:

1. We formulate a PV allocation optimization problem with two objectives and opera-
tional constraints.

2. A simple yet efficient fixed-point method is implemented to solve unbalanced power
flow, to embrace the three-phase unbalanced feature in distribution networks.

3. A comparison is presented of several EAs, demonstrating their effectiveness in com-
plex MINLP.

The rest of the paper is organized as follows: Section 2 formulates the PV allocation
problem and then this is followed by the fixed-point method. Section 3 describes the
methodology and implementation of EAs. Section 4 presents a case study with EAs and a
comparative analysis. Finally, Section 5 concludes the paper with recommendations for
future works.

2. Problem Formulation

Conventionally, a vector is represented by bold regulator letters such as v and a matrix
is represented by italic capital letters, e.g., M. A scaler is written as a regular italic letter
such as s. Multiplication is written as “×” or “·”, or else it is omitted. Unless we specify
otherwise, these conventions are adopted throughout this paper.

In this section, we first introduce an efficient iterative load flow (LF) method (i.e., the
fixed-point method) used in the distribution network, followed by the optimal power flow
(OPF) formulation, to represent the optimal PV allocation problem. The LF method is applied
to enforce equality constraints in the OPF, which is highly non-linear. The problem consists of
two objectives with certain constraints under PV-peak-hour operation (12:00 p.m.).

2.1. Distribution Power Flow (DPF)

The power flow program was first developed in the 1950s for transmission systems,
and yet it did not become popular until the 1990s [22]. Distributed power flow analysis is
the computational procedure used to determine the steady-state operation of the power
system; in other words, to calculate the state variables of bus voltage magnitude and angle
at each node.

Traditionally, the power flow in the distribution network is one-way from substation to
loads, and yet, with high DER penetration into distribution networks, nowadays, the power
flow direction can be bilateral, as demonstrated in Figure 1. IEEE1547-2018 is the standard
that was released in 2018 to facilitate high DER penetration [3]. Advanced applications
such as (1) voltage quality analysis (sizes and locations of capacitor banks, locations and
ratings of voltage regulators, line upgrades), (2) DER integration (given the location of a
new DER, determine the impact on operations), and (3) outage restoration analysis (if an
outage occurs, determine how to operate switches to restore the load) are built upon DPF.

There are several popular power flow algorithms in the literature, and in this study,
we implemented a simple yet efficient iterative method, the fixed-point method, which
can handle heavily unbalanced and large DER-penetrated distribution circuits. Before
introducing the fixed-point method, we list some disadvantages of two popular algorithms.
(1) The backward/forward sweep method. Here, the first drawback is that this method
can have trouble dealing with systems that have high penetration of distributed generation
sources because, in this situation, the power flow might not be unidirectional, which
violates an assumption of the method. The second drawback is that while it is relatively



Energies 2024, 17, 511 4 of 19

efficient for smaller systems, the computational time can grow rapidly for large-scale,
multi-phase, and unbalanced distribution systems. (2) The Newton Raphson method. In
this case, the first drawback is that the Jacobian matrix used in this method needs to be
updated and inverted at each iteration, which is computationally intensive, particularly for
large-scale power systems. The second drawback is that the Newton Raphson method is
most suited to transmission systems (generally mesh networks) and can have trouble with
the unique characteristics of distribution systems, which are typically radial and have more
unbalanced loads.
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Figure 1. Distribution network with high PV penetration.

Therefore, this work adopted the fixed-point method operated in OpenDSS [7]. The
mathematical process is presented here, followed by a summary of its advantages.

iinj(v) = Ysystem × v (1)

Here, iinj(v) is the compensation or injection current vector from the power conversion
elements (load, generator, Vsource, Isource, storage, etc.) in the circuit, which may be non-
linear, non-constant, and node-voltage dependent; v is the node voltage vector; and Ysystem
is a network admittance matrix composed of all elements’ primitive matrices Yprim, as
shown in Figure 2.
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Yprim is the matrix representation for each current-carrying circuit element (lines, loads,
regulators, capacitors, etc.). For example, to represent the relationship of a current with
vector i and voltage vector v between two buses of two conductors, as shown in Figure 3,
Yprim is calculated and can be treated as a black box.

Z =

[
z11 m12
m21 z22

]
(2)
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Here, v1, v2, v3, and v4 are voltages on terminals 1, 2, 3, and 4, respectively; Z is the
self-impedance; and m is the mutual impedance induced by the magnetic field of two lines.
Z is a 2 × 2 matrix describing the impedance characteristics of the coupled impedances.
The element has four terminals, as shown in Figure 3, and a system of equations is written
in nodal admittance form relating the currents entering each terminal to the voltage of each
terminal with respect to a common zero-voltage reference, usually remote earth. The matrix
relating the voltages and currents in this form is the Yprim matrix as defined in (3) and (4).
Note that the Z matrix appears four times in the Yprim matrix. Lines, reactors, capacitor
banks, and transformers of nearly any complexity can be modeled simply by extending the
principles of this example to the actual number of phases and windings [7].

I1
I2
I3
I4

 =

[
Z−1 −Z−1

−Z−1 Z−1

]
V1
V2
V3
V4

 (3)

Yprim =

[
Z−1 −Z−1

−Z−1 Z−1

]
(4)

As mentioned previously, the network Ysystem admittance matrix is composed of the
Yprim of each circuit element, then an iterative method is used to solve v. The process
is straightforward. We first use an initial guess of v0 (1.0 p.u.) to calculate iinj and then
calculate the voltage iteratively until the algorithm converges (the difference in current and
previous v is within a predefined threshold). Figure 4 presents a flow chart of the iterative
PF method.

vn+1 = Y−1
system × iinj(vn), n = 0, 1, 2, . . . , n (5)

Here, n is the number of iterations. Note that most entries in I are zero, but for DERs
and non-linear voltage-dependent loads (such as constant power and constant current
loads), the corresponding entries in I are non-zero. The advantages of this DLF are as
follows: (1) Ysystem remains constant if there is no network topology change. In other
words, the matrix inversion only needs to be performed once during the iteration, which
saves a lot of computational time. (2) The DLF can take very unbalanced three-phase
networks and converge those successfully. (3) It is also suitable for parallel source (mesh
topology) networks, as opposed to the radial network topology, which is required by the
commonly used backward/forward sweep method [23]. (4) It provides the option to run a
long-time-series continuous load flow efficiently thanks to the fast solving feature.
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2.2. Optimal PV Allocation

Figure 1 gives an overview of high PV system penetration into an unbalanced dis-
tribution network. This indicates that there are MW-scale, commercial, and residential
types of PV systems and the power flow becomes bidirectional after large PV penetration.
Bidirectional power flow certainly increases the complexity for system operators, but what
is more concerning is the voltage issue introduced by PV. During the heavy loading period,
PV penetration normally helps improve the voltage profile because voltage under a heavy
load is near to or even lower than the low voltage limits. Thanks to PV penetration, the
voltage will be boosted to the acceptable range. Yet, during light loading and high PV
penetration times, such as noon, voltages are likely to be boosted above the high limit,
which causes damage to the system.

Therefore, the PV allocation problem requires finding the optimal locations and sizing
of PV systems to achieve objectives such as maximizing PV power injection or minimizing
voltage deviation from 1.0 p.u. for all node voltages and when subjected to certain equality
and inequality constraints. The mathematical form is expressed as follows:

min f (u) (6)

g(u, x, y) ≤ 0 (7)

h(u, x, y) = 0 (8)

where u is the control variable including PV locations and sizes; x is the state vari-
able/dependent variable including voltages and angles at each bus; y is the known network
parameters, such as network resistance, impendence, device rating, etc.; g(0) is the inequal-
ity constraints, which include line flow limit, voltage limit, and PV active power injection
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limit; and h(0) represents the equality constraints, which constitute the power balance
equation at each node, represented as follows:

Pi = Vi
N
∑

j=1
VjYijcos(δi − δj − θij)

Qi = Vi
N
∑

j=1
VjYijsin(δi − δj − θij) ∀i, ∀j

(9)

where Pi and Qi are the real and reactive power at each node I. Note that unlike a transmis-
sion network, each bus in a distribution network will have to include multiple nodes in the
model to reflect the possible unbalanced power flow. In other words, the size of equations
increases significantly. Vi, Vj, δi, and δj, are the voltage magnitude and angle at nodes I and
j; Yij and θij are the Y-bus admittance matrix elements between nodes i and j. Equation (9)
comprises two highly non-linear equations.

For the objective function f (0), two objectives, f 1 and f 2, were considered in this
study. f 1 was to minimize the voltage violation while maximizing the power injection
(minimizing negative power injection) at a specific hour, whereas f 2 was to minimize the
voltage violation and voltage deviation from 1.0 p.u. at specific hour, as shown below:

f1 =
nPV

∑
i=1
−pPVi (10)

f2 =
n

∑
i=1

α× |vi − 1| (11)

where vi and pPVi are the bus voltage and the real power injection at PV bus i, respectively;
npv is the number of PV systems; n is the total number of buses; and the voltage deviation
is multiplied by a constant number α of 1000. This will give the fitness value of the cost
function of f 2 as a large number for clear selection and presentation.

As mentioned previously, g(0) are the inequality constraints, listed as follows:

pGi,min ≤ pGi ≤ pGi,max (12)

ti,min ≤ ti ≤ ti,max (13)

vi,min ≤ vi ≤ vi,max (14)

SLi ≤ SLi,max (15)

ppv,min ≤ ppvi ≤ ppv,max (16)

where (12) is the constraint for the ith generator; (13) represents the ith transformer tapping
limit; (14) is the voltage limit at the ith node; (15) is the complex power flow limit at the ith

line; and (16) represents the PV system capacity limits, which are 2000–20,000 kVA in this
study. (16) is the control variable constraint, which is enforced within the control variable
feasible domain. The rest of the equations are related to dependent variables, and only
violations from (14) are penalized with objective functions, if they exist, because (12), (13),
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and (15) are enforced when performing the power flow calculation in (5). The objective
function then becomes (17):

fobj = f + pen×
n

∑
i=1


(vi − vi,max)

2 vi > vi,max

(vi,min − vi)
2 vi < vi,min

0 otherwise
(17)

where fobj is the final objective function including the penalization term, f is the objective func-
tions defined from (10) and (11), and pen is a large positive number as the penalty coefficient.

3. Methodologies

Evolutionary algorithms (EAs) have proven effectiveness for complex optimization
problems, many of which are in the energy domain [8,14]. In this work, several population-
based evolutionary algorithms, ABC, PSO, DE, ABC-OL, and PSO-OL (integrated with
orthogonal learning [8]), are implemented and compared to evaluate their effectiveness.
The basic ABC and PSO have been proven effective and implemented in various real-world
optimization problem scenarios like scheduling problems, financial modeling, resource
allocation, etc., thanks to their features such as ease of implementation, adaptability, good
balance of exploration and exploitation, etc. [8,24–28]. Thus, they were chosen as bench-
marks, and future work can be focused on developing improved EAs to tackle these
problems. The famous no free lunch theorem states that no meta-heuristic algorithm
can be superior to the other algorithms for all optimization problems universally. There-
fore, one of the objectives of this work was to extract their characteristics via a detailed
comparative study.

3.1. Solution Vector

The EA solution vector structure is demonstrated in Figure 5. The control variables
consist of location as the discrete variable and size as the continuous variable for peak-
hour planning.
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3.2. Artificial Bee Colony in PV Allocation

The ABC is a population-based search algorithm mimicking the foraging of honeybees.
Bees are sent out to randomly search in multidimensional feasible space (bounded by limits)
to look for food sources (solutions) [29].

At initialization, each solution vector ui = {ui1, ui2, . . ., uid} is generated randomly
within the limits of the variables as follows:

ui,j = ui,j_min + rand(0, 1)×
(
ui,j_max − ui,j_min

)
(18)

where ui,j_min and ui,j_max are the lower and upper bounds for the jth dimension of the ith

food source, respectively. Note that there is a total n number of food sources (solutions) and
d control variables and rand (0,1) is a random number within (0,1) obtained by assuming a
uniform distribution.

Every food source will be updated to a new candidate solution based on the neighbor-
hood’s information. The nectar of new solutions (fitness value) will be evaluated to decide
whether the current solution is to be replaced by the new one. Such selection is known as
“greedy selection”. The overall process is demonstrated in Figure 6 and Table 1.
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Table 1. Pseudocode for ABC.

Algorithm 1: ABC

1. Initialization:
2. Set number of food sources (solutions), max iteration, max trial counter.
3. Initialize the optimization variables (location and size) in the solution domain:
4. ui,j = ui,j_min + rand(0, 1)×

(
ui,j_max − ui,j_min

)
—Equation (18)

5. Repeat iteration t:
6. Employed Bee Phase:
7. for i = 1 to employed bee n
8. vi,j = ui,j + rand(−1, 1)×

(
ui,j − uk,j

)
—Equation (19)

9. Enforce the new candidate solution vector vi within feasible limits.
10. Evaluate the new solution and return its fitness value by (17).
11. Apply greed selection between the new solution vi and the original one ui
12. end for
13. Onlooker Bee Phase:
14. for i = 1 to onlooker bee n
15. Select a solution (solutions with better fitness values have higher probability to be selected).
16. Modify the solution using (19).
17. Enforce the new candidate solution vector vi within feasible limits.
18. Evaluate the new solution and return its fitness value by (17).
19. Apply greedy selection between the new solution vi and the original one ui.
20. end for
21. Scout Bee Phase:
22. Abandon the food source (solution) whose trial counter is above the limit.
23. Replace the abandoned food source with a new randomly generated one by (18).
24. Memorize the best solution: record the best solution so far at each iteration.
25. Until termination criterion is met and output results.
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The updated equation for a new candidate solution vector vi is defined as follows:

vi,j = ui,j + rand(−1, 1)×
(

ui,j − uk,j

)
(19)

where k is a different integer to i, which is randomly chosen from the size of the employed
bees (n), and rand (−1,1) is a random number from (−1,1).

3.3. Particle Swarm Optimization in PV Allocation

The PSO is also a population-based search algorithm introduced by Kennedy and
Eberhart in 1995 to explore the search space by using particles [24]. One particle consists of
velocity and position, where position is the feasible solution updated with the help of the
previous position and velocity, as shown below:

vnew
i = ωIvi + r1ωM(bi − xi) + r2ωC(bG − xi) (20)

xnew
i = xi + vnew

i (21)

where ωI , ωM, and ωC are the weights for inertia, memory, and cooperation terms; r1 and
r2 are two random numbers from 0 to 1; bi and bG are the personal best and global best;
xnew

i is the new solution computed with the help of vnew
i for the ith population. Figure 7

shows a flow chart of PSO for PV allocation, and pseudocode for PSO is given in Table 2.
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As mentioned, both ABC and PSO are known for their efficiency in solving complex
real-world optimization problems. The main idea is that swarms are sent out to search for
the near-optimal solution based on intelligent mechanisms mimicking the biological behav-
iors in a non-convex and non-linear solution domain. To ensure successful applications, the
key is to evaluate the solution and return a fitness value. For real-world problems, as long
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as there is a mechanism (mathematical model, neural network, fuzzy system, etc.) with
which to evaluate the solution, it is worthwhile assessing the performances of ABC and
PSO in solving the problems.

Table 2. Pseudocode for PSO.

Algorithm 2: PSO

1. Initialization:
2. Set parameters such as max iteration, population size n, ωI , ωM, ωC, r1, and r2.
3. Initialize population x (solutions) in the feasible domain.
4. Evaluate the solutions and return their fitness value by (17).
5. Set each particle’s personal best bi equal to current particle xi.
6. Set the global best bG equal to the best particle xi that corresponds to the minimal fitness value.
7. Repeat iteration t
8. for i = 1 to population size n
9. vnew

i = ωIvi + r1ωM(bi − xi) + r2ωC(bG − xi)—Equation (20)
10. xnew

i = xi + vnew
i

11. end for
12. Enforce Xnew

i , Vnew
i within feasible limits.

13. Evaluate the new solution f (Xnew
i ) and return its fitness value by (17).

14. Update the personal best bi.
15. Update the global best bG.
16. Until termination criterion is met
17. Return global best

For this comparative study, we also implemented DE, ABC-OL, and PSO-OL (OL
stands for orthogonal learning) for optimal PV allocation. It was interesting to find that
DE, which is known for its efficiency in solving continuous optimization problems, failed
to present any feasible solutions for the two objectives in the IEEE-13 and -37 test beds.
We propose that the reason for its failure concerned the nature of the problem, where half
of the optimization variables are discrete. Given its failure, we exclude the results for
DE from Section 4. Furthermore, the OL concept and its integration into ABC and PSO
can be found in [8,30] in detail; as such, due to space constraints, we do not present the
implementation here.

4. Results and Discussions

This section first describes case studies where three-phase PV systems are to be
installed in the IEEE-13 and -37 bus systems to achieve two objectives, and this is followed
by a performance analysis and discussion. Three-phase PV systems are adopted here to
ensure successful power flow, because if we were to consider single- or two-phase buses
used to install large PV systems, those systems could become very unbalanced to the
point where huge violations could occur, causing the power flow to diverge. Note that the
potential buses used to install PV systems are three-phase 4.16 kV and 4.8 kV levels for
the IEEE-13 and -37 bus systems, respectively. Table 3 summarizes all cases and scenarios
in this study. The PC used for simulation has 32 G RAM and an 11th Gen Intel Core
i7 processor.

Table 3. Cases and scenarios.

Case 1: Maximum PV Penetration Case 2: Minimum Voltage Deviation

IEEE-13 Scenario 1 one PV system’s optimization one PV system’s optimization
IEEE-13 Scenario 2 two PV systems’ optimization two PV systems’ optimization
IEEE-37 Scenario 3 one PV system’s optimization one PV system’s optimization
IEEE-37 Scenario 4 two PV systems’ optimization two PV systems’ optimization
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4.1. PV and Load Profile

For this work, a three-phase PV system rated at 4.16 kV, with a possible output
of 2000–20,000 kVA and a power factor of 1, was chosen. The PV system was installed
optimally in IEEE-13 and IEEE-37 bus circuits to evaluate the EAs’ performance. Note
that even though the PV system is three-phase, the circuit itself is an unbalanced network,
which brings many challenges for planning. Figure 8 gives the load profile in p.u. of the
chosen date. Figure 9 shows the temperature and PV output in p.u. for the selected date.
Clearly, the PV output has a positive correlation with the temperature. For this study, only
the loading condition and PV output from 12:00 pm were utilized, as the objectives from
(10) and (11) were to obtain the optimal allocation considering the peak hour PV output,
which was assumed to occur at noon.
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4.2. PV Penetration Maximization on IEEE-13 and -37 Bus Test Systems

The objective of this case study was to maximize the PV penetration. The first and
second scenarios were conducted on the IEEE-13 bus system. The potential buses used
to interconnect PV systems were {670, 671, 633, 680, 675, 692}, as shown in Figure 10a.
The third and fourth scenarios were conducted on the IEEE-37 bus system, as shown in
Figure 10b. The potential buses used to interconnect PV systems were {701, 702, 703, 704,
705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 718, 720, 722, 724, 725, 727, 728, 729, 730, 731,
732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 744}, and the possible PV size was from 2000
to 20,000 kVA for both test cases. To become a potential location, the rated bus voltage was
required be at 4.16 kV and a three-phase bus was needed.
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Figure 10. IEEE-13 (a) and -37 (b) bus test systems.

Table 4 shows the results of the 30-run experiment. The column “Solution” presents
the optimal solution found with evolutionary algorithms in 30 runs, which indicates the bus
location and kVA injection size. “Min”, “Avg”, “Max”, and “Std” represent the minimum,
average, maximum, and standard deviation of the fitness values, respectively. A negative
fitness value means the solution (location and size of PV system) did not lead to voltage
violation. Alternatively, a positive fitness value means the solution introduced voltage
violation in (16). The column “FE” indicates the function evaluations at one run. In
EAs, function evaluation is the critical process followed to calculate the fitness value (cost
in objective functions). “#pop/iterations” represents the population size corresponding
to the total iterations of the algorithm. To ensure equity in comparison, we set those
values equally.

Table 4. Maximizing PV penetration on the IEEE-13 bus system.

One PV System Allocation

Min Avg Max Std T(s) FE Solution (Bus, kVA) #pop/iterations
ABC −14,528 −14,526 −14,522 1.2 6 20247 (670, 14,526) 100/200

ABC-OL −14,528 −14,526 −14,525 0.8 21 36236 (670, 14,527) 100/200
PSO −14,528 −14,527 −14,525 0.6 6 20100 (670, 14,528) 100/200

PSO-OL −14,526 −14,525 −14,521 1.3 24 20100 (670, 14,526) 100/200

Two PV systems allocation

Min Avg Max Std T(s) FE Solution (Bus, kVA) #pop/iterations
ABC −15,787 −15,708 −15,520 70.1 7 20,249 (633, 5080; 670, 10,591) 100/200

ABC-OL −15,779 −15,701 −15,520 69.1 22 52,189 (633, 4786; 670, 10,957) 100/200
PSO −15,797 −15,796 −15,792 1.5 7 20,100 (633, 4965; 670, 10,832) 100/200

PSO-OL −15,796 −15,795 −15,788 1.5 24 20,100 (633, 4967; 670, 10,829) 100/200

It can be noted from the one PV system allocation that all EAs could find similar
solutions regarding “Min”, “Avg”, “Max”, and “Std”. PSO achieved this with the least
computing time. This implied that the problem was relatively simple and most EAs could



Energies 2024, 17, 511 14 of 19

find the solution efficiently and robustly (low standard deviation). For the two PV system
allocation, it can be noted that the best solution in “Avg” was found by using PSO, and it
was also the most efficient solution (least time consumed). Furthermore, the “Std” results
found by ABC and ABC-OL were much larger than those from PSO and PSO-OL, which
implied less robustness.

Figure 11 shows convergence plots for the four algorithms based on the one PV and
two PV system allocations. In both plots, the four algorithms can be seen to have found
similar results efficiently, which implies a simple structure for the problem. Yet, PSO and
its variant PSO-OL had faster convergence rates for the problem. It can also be noted from
the zoomed-in image that the convergence rates in the one PV and two PV cases were the
same from fast to slow: PSO-OL, PSO, ABC, and ABC-OL.
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Figure 11. Convergence plots for the one PV system (a) and two PV systems (b) optimal allocations
on the IEEE-13 bus system.

Table 5 shows the results found with the four algorithms in the IEEE-37 bus system
over 30 runs. It can be noted that the solution found with PSO has the lowest fitness value
in “Avg” for both cases. Furthermore, the “Std” result for this scenario is relatively large
compared with that for the IEEE-13 bus system, which implies that the complexity of the
problem has increased significantly.

Table 5. Maximizing PV penetration in the IEEE-37 bus system.

One PV System Allocation

Min Avg Max Std T(s) FE Solution (Bus, kVA) #pop/iterations
ABC −8804 −8493 −8089 172 17 16,232 (705, 8296) 80/200
ABC-OL −9004 −8406 −8071 196 35 29,336 (714, 8351) 80/200
PSO −8938 −8590 −8060 195 21 16,080 (705, 8938) 80/200
PSO-OL −8724 −8244 −7544 420 34 16,080 (705, 8724) 80/200

Two PV systems allocation

Min Avg Max Std T(s) FE Solution (Bus, kVA) #pop/iterations
ABC −28,769 −28,194 −27,801 213 26 16,233 (705, 8201; 740, 20,000) 80/200
ABC-OL −28,645 −27,991 −27,659 255 40 42,219 (727, 7825; 724, 20,000) 80/200
PSO −28,620 −28,274 −27,506 215 20 16,080 (714, 8624; 727, 20,000) 80/200
PSO-OL −28,416 −26,537 −26,026 270 43 16,080 (713, 9035; 733, 20,000) 80/200

Figure 12 shows convergence plots for the four algorithms based on the one PV
and two PV system allocations. In the left-hand plot, even though the convergence rates
and results are similar for all algorithms, PSO and PSO-OL have particularly good initial
solutions. In the right-hand plot, PSO has the fastest convergence rate, yet PSO-OL seems to
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become trapped at the local minima in early iterations and barely improves in the following
iterations.
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Figure 12. Convergence plots for the one PV system (a) and two PV systems (b) optimal allocations
in the IEEE-37 bus system.

From case 1, it can be observed that basic PSO is the most effective EA for optimal PV
allocations when considering maximum PV penetration and when seeking to find solutions
with the lowest average cost. The fast convergence rate also demonstrates its effectiveness.

4.3. Voltage Deviation Minimization in the IEEE-13 and -37 Bus Test Systems

In this case, the PV systems to be installed and the potential buses in the test circuits
are the same as those described in Section 4.2. Table 6 shows the results for the IEEE-13
bus system over 30 runs. The fitness value (objective cost) for this case is always a positive
value since the cost is added whenever voltages are beyond the limits and deviating by
over 1.0 p.u. from Equation (10). It is worth noting that for both the one PV and two PV
allocation scenarios, the results obtained with the four algorithms are consistent and robust.
This implies that the problem is relatively simple, such that EAs can search in the solution
domain efficiently to obtain consistent “optimal” solutions.

Table 6. Minimizing voltage deviation in the IEEE-13 bus system.

One PV System Allocation

Min Avg Max Std T(s) FE Solution (Bus, kVA) #pop/iterations
ABC 535 535 535 0.1 4 12,184 (670, 10,649) 60/200
ABC-OL 535 535 535 0.1 9 21,692 (670, 10,632) 60/200
PSO 535 535 535 0.1 4 12,060 (670, 10,689) 60/200
PSO-OL 535 535 535 0.1 9 7375 (670, 10,654) 60/200

Two PV systems allocation

Min Avg Max Std T(s) FE Solution (Bus, kVA) #pop/iterations
ABC 455 455 456 1 6 12,127 (633, 4920; 692, 4474) 60/200
ABC-OL 455 455 455 0.1 9 31,314 (633, 5279; 692, 4320) 60/200
PSO 455 456 484 5 4 12,060 (633, 5119; 692, 4392) 60/200
PSO-OL 455 455 455 0.1 10 7416 (633, 5382; 692, 4275) 60/200

Figure 13 shows convergence plots for the four algorithms based on the one PV and
two PV system allocations. These plots reveal that the four algorithms could find similar
results efficiently, which implies a simple structure for the problem. Yet, in the right-hand
plot, PSO-OL has the lowest convergence rate.



Energies 2024, 17, 511 16 of 19

Energies 2024, 17, x FOR PEER REVIEW 17 of 21 
 

 

Figure 13 shows convergence plots for the four algorithms based on the one PV and 

two PV system allocations. These plots reveal that the four algorithms could find similar 

results efficiently, which implies a simple structure for the problem. Yet, in the right-hand 

plot, PSO-OL has the lowest convergence rate. 

  
(a) (b) 

Figure 13. Convergence plots for the one PV system (a) and two PV systems (b) optimal allocations 

in the IEEE-13 bus system. 

Since the objective is to minimize voltage deviation, the optimal voltage profiles 

solved with PSO are listed in Figure 14. There are a total of 41 node voltages for the IEEE-

13 bus unbalanced three-phase distribution network, because each bus can have multiple 

nodes. It can be observed that the voltage profiles are greatly improved for both the one 

PV and two PV system optimal allocations. 

  
(a) (b) 

Figure 14. Voltage profiles for the one PV system (a) and two PV systems (b) optimal allocations in 

the IEEE-13 bus system. 

Table 7 shows the results for the IEEE-37 bus system. ABC and ABC-OL 

outperformed PSO-based algorithms in the “Min”, “Avg”, “Max”, and “Std” attributes. 

Specifically, ABC-OL found the solutions with the least cost in “Avg” for both the one PV 

and two PV scenarios. Yet, ABC-OL required more computing time. It is also interesting 

to see that in the two PV scenario, PSO-OL obtained the lowest “Std”, which shows its 

robustness. 

  

Figure 13. Convergence plots for the one PV system (a) and two PV systems (b) optimal allocations
in the IEEE-13 bus system.

Since the objective is to minimize voltage deviation, the optimal voltage profiles solved
with PSO are listed in Figure 14. There are a total of 41 node voltages for the IEEE-13 bus
unbalanced three-phase distribution network, because each bus can have multiple nodes.
It can be observed that the voltage profiles are greatly improved for both the one PV and
two PV system optimal allocations.
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Figure 14. Voltage profiles for the one PV system (a) and two PV systems (b) optimal allocations in
the IEEE-13 bus system.

Table 7 shows the results for the IEEE-37 bus system. ABC and ABC-OL outperformed
PSO-based algorithms in the “Min”, “Avg”, “Max”, and “Std” attributes. Specifically,
ABC-OL found the solutions with the least cost in “Avg” for both the one PV and two PV
scenarios. Yet, ABC-OL required more computing time. It is also interesting to see that in
the two PV scenario, PSO-OL obtained the lowest “Std”, which shows its robustness.

Figure 15 shows the corresponding convergence plots. There are a total of 500 iterations
for all four algorithms, more than in the previous cases. In relation to this, it is worthwhile
noting that “optimal” solutions are normally not found at an early stage. For example, in
this study, ABC-OL in the left-hand plot does not converge until around the 160th iteration,
nor does it converge until around the 110th iteration in the right-hand plot. Clearly, even
though the PSO-based algorithms converge quickly, they are trapped at the local minimum
and their solutions do not improve in later iterations. It can also be observed that for the
one PV and two PV systems, the final results found with ABC and ABC-OL are similar, and
the final results found with PSO and PSO-OL are also comparable.
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Table 7. Minimizing voltage deviation in the IEEE-37 bus system.

One PV System Allocation

Min Avg Max Std T(s) FE Solution (Bus, kVA) #pop/iterations
ABC 1062 1217 1363 85 75 50,538 (703, 7397) 100/500

ABC-OL 1062 1105 1260 69 86 90,505 (670, 10,556) 100/500
PSO 1367 1471 1600 114 73 50,100 (727, 7977) 100/500

PSO-OL 1091 1157 1389 77 87 30,267 (703, 7073) 100/500

Two PV systems allocation

Min Avg Max Std T(s) FE Solution (Bus, kVA) #pop/iterations
ABC 1034 1181 1320 66 71 50,535 (727, 7632; 733, 11,219) 100/500

ABC-OL 1062 1154 1285 57 117 131,883 (703, 7289; 718, 9549) 100/500
PSO 1362 1372 1383 10 75 50,100 (727, 7818; 718, 16,404) 100/500

PSO-OL 1356 1367 1389 9 98 30,389 (727, 8059; 733, 14,353) 100/500
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Figure 15. Convergence plots for the one PV system (a) and two PV systems (b) optimal allocations
in the IEEE-37 bus system.

Similarly, the optimal voltage profiles found with ABC-OL are listed in Figure 16.
There are a total of 117 node voltages for the IEEE-37 bus unbalanced three-phase distri-
bution network. Note that the original circuit has a very poor voltage profile (blue dotted
line), where most voltages of buses are lower than the voltage limit of 0.9 p.u. Such a
voltage profile can cause significant damage to infrastructure. Yet, it can be observed that
the voltage profile has been greatly improved for both the one PV and two PV system
optimal allocations.
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5. Conclusions

Distribution networks have become active and complicated, containing bilateral power
flow and large DER penetration. Finding the optimal locations and sizes of PV systems
creates a complex planning problem, and solving that problem is critical for distribution
network management. This work explored the possibility of using EAs (ABC, PSO, and
their variants) to tackle such a problem with the help of a simple and yet efficient fixed-point
iterative load flow method that ensures the unbalanced network will be solved successfully.
All EAs were verified on IEEE-13 and -37 bus systems with two objectives (maximum
PV penetration and minimum voltage deviation). After 30 runs, all EAs except for DE
were relatively successful in finding solutions, but they had different attributes, such as
the ability to find lower or stable fitness values. The ABC-related algorithms generally
converged with better solutions and yet with statistically larger deviations in minimum
voltage. Meanwhile, the PSO-related algorithms were more efficient in terms of maximum
PV penetration. For the minimum voltage deviation case, the voltage profile was boosted
by around 1.0 p.u. after optimization. Such a voltage profile will reduce infrastructural
degradation significantly. This work proves the EAs’ efficiency in solving such problems
and highlights that they may realistically be used as tools for operators when planning the
integration of PV systems into unbalanced distribution networks. Thus, this work can be
considered a proof of concept for optimal PV system allocation problems. Nonetheless, it
has its limits, such as the use of only up to two PV systems for peak-hour planning. Utilities
will certainly want to optimally allocate more PV systems in a long period. Therefore, future
work should focus on conducting day-ahead optimal planning using basic EAs and/or
improved EAs, which should be applied to more PV systems. We wish to emphasize that
from a practical perspective, the implementation of EAs for the optimal allocation of PV
systems is a good approach because the problem does not require a real-time solution but
just needs a better solution without that coming at the expense of computational cost. The
source code is available publicly for researchers and practitioners to explore as part of
efforts to extend this work.
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